Academic literature on the topic 'Phononic Properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phononic Properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phononic Properties"
Khurgin, Jacob B. "Relative merits of phononics vs. plasmonics: the energy balance approach." Nanophotonics 7, no. 1 (January 1, 2018): 305–16. http://dx.doi.org/10.1515/nanoph-2017-0048.
Full textCui, Hong, Yunjian Chen, Qin Kang, Pengyue Shan, Tie Yang, and Peng Wang. "Coincident Nodal Line and Nodal Surface Phonon States in Ternary Phosphide Compound BaLiP." Crystals 12, no. 10 (October 18, 2022): 1478. http://dx.doi.org/10.3390/cryst12101478.
Full textTanaka, Y., S. Tamura, A. V. Akimov, A. B. Pevtsov, S. F. Kaplan, A. A. Dukin, V. G. Golubev, D. R. Yakovlev, and M. Bayer. "Phononic properties of opals." Journal of Physics: Conference Series 92 (December 1, 2007): 012107. http://dx.doi.org/10.1088/1742-6596/92/1/012107.
Full textGarus, Sebastian, and Michal Szota. "Band GAP Frequency Response in Regular Phononic Crystals." Revista de Chimie 69, no. 12 (January 15, 2019): 3372–75. http://dx.doi.org/10.37358/rc.18.12.6752.
Full textChakraborty, Srija, and Santanu K. Maiti. "Localization phenomena in a one-dimensional phononic lattice with finite mass modulation: Beyond nearest-neighbor interaction." Journal of Physics: Conference Series 2349, no. 1 (September 1, 2022): 012009. http://dx.doi.org/10.1088/1742-6596/2349/1/012009.
Full textPANG, XIAO-FENG. "CHANGES IN THE PHYSICAL PROPERTIES OF NONADIABATICALLY COUPLED ELECTRON–PHONON SYSTEMS ARISING FROM SQUEEZING–ANTISQUEEZING EFFECT." International Journal of Modern Physics B 17, no. 31n32 (December 30, 2003): 6031–56. http://dx.doi.org/10.1142/s0217979203023471.
Full textHe, Yuyang, and Xiaoxiong Jin. "Vibration Properties of a Steel-PMMA Composite Beam." Shock and Vibration 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/639164.
Full textChen, Luyun, Yong Liu, and Hui Kong. "Acoustic Tunneling Study for Hexachiral Phononic Crystals Based on Dirac-Cone Dispersion Properties." Crystals 11, no. 12 (December 17, 2021): 1577. http://dx.doi.org/10.3390/cryst11121577.
Full textSpadoni, Alessandro, Massimo Ruzzene, Stefano Gonella, and Fabrizio Scarpa. "Phononic properties of hexagonal chiral lattices." Wave Motion 46, no. 7 (November 2009): 435–50. http://dx.doi.org/10.1016/j.wavemoti.2009.04.002.
Full textGhachi, Ratiba F., Wael I. Alnahhal, A. B. M. Tahidul Haque, Jong Min Shim, and Amjad Aref. "Flexural Vibration Attenuation Properties of Phononic Crystals." Key Engineering Materials 821 (September 2019): 414–18. http://dx.doi.org/10.4028/www.scientific.net/kem.821.414.
Full textDissertations / Theses on the topic "Phononic Properties"
Swinteck, Nichlas Z. "Phase-Space Properties of Two-Dimensional Elastic Phononic Crystals and Anharmonic Effects in Nano-Phononic Crystals." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228156.
Full textDegiorgi, Leonardo Degiorgi Leonardo Degiorgi Leonardo Degiorgi Leonardo. "Electronic and phononic properties of one-dimensional Peierls-Hubbard systems /." [S.l.] : [s.n.], 1990. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9045.
Full textDaraio, Chiara. "Design of materials Configurations for enhanced phononic and electronic properties." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3211373.
Full textTitle from first page of PDF file (viewed June 5, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 252-265).
Tornatzky, Hans [Verfasser], Janina [Akademischer Betreuer] Maultzsch, Axel [Gutachter] Hoffmann, and Janina [Gutachter] Maultzsch. "Phononic and excitonic properties of transition metal dichalcogenides / Hans Tornatzky ; Gutachter: Axel Hoffmann, Janina Maultzsch ; Betreuer: Janina Maultzsch." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1200018265/34.
Full textCebrecos, Ruiz Alejandro. "Transmission, reflection and absorption in Sonic and Phononic Crystals." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56463.
Full text[ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de
[CAT] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen
Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463
TESIS
Premiado
Sen, M. "Study of magnetic, electric and thermal properties in Fe3Se4 system: Interplay of spin, charge and phonon." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5870.
Full textCope, Elizabeth Ruth. "Dynamic properties of materials : phonons from neutron scattering." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226116.
Full textRoome, Nathanael J. "Electronic and phonon properties of 2D layered materials." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807275/.
Full textServantie, James. "Dynamics and friction in double walled carbon nanotubes." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210833.
Full textThe results obtained shows that the friction increases linearly with the sliding velocity or the angular velocity until very high values beyond that non-linearities appear enhancing dissipation. In the linear regime, it is shown that the proportionality factor between the dynamic friction force and the velocity is given by the time integral of the autocorrelation function of the restoring force for the sliding friction and of the torque for the rotational friction. Furthermore, a novel resonant friction phenomenon increasing significantly dissipation was observed for the sliding motion in certain types of nanotubes. The effect arises at sliding velocities corresponding to certain vibrational modes of the nanotubes. When the dynamics is described by the linear friction in velocity, the empirical law stating that friction is proportional to the area of contact is very well verified thanks to the molecular dynamics simulations. On the other hand, friction increases with temperature. The fact that friction increases as well with the area of contact as the temperature can be easily interpreted. Indeed, if the temperature is large enough so that the electronic effects can be negligible, dissipation is only due to the phonons. Indeed, it is the phonons who give the sliding or rotation energy to the other degrees of freedom until thermodynamic equilibrium is achieved. Thus, if the temperature increases, the coupling between the phonons and the rotational or translational motions increases, as well as friction. In the same manner, when the area of contact increases, the number of available phonons to transport energy increases, explaining thus the increase of the friction force.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Paudel, Tula R. "Structure, Phonons and Realated Properties in Zn-IV-N2 (IV=Si,Ge,Sn), ScN and Rare-Earth Nitrides." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1226530202.
Full textBooks on the topic "Phononic Properties"
W, Eisenmenger, and Kaplyanskii A. A, eds. Nonequilibrium phonons in nonmetalliccrystals. Amsterdam: North-Holland, 1986.
Find full text1930-, Eisenmenger W., and Kapli͡a︡nskiĭ A. A, eds. Nonequilibrium phonons in nonmetallic crystals. Amsterdam: North-Holland, 1986.
Find full textShank, C. V. Spectroscopy of nonequilibrium electrons and phonons. Amsterdam: North-Holland, 1992.
Find full textItalian, National School on Condensed Matter (1987 Bra Italy). Physics of metals: Proceedings of the Italian National School on Condensed Matter, 21 Sep-3 Oct 1987, Bra, Italy. Singapore: World Scientific, 1988.
Find full text1928-, Elliott R. J., and Ipatova I. P. 1929-, eds. Optical properties of mixed crystals. Amsterdam: North-Holland, 1988.
Find full textTrallero-Giner, C. Long wave polar modes in semiconductor heterostructures. Oxford: Pergamon, 1998.
Find full textBian, Qiuping. Phonon spectra and thermal properties of some fcc metals using embedded-atom potentials. St. Catharines, Ont: Brock University, Dept. of Physics, 2005.
Find full textCapelleti, Rosanna. Rare earths as a probe of environment and electron-phonon interaction in optical materials. New York: Nova Science Publishers, 2009.
Find full textAlkali-doped fullerides: Narrow-based Solids with Unusual Properties. Singapore: World Scientific Pub., 2004.
Find full textRuf, Tobias. Phonon Raman-scattering in semiconductors, quantum wells and superlattices: Basic results and applications. Berlin: Springer, 1998.
Find full textBook chapters on the topic "Phononic Properties"
Pennec, Yan, and Bahram Djafari-Rouhani. "Fundamental Properties of Phononic Crystal." In Phononic Crystals, 23–50. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-9393-8_2.
Full textBernal, M. P., M. Roussey, F. Baida, S. Benchabane, A. Khelif, and V. Laude. "Photonic and Phononic Band Gap Properties of Lithium Niobate." In Ferroelectric Crystals for Photonic Applications, 307–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-77965-0_12.
Full textPlatts, S. B., and N. V. Movchan. "Phononic Band Gap Properties of Doubly Periodic Arrays of Coated Inclusions." In Continuum Models and Discrete Systems, 287–94. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_48.
Full textSchubert, Mathias, Alyssa Mock, Rafał Korlacki, Sean Knight, Bo Monemar, Ken Goto, Yoshinao Kumagai, et al. "Phonon Properties." In Gallium Oxide, 501–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_28.
Full textDresselhaus, Mildred, Gene Dresselhaus, Stephen B. Cronin, and Antonio Gomes Souza Filho. "Electron and Phonon Scattering." In Solid State Properties, 185–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-55922-2_9.
Full textStrauch, D. "BeSe: phonon dispersion curves, phonon density of states, surface phonon dispersion curves, surface phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 139–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_60.
Full textStrauch, D. "BaS: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_15.
Full textStrauch, D. "BaSe: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_22.
Full textStrauch, D. "BaTe: phonon dispersion relation, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_29.
Full textStrauch, D. "BaO: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 8–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_3.
Full textConference papers on the topic "Phononic Properties"
Dechaumphai, Edward, and Renkun Chen. "Modeling of Thermal Transport in Phononic Crystals Using Finite Difference Time Domain Method." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65477.
Full textSafavi-Naeini, Amir. "Optomechanics in guided wave structures: photonic control of phonons and phononic control of photons (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2297562.
Full textFlorescu, Marian, George Gkantzounis, and Timothy Amoah. "Hyperuniform disordered phononic structures (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290072.
Full textCarpentier, Laurent, Abdellatif Gueddida, mansour zaremanesh, Hamed Gharibi, Ali Bahrami, Ahmed Mehaney, Ralf Lucklum, Bahram Djafari-Rouhani, and Yan Pennec. "Phononic crystal for dynamic viscosity determination." In Photonic and Phononic Properties of Engineered Nanostructures XII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2615965.
Full textAhmed, Hasan, and Viktoriia E. Babicheva. "Resonant and scattering properties of tungsten disulfide WS2 nanoantennas." In Photonic and Phononic Properties of Engineered Nanostructures X, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2020. http://dx.doi.org/10.1117/12.2544788.
Full textGawlik, Andrzej, Janusz Bogdanowicz, Andreas Schulze, Jan Misiewicz, and Wilfried Vandervorst. "Photonic properties of periodic arrays of nanoscale Si fins." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2510070.
Full textGupta, Nitin, Priten Savaliya, Senthil Subramanian, and Anuj Dhawan. "Active plasmonic nanoantenna-based switches for controlling near-field properties." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2510909.
Full text"Front Matter: Volume 10541." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2322669.
Full textDenis, Kevin L., Karwan Rostem, Marco A. Sagliocca, Elissa H. Williams, and Edward J. Wollack. "Fabrication of phononic filter structures for far-IR/sub-mm detector applications." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2506387.
Full textDhawan, Prerak, and Bhooshan Paradkar. "Transformation optics using finite-difference time-domain method." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2506607.
Full text