Academic literature on the topic 'Phononic Properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phononic Properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phononic Properties"

1

Khurgin, Jacob B. "Relative merits of phononics vs. plasmonics: the energy balance approach." Nanophotonics 7, no. 1 (January 1, 2018): 305–16. http://dx.doi.org/10.1515/nanoph-2017-0048.

Full text
Abstract:
AbstractThe common feature of various plasmonic schemes is their ability to confine optical fields of surface plasmon polaritons (SPPs) into subwavelength volumes and thus achieve a large enhancement of linear and nonlinear optical properties. This ability, however, is severely limited by the large ohmic loss inherent to even the best of metals. However, in the mid- and far-infrared ranges of the spectrum, there exists a viable alternative to metals – polar dielectrics and semiconductors, in which dielectric permittivity (the real part) turns negative in the Reststrahlen region. This feature engenders the so-called surface phonon polaritons, capable of confining the field in a way akin to their plasmonic analogs, the SPPs. Since the damping rate of polar phonons is substantially less than that of free electrons, it is not unreasonable to expect that phononic devices may outperform their plasmonic counterparts. Yet a more rigorous analysis of the comparative merits of phononics and plasmonics reveals a more nuanced answer, namely, that while phononic schemes do exhibit narrower resonances and can achieve a very high degree of energy concentration, most of the energy is contained in the form of lattice vibrations so that enhancement of the electric field and, hence, the Purcell factor is rather small compared to what can be achieved with metal nanoantennas. Still, the sheer narrowness of phononic resonances is expected to make phononics viable in applications where frequency selectivity is important.
APA, Harvard, Vancouver, ISO, and other styles
2

Cui, Hong, Yunjian Chen, Qin Kang, Pengyue Shan, Tie Yang, and Peng Wang. "Coincident Nodal Line and Nodal Surface Phonon States in Ternary Phosphide Compound BaLiP." Crystals 12, no. 10 (October 18, 2022): 1478. http://dx.doi.org/10.3390/cryst12101478.

Full text
Abstract:
With the continuous development of topological properties in condensed matter systems, the current research focus has been expanded into phononic bosonic states. Compared with the conventional electronic fermions, topological phonons exhibit very distinct features. In this study, based on density functional calculations, we have systematically investigated the topological phonons in the ternary phosphide compound BaLiP. Coincident nodal line and nodal surface states are revealed in the middle part of the phononic spectrum and they are formed by the same two phonon bands. Detailed band structure mechanism and symmetry operation formalism are provided. More importantly, evident surface states are observed from the entire nodal line and they are all well separated from the bulk state projection, very beneficial and preferable for future experimental investigation. Lastly, the mechanical properties are also examined and several important parameters are provided, which can be very useful for the practical application. Considering the multiple advantages of the topological nodal states in this material, the corresponding experimental study can be immediately inspired.
APA, Harvard, Vancouver, ISO, and other styles
3

Tanaka, Y., S. Tamura, A. V. Akimov, A. B. Pevtsov, S. F. Kaplan, A. A. Dukin, V. G. Golubev, D. R. Yakovlev, and M. Bayer. "Phononic properties of opals." Journal of Physics: Conference Series 92 (December 1, 2007): 012107. http://dx.doi.org/10.1088/1742-6596/92/1/012107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garus, Sebastian, and Michal Szota. "Band GAP Frequency Response in Regular Phononic Crystals." Revista de Chimie 69, no. 12 (January 15, 2019): 3372–75. http://dx.doi.org/10.37358/rc.18.12.6752.

Full text
Abstract:
The study investigated the propagation of a mechanical wave in a two-dimensional phononic structure. The influence of material from which metaatom rods were made on the phononical properties of the structure was investigated. Rods made of amorphous Zr55Cu30Ni5Al10 and polypropylenes were compared. The Finite Difference Time Domain (FDTD) algorithm was used to carry out the simulation. Next, theoretical and experimental analysis of the intensity of the mechanical wave was carried out. Frequency response of a regular phononic structure was also analyzed.
APA, Harvard, Vancouver, ISO, and other styles
5

Chakraborty, Srija, and Santanu K. Maiti. "Localization phenomena in a one-dimensional phononic lattice with finite mass modulation: Beyond nearest-neighbor interaction." Journal of Physics: Conference Series 2349, no. 1 (September 1, 2022): 012009. http://dx.doi.org/10.1088/1742-6596/2349/1/012009.

Full text
Abstract:
One-dimensional phononic systems beyond conventional nearest-neighbor interaction have not been well explored, to the best of our knowledge. In this work, we critically investigate the localization properties of a 1D phononic lattice in presence of second-neighbor interaction along with the nearest-neighbor one. A finite modulation in masses is incorporated following the well known Aubry-Andre-Harper (AAH) form to make the system a correlated disordered one. Solving the motion equations we determine the phonon frequency spectrum, and characterize the localization properties of the individual phononic states by calculating inverse participation ratio (IPR). The key aspect of our analysis is that, in the presence of second-neighbor interaction, the phonon eigenstates exhibit frequency dependent transition from sliding to the pinned phase upon the variation of the modulation strength, exhibiting a mobility edge. This is completely in contrast to the nearest-neighbor interaction case, where all the states get localized beyond a particular modulation strength, and thus, no mobility edge appears. Our analysis can be utilized in many aspects to regulate phonon transmission through similar kind of aperiodic lattices that are described beyond the usual nearest-neighbor interaction.
APA, Harvard, Vancouver, ISO, and other styles
6

PANG, XIAO-FENG. "CHANGES IN THE PHYSICAL PROPERTIES OF NONADIABATICALLY COUPLED ELECTRON–PHONON SYSTEMS ARISING FROM SQUEEZING–ANTISQUEEZING EFFECT." International Journal of Modern Physics B 17, no. 31n32 (December 30, 2003): 6031–56. http://dx.doi.org/10.1142/s0217979203023471.

Full text
Abstract:
Changes in the physical properties such as the ground state properties, charge density wave ordering, binding energy and energy bandwidth of polaron and quantum fluctuation, and minimum uncertainty relation of phonons and nonadiabatically coupled electron–phonon systems with spin-1/2 have been investigated by our new state ansatz which can account for correlation among the phononic displacement, squeezing and polaron effects using variational method in one-dimensional Holstein model. The investigation here shows that the squeezing–antisqueezing effect (correlated) results in a decrease of the ground state energy, an increase of the binding energy of polarons, the reduction of the uncertainty and quantum fluctuation of the phonons, a decrease of polaron narrowing of electron bandwidth, an increase of tunneling effect of the polarons and an increase of CDW ordering and phonon staggered ordering when compared with the uncorrelated case. Therefore, this shows that the ground state determined by the new state ansatz is the most stable. The new ansatz which include the squeezing–antisqueezing (correlated) effect is very relevant for the coupled electron–phonon systems, especially in strongly coupled and highly squeezed cases.
APA, Harvard, Vancouver, ISO, and other styles
7

He, Yuyang, and Xiaoxiong Jin. "Vibration Properties of a Steel-PMMA Composite Beam." Shock and Vibration 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/639164.

Full text
Abstract:
A steel-polymethyl methacrylate (steel-PMMA) beam was fabricated to investigate the vibration properties of a one-dimensional phononic crystal structure. The experimental system included an excitation system, a signal acquisition system, and a data analysis and processing system. When an excitation signal was exerted on one end of the beam, the signals of six response points were collected with acceleration sensors. Subsequent signal analysis showed that the beam was attenuated in certain frequency ranges. The lumped mass method was then used to calculate the bandgap of the phononic crystal beam to analyze the vibration properties of a beam made of two different materials. The finite element method was also employed to simulate the vibration of the phononic crystal beam, and the simulation results were consistent with theoretical calculations. The existence of the bandgap was confirmed experimentally and theoretically, which allows for the potential applications of phononic crystals, including wave guiding and filtering, in integrated structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Luyun, Yong Liu, and Hui Kong. "Acoustic Tunneling Study for Hexachiral Phononic Crystals Based on Dirac-Cone Dispersion Properties." Crystals 11, no. 12 (December 17, 2021): 1577. http://dx.doi.org/10.3390/cryst11121577.

Full text
Abstract:
Acoustic tunneling is an essential property for phononic crystals in a Dirac-cone state. By analyzing the linear dispersion relations for the accidental degeneracy of Bloch eigenstates, the influence of geometric parameters on opening the Dirac-cone state and the directional band gaps’ widths are investigated. For two-dimensional hexachiral phononic crystals, for example, the four-fold accidental degenerate Dirac point emerges at the center of the irreducible Brillouin zone (IBZ). The Dirac cone properties and the band structure inversion problem are discussed. Finally, to verify acoustic transmission properties near the double-Dirac-cone frequency region, the numerical calculation of the finite-width phononic crystal structure is carried out, and the acoustic transmission tunneling effect is proved. The results enrich and expand the manipulating method in the topological insulator problem for hexachiral phononic crystals.
APA, Harvard, Vancouver, ISO, and other styles
9

Spadoni, Alessandro, Massimo Ruzzene, Stefano Gonella, and Fabrizio Scarpa. "Phononic properties of hexagonal chiral lattices." Wave Motion 46, no. 7 (November 2009): 435–50. http://dx.doi.org/10.1016/j.wavemoti.2009.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghachi, Ratiba F., Wael I. Alnahhal, A. B. M. Tahidul Haque, Jong Min Shim, and Amjad Aref. "Flexural Vibration Attenuation Properties of Phononic Crystals." Key Engineering Materials 821 (September 2019): 414–18. http://dx.doi.org/10.4028/www.scientific.net/kem.821.414.

Full text
Abstract:
Phononic crystals (PCs) have the ability to have phononic bandgaps dependent on the acoustic properties of its constituent materials (i.e., mass, elasticity). Forming a 1D periodic variation using a viscoelastic material allow the PC to have more wave vibration attenuation in the longitudinal direction. In this study, the low transmission zones and the vibration attenuation properties of a one-dimensional PC subjected to flexural vibration was evaluated experimentally. Results were presented in the form of frequency response functions and showed the flexural low-frequency zones starting at 500 Hz with three zones in the 16kHz range.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phononic Properties"

1

Swinteck, Nichlas Z. "Phase-Space Properties of Two-Dimensional Elastic Phononic Crystals and Anharmonic Effects in Nano-Phononic Crystals." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228156.

Full text
Abstract:
This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium molecular dynamics simulation techniques, that phonon-boundary collision effects and coherent phononic effects (band-folding) are two competing scattering mechanisms responsible for the reduction of acoustic and optical phonon lifetimes. Conclusions drawn about the lifetime of thermal phonons in phononic crystal patterned graphene are linked with the anharmonic, one-dimensional crystal model.
APA, Harvard, Vancouver, ISO, and other styles
2

Degiorgi, Leonardo Degiorgi Leonardo Degiorgi Leonardo Degiorgi Leonardo. "Electronic and phononic properties of one-dimensional Peierls-Hubbard systems /." [S.l.] : [s.n.], 1990. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daraio, Chiara. "Design of materials Configurations for enhanced phononic and electronic properties." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3211373.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed June 5, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 252-265).
APA, Harvard, Vancouver, ISO, and other styles
4

Tornatzky, Hans [Verfasser], Janina [Akademischer Betreuer] Maultzsch, Axel [Gutachter] Hoffmann, and Janina [Gutachter] Maultzsch. "Phononic and excitonic properties of transition metal dichalcogenides / Hans Tornatzky ; Gutachter: Axel Hoffmann, Janina Maultzsch ; Betreuer: Janina Maultzsch." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1200018265/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cebrecos, Ruiz Alejandro. "Transmission, reflection and absorption in Sonic and Phononic Crystals." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56463.

Full text
Abstract:
[EN] Phononic crystals are artificial materials formed by a periodic arrangement of inclusions embedded into a host medium, where each of them can be solid or fluid. By controlling the geometry and the impedance contrast of its constituent materials, one can control the dispersive properties of waves, giving rise to a huge variety of interesting and fundamental phenomena in the context of wave propagation. When a propagating wave encounters a medium with different physical properties it can be transmitted and reflected in lossless media, but also absorbed if dissipation is taken into account. These fundamental phenomena have been classically explained in the context of homogeneous media, but it has been a subject of increasing interest in the context of periodic structures in recent years as well. This thesis is devoted to the study of different effects found in sonic and phononic crystals associated with transmission, reflection and absorption of waves, as well as the development of a technique for the characterization of its dispersive properties, described by the band structure. We start discussing the control of wave propagation in transmission in conservative systems. Specifically, our interest is to show how sonic crystals can modify the spatial dispersion of propagating waves leading to control the diffractive broadening of sound beams. Making use of the spatial dispersion curves extracted from the analysis of the band structure, we first predict zero and negative diffraction of waves at frequencies close to the band-edge, resulting in collimation and focusing of sound beams in and behind a 3D sonic crystal, and later demonstrate it through experimental measurements. The focusing efficiency of a 3D sonic crystal is limited due to the strong scattering inside the crystal, characteristic of the diffraction regime. To overcome this limitation we consider axisymmetric structures working in the long wavelength regime, as a gradient index lens. In this regime, the scattering is strongly reduced and, in an axisymmetric configuration, the symmetry matching with acoustic sources radiating sound beams increase its efficiency dramatically. Moreover, the homogenization theory can be used to model the structure as an effective medium with effective physical properties, allowing the study of the wave front profile in terms of refraction. We will show the model, design and characterization of an efficient focusing device based on these concepts. Consider now a periodic structure in which one of the parameters of the lattice, such as the lattice constant or the filling fraction, gradually changes along the propagation direction. Chirped crystals represent this concept and are used here to demonstrate a novel mechanism of sound wave enhancement based on a phenomenon known as "soft" reflection. The enhancement is related to a progressive slowing down of the wave as it propagates along the material, which is associated with the group velocity of the local dispersion relation at the planes of the crystal. A model based on the coupled mode theory is proposed to predict and interpret this effect. Two different phenomena are observed here when dealing with dissipation in periodic structures. On one hand, when considering the propagation of in-plane sound waves in a periodic array of absorbing layers, an anomalous decrease in the absorption, combined with a simultaneous increase of reflection and transmission at Bragg frequencies is observed, in contrast to the usual decrease of transmission, characteristic in conservative periodic systems at these frequencies. For a similar layered media, backed now by a rigid reflector, out-of-plane waves impinging the structure from a homogeneous medium will increase dramatically the interaction strength. In other words, the time delay of sound waves inside the periodic system will be considerably increased resulting in an enhanced absorption, for a broadband spectral range.
[ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de
[CAT] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen
Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
6

Sen, M. "Study of magnetic, electric and thermal properties in Fe3Se4 system: Interplay of spin, charge and phonon." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cope, Elizabeth Ruth. "Dynamic properties of materials : phonons from neutron scattering." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226116.

Full text
Abstract:
A detailed understanding of fundamental material properties can be obtained through the study of atomic vibrations, performed experimentally with neutron scattering techniques and coupled with the two powerful new computational methodologies I have developed. The first approach involves phonon-based simulations of the pair distribution function - a histogram of localised atomic positions generated experimentally from total scattering data. This is used to reveal ordering behaviour, to validate interatomic models and localised structure, and to give insights into how far dynamic behaviour can be studied using total scattering techniques. Most importantly, the long-standing controversy over dynamic disorder in β-cristobalite is resolved using this technique. Inelastic neutron spectroscopy (INS) allows \emph{direct} study of vibrational modes through their interaction with the neutron beam, and is the experimental basis for the second strand of the new methodology. I have developed new simulation and refinement tools based on the next generation of spectrometers currently being commissioned at the ISIS pulsed neutron source. This allows a detailed powder spectroscopy study of cristobalite and vitreous silica demonstrating that the Bose peak and so-called 'fast sound' features can be derived from standard lattice dynamics in both the crystal and the amorphous counterpart, and allowing discussion of their origins. Given the controversy in the literature, this is a key result. The new methodology also encompasses refinement of interatomic models against powder INS data, with aluminium providing a successful test-case. A more complex example is seen in calcite, with experimental data collected during the commissioning of the new MERLIN spectrometer. Simulated one-phonon coherent INS spectra for the single crystal and powder (the latter including approximations to multi-phonon and multiple scatter) are fully convolved with experimental resolution functions. These are used in the analysis of the experimental data, yielding previously unpublished dispersion curves and soft mode information, as well as allowing the effectiveness of powder refinement of more complex materials to be assessed. Finally, I present further applications with technologically important materials - relaxor ferroelectrics and high temperature pnictide superconductors. The conclusions draw together the different strands of the work, discussing the importance of these new advances together with future developments and scientific applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Roome, Nathanael J. "Electronic and phonon properties of 2D layered materials." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807275/.

Full text
Abstract:
The focus of this thesis is the study of the electronic and vibrational properties of single layer graphene, silicene and germanene, and bilayer graphene and silicene. Specifically the electronic band structure and Fermi velocity of the carriers as well as the phonon dispersion are calculated; Raman active modes are identified as well. Material stability and electron-phonon effects are also investigated. It is found that in both silicene and germanene linear band dispersion behaviour is found in a planar and a low buckling configuration where the Fermi velocity is 5  105 m/s; about 35% lower than in graphene. From the phonon dispersion curves, the electron-phonon coupling matrix elements are shown to be about a factor of 25 lower when compared with graphene. The applicability of the Born-Oppenheimer approximation to carrier relaxation in silicene and germanene is found to be invalid, as it is in graphene. The phonon dispersion curves show that free-standing bilayer graphene with AB stacking is stable whereas AA stacking is marginally unstable and an optical identification method to distinguish between the two different stacking configurations is proposed. Results for bilayer silicene show there are eight geometries with an energy minimum; it is found that a low buckling AA and a high buckling AA’ stacking configuration have the lowest energies for their groups. Metallic properties are found for all configurations although unusual band structure is found in low buckling forms including linear dispersion behaviour in AA’ form (vf ≈ 5.3  105 m/s). The phonon dispersion curves show that only AB stacked low buckling bilayer silicene was completely stable although it had a higher energy state than AA stacking. The high buckling configuration also shows significant changes to the properties of in-plane vibrational modes suggesting that they can be controlled or engineered by the introduction of additional layers.
APA, Harvard, Vancouver, ISO, and other styles
9

Servantie, James. "Dynamics and friction in double walled carbon nanotubes." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210833.

Full text
Abstract:
The objective of this PhD thesis was the study of friction in carbon nanotubes by analytical methods and molecular dynamics simulations. The goal of this research was to characterize the properties of friction in nanotubes and from a more general point of view the understanding of the microscopic origin of friction. Indeed, the relative simplicity of the system allows us to interpret more easily the physical phenomenon observed than in larger systems. In order to achieve this goal, non-equilibrium statistical mechanics permitted first to develop models based on Langevin equations describing the dynamics of rotation and translation in double walled nanotubes. The molecular dynamics simulations then permitted to validate these analytical models, and thus to study general properties of friction such as the dependence on area of contact, temperature and the geometry of the nanotubes.

The results obtained shows that the friction increases linearly with the sliding velocity or the angular velocity until very high values beyond that non-linearities appear enhancing dissipation. In the linear regime, it is shown that the proportionality factor between the dynamic friction force and the velocity is given by the time integral of the autocorrelation function of the restoring force for the sliding friction and of the torque for the rotational friction. Furthermore, a novel resonant friction phenomenon increasing significantly dissipation was observed for the sliding motion in certain types of nanotubes. The effect arises at sliding velocities corresponding to certain vibrational modes of the nanotubes. When the dynamics is described by the linear friction in velocity, the empirical law stating that friction is proportional to the area of contact is very well verified thanks to the molecular dynamics simulations. On the other hand, friction increases with temperature. The fact that friction increases as well with the area of contact as the temperature can be easily interpreted. Indeed, if the temperature is large enough so that the electronic effects can be negligible, dissipation is only due to the phonons. Indeed, it is the phonons who give the sliding or rotation energy to the other degrees of freedom until thermodynamic equilibrium is achieved. Thus, if the temperature increases, the coupling between the phonons and the rotational or translational motions increases, as well as friction. In the same manner, when the area of contact increases, the number of available phonons to transport energy increases, explaining thus the increase of the friction force.


Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
10

Paudel, Tula R. "Structure, Phonons and Realated Properties in Zn-IV-N2 (IV=Si,Ge,Sn), ScN and Rare-Earth Nitrides." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1226530202.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phononic Properties"

1

W, Eisenmenger, and Kaplyanskii A. A, eds. Nonequilibrium phonons in nonmetalliccrystals. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1930-, Eisenmenger W., and Kapli͡a︡nskiĭ A. A, eds. Nonequilibrium phonons in nonmetallic crystals. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shank, C. V. Spectroscopy of nonequilibrium electrons and phonons. Amsterdam: North-Holland, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Italian, National School on Condensed Matter (1987 Bra Italy). Physics of metals: Proceedings of the Italian National School on Condensed Matter, 21 Sep-3 Oct 1987, Bra, Italy. Singapore: World Scientific, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1928-, Elliott R. J., and Ipatova I. P. 1929-, eds. Optical properties of mixed crystals. Amsterdam: North-Holland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trallero-Giner, C. Long wave polar modes in semiconductor heterostructures. Oxford: Pergamon, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bian, Qiuping. Phonon spectra and thermal properties of some fcc metals using embedded-atom potentials. St. Catharines, Ont: Brock University, Dept. of Physics, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Capelleti, Rosanna. Rare earths as a probe of environment and electron-phonon interaction in optical materials. New York: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alkali-doped fullerides: Narrow-based Solids with Unusual Properties. Singapore: World Scientific Pub., 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruf, Tobias. Phonon Raman-scattering in semiconductors, quantum wells and superlattices: Basic results and applications. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phononic Properties"

1

Pennec, Yan, and Bahram Djafari-Rouhani. "Fundamental Properties of Phononic Crystal." In Phononic Crystals, 23–50. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-9393-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bernal, M. P., M. Roussey, F. Baida, S. Benchabane, A. Khelif, and V. Laude. "Photonic and Phononic Band Gap Properties of Lithium Niobate." In Ferroelectric Crystals for Photonic Applications, 307–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-77965-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Platts, S. B., and N. V. Movchan. "Phononic Band Gap Properties of Doubly Periodic Arrays of Coated Inclusions." In Continuum Models and Discrete Systems, 287–94. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schubert, Mathias, Alyssa Mock, Rafał Korlacki, Sean Knight, Bo Monemar, Ken Goto, Yoshinao Kumagai, et al. "Phonon Properties." In Gallium Oxide, 501–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dresselhaus, Mildred, Gene Dresselhaus, Stephen B. Cronin, and Antonio Gomes Souza Filho. "Electron and Phonon Scattering." In Solid State Properties, 185–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-55922-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Strauch, D. "BeSe: phonon dispersion curves, phonon density of states, surface phonon dispersion curves, surface phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 139–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Strauch, D. "BaS: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Strauch, D. "BaSe: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strauch, D. "BaTe: phonon dispersion relation, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strauch, D. "BaO: phonon dispersion relations, phonon density of states." In New Data and Updates for several IIa-VI Compounds (Structural Properties, Thermal and Thermodynamic Properties, and Lattice Properties), 8–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41461-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phononic Properties"

1

Dechaumphai, Edward, and Renkun Chen. "Modeling of Thermal Transport in Phononic Crystals Using Finite Difference Time Domain Method." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65477.

Full text
Abstract:
Phonon transport in two dimensional nano-membranes with periodic variations in acoustic properties, a.k.a. phononic crystals, has drawn tremendous interests recently due to their novel properties and potential applications in thermal energy conversion. Recent experiments have demonstrated drastically lower thermal conductivity than what one would expect from the Boltzmann transport equations (BTE) that describe phonon transport as particle diffusion. To understand the intriguing behavior, we used a partially coherent picture to model thermal transport in 2D phononic crystals. In this model, phonons with mean free paths longer than the characteristic size of the phononic crystals are treated as coherent waves. The finite difference time domain method is utilized to simulate the wave behavior and to obtain the phonon dispersion relations in phononic crystals. On the other hand, phonons with mean free paths shorter than the characteristic size are considered particles and are treated by BTE after taking the diffusive boundary scattering into account. Our result shows that the thermal conductivity reduces as the characteristic sizes decrease due to both the zone folding effect and the diffusive boundary scattering, which is consistent with the recent experimental results.
APA, Harvard, Vancouver, ISO, and other styles
2

Safavi-Naeini, Amir. "Optomechanics in guided wave structures: photonic control of phonons and phononic control of photons (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2297562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Florescu, Marian, George Gkantzounis, and Timothy Amoah. "Hyperuniform disordered phononic structures (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carpentier, Laurent, Abdellatif Gueddida, mansour zaremanesh, Hamed Gharibi, Ali Bahrami, Ahmed Mehaney, Ralf Lucklum, Bahram Djafari-Rouhani, and Yan Pennec. "Phononic crystal for dynamic viscosity determination." In Photonic and Phononic Properties of Engineered Nanostructures XII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2615965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmed, Hasan, and Viktoriia E. Babicheva. "Resonant and scattering properties of tungsten disulfide WS2 nanoantennas." In Photonic and Phononic Properties of Engineered Nanostructures X, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2020. http://dx.doi.org/10.1117/12.2544788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gawlik, Andrzej, Janusz Bogdanowicz, Andreas Schulze, Jan Misiewicz, and Wilfried Vandervorst. "Photonic properties of periodic arrays of nanoscale Si fins." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2510070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gupta, Nitin, Priten Savaliya, Senthil Subramanian, and Anuj Dhawan. "Active plasmonic nanoantenna-based switches for controlling near-field properties." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2510909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Front Matter: Volume 10541." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2322669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Denis, Kevin L., Karwan Rostem, Marco A. Sagliocca, Elissa H. Williams, and Edward J. Wollack. "Fabrication of phononic filter structures for far-IR/sub-mm detector applications." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2506387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dhawan, Prerak, and Bhooshan Paradkar. "Transformation optics using finite-difference time-domain method." In Photonic and Phononic Properties of Engineered Nanostructures IX, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2019. http://dx.doi.org/10.1117/12.2506607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography