Academic literature on the topic 'Phosphatase, PTPRG, Endothelial cells, permeability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phosphatase, PTPRG, Endothelial cells, permeability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phosphatase, PTPRG, Endothelial cells, permeability"

1

Essler, Markus, Karin Hermann, Mutsuki Amano, Kozo Kaibuchi, Jürgen Heesemann, Peter C. Weber, and Martin Aepfelbacher. "Pasteurella multocida Toxin Increases Endothelial Permeability via Rho Kinase and Myosin Light Chain Phosphatase." Journal of Immunology 161, no. 10 (November 15, 1998): 5640–46. http://dx.doi.org/10.4049/jimmunol.161.10.5640.

Full text
Abstract:
Abstract Pasteurella multocida toxin (PMT) has been shown to induce actin reorganization through activation of the GTPase Rho. Here we investigated the involvement of the Rho target proteins Rho kinase and myosin light chain (MLC) phosphatase in the PMT-induced increase in endothelial permeability and the underlying actin reorganization of endothelial cells. Stimulation of endothelial layers with PMT enhanced transendothelial permeability >10-fold, and this was abolished by pretreatment with the specific Rho inactivator C3 transferase from Clostridium botulinum. The PMT-induced increase in endothelial permeability was associated with 1) inactivation of MLC phosphatase, 2) an increase in MLC phosphorylation, and 3) endothelial cell retraction and actin stress fiber formation. PMT-stimulated actin reorganization could be prevented by 1) pretreatment of cells with C3 transferase, 2) microinjection of the Rho binding domain and the pleckstrin homology domain of Rho kinase, and 3) microinjection of constitutively active MLC phosphatase. Together, these results suggest that PMT activates Rho/Rho kinase, which inactivates MLC phosphatase. The resulting increase in MLC phosphorylation causes endothelial cell retraction and a rise in endothelial permeability.
APA, Harvard, Vancouver, ISO, and other styles
2

Vestweber, Dietmar. "Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function." Physiology 36, no. 2 (March 1, 2021): 84–93. http://dx.doi.org/10.1152/physiol.00026.2020.

Full text
Abstract:
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is a receptor-type PTP (RPTP), predominantly expressed in vascular endothelial cells. It regulates embryonic and tumor angiogenesis and controls vascular permeability and homeostasis in inflammation. Major substrates are the tyrosine kinase receptor Tie-2 and the adhesion molecule VE-cadherin. This review describes how VE-PTP controls vascular functions by its various substrates and the therapeutic potential of VE-PTP in various pathophysiological settings.
APA, Harvard, Vancouver, ISO, and other styles
3

Wachtel, M., K. Frei, E. Ehler, A. Fontana, K. Winterhalter, and S. M. Gloor. "Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition." Journal of Cell Science 112, no. 23 (December 1, 1999): 4347–56. http://dx.doi.org/10.1242/jcs.112.23.4347.

Full text
Abstract:
Regulation of epithelial and endothelial permeability is essential for proper function of compartmentalized organisms, and tyrosine phosphorylation plays an important role in this process. We analyzed the impact of protein tyrosine phosphatase (PTP) inhibition on the structure of endothelial junctional proteins. In human umbilical vein endothelial cells (HUVECs) the PTP inhibitors phenylarsine oxide (PAO) and pervanadate induced proteolysis of the tight junction protein occludin. Occludin proteolysis was inhibited by the metalloproteinase inhibitor 1,10-phenanthroline (PHEN), but not by inhibitors against other types of proteases. The junctional proteins ZO-1, cadherin and beta-catenin were not cleaved. Under conditions of occludin proteolysis, PAO treatment elevated permeability for FITC-dextran. Simultaneous incubation of HUVECs with PAO and PHEN inhibited the rise in permeability by more than 60%. PAO treatment lead to progressive disappearance of occludin from the cell periphery. In contrast, ZO-1, cadherin and beta-catenin retained their positions at the sites of intercellular contact. Simultaneous administration of PAO and PHEN greatly prevented the redistribution of occludin. These results demonstrate a selective cleavage of occludin by a metalloproteinase and suggest that this process can contribute to the control of paracellular permeability in endothelial cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Kaestner, Charlotte L., Amin Sobh, Jianping Li, Alberto Riva, Richard Lynn Bennett, and Jonathan D. Licht. "Functional CRISPR Screening Identifies Ptprg As a Driver of Migration and Adhesion in NSD2-E1099K ALL." Blood 138, Supplement 1 (November 5, 2021): 1149. http://dx.doi.org/10.1182/blood-2021-154009.

Full text
Abstract:
Abstract Background: Acute Lymphoblastic Leukemia (ALL) is the most common childhood cancer and frequently infiltrates the central nervous system (CNS). CNS-directed therapy is currently limited to intrathecal and systemic high-dose methotrexate, or less commonly craniospinal irradiation, both of which are associated with substantial neurotoxicity. A lack of mechanistic understanding of the mechanisms of CNS infiltration presents an obstacle for the development of more specific and less toxic therapeutic approaches. We previously showed that ALL cells with a specific mutation (E1099K) in the histone methyltransferase NSD2 have aggressive CNS tropism by not only infiltrating the leptomeninges but also the brain parenchyma in murine xenografts models. Analysis of cBioPortal data shows that NSD2-E1099K is associated with a higher rate of testicular involvement in ALL also suggesting more aggressive infiltration behavior of the tumor. Accordingly, using gene editing to revert mutant NSD2 back to wild-type, we also showed that NSD2-E1099K cells have an enhanced ability to migrate and adhere in vitro. RNA-seq data on four NSD2-E1099K cell lines revealed genes that may play a role in ALL brain infiltration. However, it remains unknown which of those upregulated genes could be potential therapeutic targets against CNS leukemia. Aim: This study aims to Identify therapeutically targetable genes that are important for migration of NSD2-E1099K ALL cells Methods: Using a focused CRISPR-gene-knockout library of 5600 sgRNAs directed against 500 genes upregulated in NSD2-E1099K cells, we ascertained the necessity of the selected genes for migration in the RCH-ACV cell line. Candidate genes were evaluated for cellular dependency using a CRISPR-loss of function screen and the cancer dependency map portal. Overexpression of the candidate genes in NSD2-E1099K cell lines was confirmed with qPCR analysis. Candidate genes were validated by individual shRNA knockdown followed by migration and adhesion assays. Results: Our study identified genes whose knockout led to enhancement of migration and others whose knockout resulted in inhibition of migration. Protein Tyrosine Phosphatase Receptor Type G (PTPRG) was one of the top candidate genes whose knockout resulted in inhibition of migration. Dependency map analysis showed that PTPRG is not a commonly essential gene and a CRISPR-based-loss-of function screen performed in parallel to the migration screen confirmed that ALL cell survival is not dependent on PTPRG. We also found that PTPRG is overexpressed in multiple NSD2-E1099K ALL cell lines. Individual Knockdown of PTPRG in NSD2-E1099K ALL cell lines not only inhibited migration, but also led to a loss of adhesion ability to endothelial cells of the Blood Brain Barrier. Conclusions: Our findings implicate PTPRG as an important modulator of migration and adhesion in ALL cells and a potential therapeutic target for preventing ALL brain infiltration, especially in NSD2-E1099K ALL. Disclosures Licht: Epizyme: Research Funding.
APA, Harvard, Vancouver, ISO, and other styles
5

Kevil, Christopher G., Naotsuka Okayama, and J. Steven Alexander. "H2O2-mediated permeability II: importance of tyrosine phosphatase and kinase activity." American Journal of Physiology-Cell Physiology 281, no. 6 (December 1, 2001): C1940—C1947. http://dx.doi.org/10.1152/ajpcell.2001.281.6.c1940.

Full text
Abstract:
We previously reported that exposure of endothelial cells to H2O2results in a loss of cell-cell apposition and increased endothelial solute permeability. The purpose of this study was to determine how tyrosine phosphorylation and tyrosine phosphatases contribute to oxidant-mediated disorganization of endothelial cell junctions. We found that H2O2caused a rapid decrease in total cellular phosphatase activity that facilitates a compensatory increase in cellular phosphotyrosine residues. H2O2exposure also results in increased endothelial monolayer permeability, which was attenuated by pp60, an inhibitor of src kinase. Inhibition of protein tyrosine phosphatase activity by phenylarsine oxide (PAO) demonstrated a similar permeability profile compared with H2O2, suggesting that tyrosine phosphatase activity is important in maintaining a normal endothelial solute barrier. Immunofluorescence shows that H2O2exposure caused a loss of pan-reactive cadherin and β-catenin from cell junctions that was not blocked by the src kinase inhibitor PP1. H2O2also caused β-catenin to dissociate from the endothelial cytoskeleton, which was not prevented by PP1. Finally, we determined that PP1 did not prevent cadherin internalization. These data suggest that oxidants like H2O2produce biological effects through protein phosphotyrosine modifications by decreasing total cellular phosphatase activity combined with increased src kinase activity, resulting in increased endothelial solute permeability.
APA, Harvard, Vancouver, ISO, and other styles
6

Gloor, Sergio M., Adrien Weber, Naoto Adachi, and Karl Frei. "Interleukin-1 Modulates Protein Tyrosine Phosphatase Activity and Permeability of Brain Endothelial Cells." Biochemical and Biophysical Research Communications 239, no. 3 (October 1997): 804–9. http://dx.doi.org/10.1006/bbrc.1997.7557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelly, J. J., T. M. Moore, P. Babal, A. H. Diwan, T. Stevens, and W. J. Thompson. "Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+and permeability." American Journal of Physiology-Lung Cellular and Molecular Physiology 274, no. 5 (May 1, 1998): L810—L819. http://dx.doi.org/10.1152/ajplung.1998.274.5.l810.

Full text
Abstract:
Cytosolic Ca2+concentration ([Ca2+]i) plays an important role in control of pulmonary vascular endothelial cell (ECs) barrier function. In this study, we investigated whether thapsigargin- and ionomycin-induced changes in cytosolic Ca2+induce permeability in rat pulmonary microvascular (RPMV) versus macrovascular (RPA) ECs. In Transwell cultures, RPMVECs formed a tighter, more restrictive barrier than RPAECs to 12,000-, 72,000-, and 150,000-molecular-weight FITC-labeled dextrans. Thapsigargin (1 μM) produced higher [Ca2+]ilevels in RPAECs than in RPMVECs and increased permeability in RPAEC but not in RPMVEC monolayers. Due to the attenuated [Ca2+]iresponse in RPMVECs, we investigated whether reduced activation of store-operated Ca2+entry was responsible for the insensitivity to thapsigargin. Addition of the drug in media containing 100 nM extracellular Ca2+followed by readdition media with 2 mM extracellular Ca2+increased RPMVEC [Ca2+]ito a level higher than that in RPAECs. Under these conditions, RPMVEC permeability was not increased, suggesting that [Ca2+]iin RPMVECs does not initiate barrier disruption. Also, ionomycin (1.4 μM) did not alter RPMVEC permeability, but the protein phosphatase inhibitor calyculin A (100 nM) induced permeability in RPMVECs. These data indicate that, whereas increased [Ca2+]ipromotes permeability in RPAECs, it is not sufficient in RPMVECs, which show an apparent uncoupling of [Ca2+]isignaling pathways or dominant Ca2+-independent mechanisms from controlling cellular gap formation and permeability.
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Soo Hyeon, Young-Rak Cho, Hyeon-Ju Kim, Joa Sub Oh, Eun-Kyung Ahn, Hye-Jin Ko, Byung Joon Hwang, et al. "Antagonism of VEGF-A–induced increase in vascular permeability by an integrin α3β1-Shp-1-cAMP/PKA pathway." Blood 120, no. 24 (December 6, 2012): 4892–902. http://dx.doi.org/10.1182/blood-2012-05-428243.

Full text
Abstract:
Abstract In cancer, VEGF-induced increase in vascular permeability results in increased interstitial pressure, reducing perfusion and increasing hypoxia, which reduce delivery of chemotherapeutic agents and increase resistance to ionizing radiation. Here, we show that both TIMP-2 and Ala + TIMP-2, a TIMP-2 mutant without matrix metalloproteinase inhibitory activity, antagonize the VEGF-A–induced increase in vascular permeability, both in vitro and in vivo. Like other agents known to preserve endothelial barrier function, TIMP-2 elevates cytosolic levels of cAMP and increases cytoskeletal-associated vascular endothelial cadherin in human microvascular endothelial cells. All of these effects are completely ablated by selective knockdown of integrin α3β1 expression, expression of a dominant negative protein tyrosine phosphatase Shp-1 mutant, administration of the protein tyrosine phosphatase inhibitor orthovanadate, or the adenylate cyclase inhibitor SQ22536. This TIMP-2–mediated inhibition of vascular permeability involves an integrin α3β1-Shp-1-cAMP/protein kinase A-dependent vascular endothelial cadherin cytoskeletal association, as evidenced by using siRNAs to integrin α3β1 and Shp-1, or treatment with Shp-1 inhibitor NSC87877 and protein kinase A inhibitor H89. Our results demonstrate the potential utility for TIMP-2 in cancer therapy through “normalization” of vascular permeability in addition to previously described antiangiogenic effects.
APA, Harvard, Vancouver, ISO, and other styles
9

Staddon, J. M., K. Herrenknecht, C. Smales, and L. L. Rubin. "Evidence that tyrosine phosphorylation may increase tight junction permeability." Journal of Cell Science 108, no. 2 (February 1, 1995): 609–19. http://dx.doi.org/10.1242/jcs.108.2.609.

Full text
Abstract:
Tight junction permeability control is important in a variety of physiological and pathological processes. We have investigated the role of tyrosine phosphorylation in the regulation of tight junction permeability. MDCK epithelial cells and brain endothelial cells were grown on filters and tight junction permeability was determined by transcellular electrical resistance (TER). The tyrosine phosphatase inhibitor pervanadate caused a concentration- and time-dependent decrease in TER in both MDCK and brain endothelial cells. However, as expected, pervanadate resulted in the tyrosine phosphorylation of many proteins; hence interpretation of its effects are extremely difficult. Phenylarsine oxide, a more selective tyrosine phosphatase inhibitor, caused the tyrosine phosphorylation of relatively few proteins as analyzed by immunoblotting of whole cell lysates. This inhibitor, like pervanadate, also elicited a decrease in TER in the two cell types. In the MDCK cells, the action of phenylarsine oxide could be reversed by the subsequent addition of the reducing agent 2,3-dimercaptopropanol. Immunocytochemistry revealed that phenylarsine oxide rapidly stimulated the tyrosine phosphorylation of proteins associated with intercellular junctions. Because of the known influence of the adherens junction on tight junctions, we analyzed immunoprecipitates of the E-cadherin/catenin complex from MDCK cells treated with phenylarsine oxide. This revealed an increase in the tyrosine phosphorylation of beta-catenin, but not of alpha-catenin. However, the tight junction associated protein ZO-1 was also tyrosine phosphorylated after PAO treatment. These data indicate that tight junction permeability may be regulated via mechanisms involving tyrosine phosphorylation of adherens junction and tight junction proteins.
APA, Harvard, Vancouver, ISO, and other styles
10

Juettner, Vanessa V., Kevin Kruse, Arkaprava Dan, Vinh H. Vu, Yousaf Khan, Jonathan Le, Deborah Leckband, Yulia Komarova, and Asrar B. Malik. "VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism." Journal of Cell Biology 218, no. 5 (April 4, 2019): 1725–42. http://dx.doi.org/10.1083/jcb.201807210.

Full text
Abstract:
Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP’s role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP–depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phosphatase, PTPRG, Endothelial cells, permeability"

1

Spring, Kathleen. "Role of the protein tyrosine phosphatase DEP-1 in Src activation and the mediation of biological cell functions of endothelial and breast cancer cells." Thèse, 2012. http://hdl.handle.net/1866/8811.

Full text
Abstract:
L’implication des protéines tyrosines phosphatases (PTPs) dans la régulation de la signalisation et la médiation des fonctions cellulaires a été bien établie dans les dernières années. Cependant, les mécanismes moléculaires par lesquels les PTPs régulent les processus fondamentaux tels que l’angiogenèse demeurent méconnus. Il a été rapporté que l’expression de la PTP DEP-1 (Density-enhanced phosphatase 1) augmente avec la densité cellulaire et corrèle avec la déphosphorylation du récepteur VEGFR2. Cette déphosphorylation contribue à l’inhibition de contact dans les cellules endothéliales à confluence et diminue l’activité du VEGFR2 en déphosphorylant spécifiquement ses résidus catalytiques Y1054/1059. De plus, la plupart des voies de signalisation en aval du VEGFR2 sont diminuées sauf la voie Src-Gab1-AKT. DEP-1 déphosphoryle la Y529 de Src et contribue à la promotion de la survie dans les cellules endothéliales. L’objectif de cette thèse est de mieux définir le rôle de DEP-1 dans la régulation de l’activité de Src et les réponses biologiques dans les cellules endothéliales. Nous avons identifié les résidus Y1311 et Y1320 dans la queue C-terminale de DEP-1 comme sites majeurs de phosphorylation en réponse au VEGF. La phosphorylation de ces résidus est requise pour l’activation de Src et médie le remodelage des jonctions cellules-cellules dépendantes de Src. Ce remodelage induit la perméabilité, l’invasion et la formation de capillaires en réponse au VEGF. Nos résultats démontrent que la phosphorylation de DEP-1 sur résidu tyrosine est requise pour diriger la spécificité de DEP-1 vers son substrat Src. Les travaux révèlent pour la première fois un rôle positif de DEP-1 sur l’induction du programme angiogénique des cellules endothéliales. En plus de la phosphorylation sur tyrosine, DEP-1 est constitutivement phosphorylé sur la thréonine 1318 situé à proximité de la Y1320 en C-terminal. Cette localisation de la T1318 suggère que ce résidu pourrait être impliqué dans la régulation de la Y1320. En effet, nous avons observé que la T1318 de DEP-1 est phosphorylée potentiellement par CK2, et que cette phosphorylation régule la phosphorylation de DEP-1 sur tyrosine et sa capacité de lier et d’activer Src. En accord avec ces résultats, nos travaux révèlent que la surexpression du mutant DEP-1 T1318A diminue le remodelage des jonctions cellules-cellules et par conséquent la perméabilité. Nos résultats suggèrent donc que la T1318 de DEP-1 constitue un nouveau mécanisme de contrôle de la phosphorylation sur tyrosine et que ceci résulte en l’activation de Src et l’induction des fonctions biologiques des cellules endothéliales en réponse au VEGF. Suite à ces travaux dans les cellules endothéliales qui démontrent un rôle positif de DEP-1 dans la médiation des réponses angiogéniques, nous avons voulu approfondir nos connaissances sur l’implication potentielle de DEP-1 dans les cellules cancéreuses où l’activité de Src est requise pour la progression tumorale. Malgré le rôle connu de DEP-1 comme suppresseur tumoral dans différents types de cancer, nous avons émis l’hypothèse que DEP-1 pourrait promouvoir les fonctions biologiques dépendantes de Src telles que la migration et l’invasion dans les cellules cancéreuses. Ainsi, nous avons observé que l’expression de DEP-1 est plus élevée dans les lignées basales de cancer du sein qui sont plus invasives comparativement aux lignées luminales peu invasives. Dans les lignées basales, DEP-1 active Src, médie la motilité cellulaire dépendante de Src et régule la localisation des protéines impliquées dans l’organisation du cytosquelette. L’analyse d’un micro-étalage de tissu a révélé que l’expression de DEP-1 est associée avec une réduction tendencielle de survie des patients. Nos résultats proposent donc, un rôle de promoteur tumoral pour DEP-1 dans la progression du cancer du sein. Les travaux présentés dans cette thèse démontrent pour la première fois que DEP-1 peut agir comme promoteur des réponses angiogéniques et du phénotype pro-invasif des lignées basales du cancer du sein probablement du à sa capacité d’activer Src. Nos résultats suggèrent ainsi que l’expression de DEP-1 pourrait contribuer à la progression tumorale et la formation de métastases. Ces découvertes laissent donc entrevoir que DEP-1 représente une nouvelle cible thérapeutique potentielle pour contrer l’angiogenèse et le développement du cancer.
The implication of protein tyrosine phosphatases (PTPs) in the regulation of cell signalling events and the mediation of cellular functions in response to growth factors such as VEGF has been well-established in the last years. Nonetheless, molecular mechanisms by which PTPs regulate fundamental processes such as angiogenesis are not well-characterized. Expression of the PTP DEP-1 (Density-enhanced phosphatase 1) was reported to increase with cell density and was associated with VEGFR2 dephosphorylation contributing to cell contact inhibition in confluent endothelial cells. We previously demonstrated that DEP-1 attenuates VEGFR2 activity by dephosphorylation of its Y1054/1059 leading to decreased activation of major signalling pathways downstream of VEGFR2 with exception of the Src-Gab1-AKT pathway. Increasing Src activity due to DEP-1-mediated dephosphorylation of its Y529 promotes endothelial cell survival. The objective of this thesis was to gain a better understanding of the role of DEP-1 in the regulation of the Src activity and of biological responses in endothelial cells. We identified tyrosine Y1311 and Y1320 in the C-terminal tail of DEP-1 as major phosphorylation sites in response to VEGF. These residues are required for Src activation and mediate the Src-dependent remodelling of endothelial cell junctions inducing permeability, invasion and capillary formation upon VEGF stimulation. We showed that VEGF-induced DEP-1 tyrosine phosphorylation directs DEP-1 specificity towards its substrate Src. Our results thus highlighted for the first time the promoting role of DEP-1 on the angiogenic program in endothelial cells. In addition to tyrosine phosphorylation, DEP-1 is constitutively phosphorylated on a threonine residue (T1318) proximal to Y1320 in its C-terminal tail suggesting it might be involved in the regulation of Y1320. Indeed, we found that DEP-1 T1318 is phosphorylated, potentially by CK2, and regulates the tyrosine phosphorylation of DEP-1 and its ability to bind to and activate Src. Consistent with this, remodelling of endothelial cell junctions and permeability are impaired in endothelial cells expressing the DEP-1 T1318 mutant. Thus, DEP-1 phosphorylation on T1318 displays a regulatory control over DEP-1 tyrosine phosphorylation and subsequently Src activation and endothelial cell functions in response to VEGF. Our results demonstrating that DEP-1 promotes angiogenic cell responses in endothelial cells, prompted us to consider a possible involvement of DEP-1 in cancer cells, where Src activation has been linked to cancer progression. Thus, although, DEP-1 is believed to act as a tumour suppressor in different cancer types, we hypothesized that it might also promote Src-dependent functions such as migration and invasion in cancer cells. Interestingly, we found that DEP-1 is higher expressed in more invasive basal-like breast cancer cells than in luminal-like cell lines. Moreover, DEP-1 is implicated in the regulation of Src activity, Src-mediated cell motility and appropriate localization of proteins mediating cytoskeletal organization in basal-like breast cancer cell lines. To further support these results, analysis of a breast cancer tissue microarray revealed that DEP-1 expression is associated with a tendency towards reduced overall survival. Thus, our results provide first evidence for a tumour-promoting role of DEP-1 in breast cancer. Altogether, the work performed in the context of this thesis revealed that DEP-1 can similarly behave as a promoter of the angiogenic response and of the pro-invasive phenotype in basal-like breast cancer cell lines, most likely due to its ability to activate Src. This suggests for the first time that DEP-1 expression could contribute to tumour progression and the formation of metastases, and as such, represent a potential new target for anti-angiogenic and anti-cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
2

Fournier, Patrick. "Rôles de la protéine tyrosine phosphatase DEP-1 dans l'angiogenèse, la perméabilité vasculaire et la progression tumorale." Thèse, 2015. http://hdl.handle.net/1866/13902.

Full text
Abstract:
L’angiogenèse et l’augmentation de la perméabilité vasculaire sont des éléments clés pour la croissance et la progression tumorale. Par conséquent, de nombreux efforts sont déployés à comprendre les mécanismes moléculaires impliqués dans la formation et le remodelage des vaisseaux sanguins de manière à identifier de nouvelles cibles thérapeutiques potentielles. De cette optique, les travaux de cette thèse se sont concentrés sur la protéine tyrosine phosphatase DEP-1, initialement identifiée comme un régulateur négatif de la prolifération et de la phosphorylation du VEGFR2 lorsque fortement exprimée dans les cellules endothéliales. Toutefois, en utilisant une approche d’ARNi, il a été démontré que via sa capacité à déphosphoryler la tyrosine inhibitrice de Src (Y529), DEP-1 était également un régulateur positif de l’activation de Src dans les cellules endothéliales stimulées au VEGF. Puisque Src joue un rôle central dans la promotion de l’angiogenèse et la perméabilité vasculaire, nous avons en plus démontré que DEP-1 était un promoteur de ces fonctions in vitro et que la tyrosine phosphorylation de sa queue C-terminale, permettant l’interaction et l’activation de Src, était requise. Les travaux de recherche présentés dans cette thèse démontrent dans un premier temps à partir d’une souris Dep1 KO, dont le développement ne présente aucun phénotype apparent, que la perte de l’expression de DEP-1 se traduit en une inhibition de l’activation de Src et de l’un de ses substrats, la VE-Cadherine, en réponse au VEGF chez la souris adulte. Nos résultats démontrent donc, pour la première fois, le rôle primordial de DEP-1 dans l’induction de la perméabilité vasculaire et de la formation de capillaires in vivo. Conséquemment, la croissance tumorale et la formation de métastases aux poumons sont réduites due à une inhibition de leur vascularisation ce qui se traduit par une diminution de la prolifération et une augmentation de l’apoptose des cellules cancéreuses. De façon intéressante, l’expression élevée de DEP-1 dans les vaisseaux sanguins tumoraux de patientes atteintes du cancer du sein corrèle avec une vascularisation accrue de la tumeur. En plus du rôle de DEP-1 dans la réponse angiogénqiue à l’âge adulte, nos travaux ont également démontré le rôle important de DEP-1 lors de la vascularisation de la rétine, un modèle in vivo d’angiogenèse développementale. Dans ce contexte, DEP-1 inhibe la prolifération des cellules endothéliales et limite leur bourgeonnement et la complexification du réseau vasculaire rétinien en permettant l’expression adéquate du Dll4, un régulateur crucial de l’organisation de la vascularisation développementale. Cette expression du Dll4 découlerait de la stabilisation de la β-caténine par l’inactivation de la GSK3β, un régulateur important de la dégradation de la β-caténine, en réponse au VEGF selon la voie de signalisation VEGFR2-Src-PI3K-Akt-GSK3β. Ainsi, ces travaux identifient DEP-1 comme un régulateur important de l’organisation vasculaire rétinienne. Les rôles positifs de DEP-1 dans les cellules endothéliales découlent principalement de sa capacité à lier et activer la kinase Src. En plus de contribuer à la réponse angiogénique, Src est également un oncogène bien caractérisé notamment pour sa contribution au programme invasif des cellules cancéreuses mammaires. Les travaux de cette thèse illustrent que DEP-1 est préférentiellement exprimée dans les cellules cancéreuses mammaires invasives et qu’il régule l’activation de Src, de voies de signalisation invasives et, par le fait même, de l’invasivité de ces cellules in vitro et in vivo. De façon intéressante, ces observations corrèlent avec des données cliniques où l’expression modérée de DEP-1 est associée à un mauvais pronostic de survie et de rechute. Ces résultats démontrent donc, pour la première fois, le rôle positif de DEP-1 dans l’activation de Src au niveau des cellules endothéliales et des cellules cancéreuses mammaires ce qui permet la régulation du bourgeonnement endothélial, de la perméabilité vasculaire, de l’angiogenèse normale et pathologique en plus de l’invasion tumorale.
Angiogenesis and increased vascular permeability are key component of tumor growth and progression. Consequently, numberous efforts are currently deployed to illucidate the molecular mecanisms contributing to the formation and remodelling of blood vessels in oder to identify new potential therapeutic targets. In that thought, the work of this thesis was focused on the protein tyrosine phosphatase DEP-1, initially identified as a negative regulator of proliferation and VEGFR2 phosphorylation when highly expressed in endothelial cells. However, using RNAi, it was shown that through its capacity to dephosphorylate the inhibitory tyrosine of Src (Y529), DEP-1 could also positively regulate Src activation in endothelial cells in response to VEGF. As Src is a central promoter of angiogenesis and vascular permeability, we showed that DEP-1 was a promoter of these vascular functions in vitro and that the tyrosine phosphorylation of its C-terminal tail, allowing interaction and activation of Src, was required. Interestingly, the catalytic inactivation of DEP-1 in mice resulted in increased proliferation in endothelial cells, but also in desorganization of vascular structures which contrast the absence of phenotype in DEP-1 complete knock-out mice (KO). The work of this thesis demonstrates for the first time that DEP-1 deletion causes inhibition of Src and one of its substrate, VE-Cadherin, activation in response to VEGF in Dep-1 KO mice, which develop normally. Our results show the crucial role of DEP-1 in VEGF-induced vascular permeability and capillary formation in vivo. Consequently, tumor growth and lung metastases formation were inhibited due to reduced tumor vascularisation causing reduced proliferation and increased apoptosis of tumor cells. Accordingly, high expression of DEP-1 in tumor-associated blood vessels of breast cancer patients correlates with greater tumor vascularisation. In addition to DEP-1 role in post-natal angiogenic response, our work also demonstrates the important role of DEP-1 during retinal vascularisation, an in vivo developmental angiogenesis model. In this context, DEP-1 inhibits proliferation of endothelial cells and limits their sprouting by allowing adequate β-catenin-dependant expression of Dll4, a Notch ligand regulating developmental vascularisation organisation. DEP-1 allows β-catenin stabilisation via inactivation of GSK3β, an important regulator of β-catenin degradation, in response to VEGF through VEGFR2-Src-PI3K-Akt-GSK3β signaling pathway. Thus, this work identifies DEP-1 as an important regulator of retinal vascular sprouting. The positive roles of DEP-1 in endothelial cells depend on it ability to bind and activate the kinase Src. In addition to its contribution to angiogenic response, Src is also a well-characterized oncogene notably for its contribution to invasive program of mammary cancer cells. This work illustrates that DEP-1 is preferentially expressed in invasive mammary cancer cells and that it regulates Src activation, pro-invasive signaling pathways and, consenquetly, cell invasiveness in vitro and in vivo. All these activities are dependant on DEP-1 catalytic activity and ability to bind Src. Interestingly, these results correlate with clinical data where moderate expression of DEP-1 is associated with poor pornostic of survival and relapse. Collectively, the results presented here demonstrate, for the first time, the crucial role of DEP-1 in Src activation in endothelial and breast cancer cells, leading to endothelial sprouting, vascular permeability, normal or pathological angiogenesis, and breast cancer invasiveness and metastases formation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography