To see the other types of publications on this topic, follow the link: Phenylacetylcarbinol.

Journal articles on the topic 'Phenylacetylcarbinol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 49 journal articles for your research on the topic 'Phenylacetylcarbinol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sehl, Torsten, Saskia Bock, Lisa Marx, Zaira Maugeri, Lydia Walter, Robert Westphal, Constantin Vogel, et al. "Asymmetric synthesis of (S)-phenylacetylcarbinol – closing a gap in C–C bond formation." Green Chemistry 19, no. 2 (2017): 380–84. http://dx.doi.org/10.1039/c6gc01803c.

Full text
Abstract:
By the combination of biocatalyst design and reaction engineering, the so far not stereoselectively accessible (S)-phenylacetylcarbinol could be enzymatically synthesized with product concentrations >48 g L−1 and an enantiomeric excess up to 97%.
APA, Harvard, Vancouver, ISO, and other styles
2

Tripathi, Chandrakant M., Suresh C. Agarwal, and Samar K. Basu. "Production of l-phenylacetylcarbinol by fermentation." Journal of Fermentation and Bioengineering 84, no. 6 (January 1997): 487–92. http://dx.doi.org/10.1016/s0922-338x(97)81900-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

B., Rosche, Leksawasdi N., Sandford V., Breuer M., Hauer B., and Rogers P. "Enzymatic ( R )-phenylacetylcarbinol production in benzaldehyde emulsions." Applied Microbiology and Biotechnology 60, no. 1-2 (October 1, 2002): 94–100. http://dx.doi.org/10.1007/s00253-002-1084-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doostmohammadi, Mohsen, Mohammad Ali Asadollahi, Iraj Nahvi, Davoud Biria, Gholam Reza Ghezelbash, and Maryam Kheyrandish. "L-phenylacetylcarbinol production by yeast petite mutants." Annals of Microbiology 66, no. 3 (January 20, 2016): 1049–55. http://dx.doi.org/10.1007/s13213-015-1190-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harini, Madakashira, Jhumpa Adhikari, and K. Yamuna Rani. "Prediction of vapour–liquid coexistence data of Phenylacetylcarbinol." Fluid Phase Equilibria 364 (February 2014): 6–14. http://dx.doi.org/10.1016/j.fluid.2013.11.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liew, Michelle K. H., Anthony G. Fane, and Peter L. Rogers. "Applicability of continuous membrane bioreactor in production of phenylacetylcarbinol." Journal of Chemical Technology AND Biotechnology 64, no. 2 (October 1995): 200–206. http://dx.doi.org/10.1002/jctb.280640214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rosche, Bettina, Vanessa Sandford, Michael Breuer, Bernhard Hauer, and Peter L. Rogers. "Enhanced production of R-phenylacetylcarbinol (R-PAC) through enzymatic biotransformation." Journal of Molecular Catalysis B: Enzymatic 19-20 (December 2002): 109–15. http://dx.doi.org/10.1016/s1381-1177(02)00157-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Engel, Stanislav, Maria Vyazmensky, Shimona Geresh, Ze'ev Barak, and David M. Chipman. "Acetohydroxyacid synthase: A new enzyme for chiral synthesis ofR-phenylacetylcarbinol." Biotechnology and Bioengineering 83, no. 7 (July 24, 2003): 833–40. http://dx.doi.org/10.1002/bit.10728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Joong Kon, and Kwang Deok Lee. "Production of L-phenylacetylcarbinol (L-PAC) by encapsulatedSaccharomyces cerevisiae cells." Korean Journal of Chemical Engineering 18, no. 3 (May 2001): 363–70. http://dx.doi.org/10.1007/bf02699179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Breuer, Michael, Martina Pohl, Bernhard Hauer, and Bettina Lingen. "High-throughput assay of ( R )-phenylacetylcarbinol synthesized by pyruvate decarboxylase." Analytical and Bioanalytical Chemistry 374, no. 6 (November 1, 2002): 1069–73. http://dx.doi.org/10.1007/s00216-002-1579-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gunawan, Cindy, Gernalia Satianegara, Allen K. Chen, Michael Breuer, Bernhard Hauer, Peter L. Rogers, and Bettina Rosche. "Yeast pyruvate decarboxylases: variation in biocatalytic characteristics for (R)-phenylacetylcarbinol production." FEMS Yeast Research 7, no. 1 (January 2007): 33–39. http://dx.doi.org/10.1111/j.1567-1364.2006.00138.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Leksawasdi, Noppol, Yvonne Y. S. Chow, Michael Breuer, Bernhard Hauer, Bettina Rosche, and Peter L. Rogers. "Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process." Journal of Biotechnology 111, no. 2 (July 2004): 179–89. http://dx.doi.org/10.1016/j.jbiotec.2004.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yun, Hyungdon, and Byung-Gee Kim. "Enzymatic production of (R)-phenylacetylcarbinol by pyruvate decarboxylase from Zymomonas mobilis." Biotechnology and Bioprocess Engineering 13, no. 3 (June 2008): 372–76. http://dx.doi.org/10.1007/s12257-008-0030-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Maroney, Kerrie Anne N., Peter N. Culshaw, Urs D. Wermuth, and Sarah L. Cresswell. "Investigation of the l-phenylacetylcarbinol process to substituted benzaldehydes of interest." Forensic Science International 235 (February 2014): 52–61. http://dx.doi.org/10.1016/j.forsciint.2013.11.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

K, Suresh, Harisaranraj R, Saravanababu S, and Vaira achudhan V. "Byconversion Of Benzaldehyde Into (R)-Phenylacetylcarbinol By Hansenulla Polymorpha And Brettanomyces Lambicus." International Journal on Applied Bio-Engineering 4, no. 1 (2010): 40–45. http://dx.doi.org/10.18000/ijabeg.10058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Oliver, A. L., F. A. Roddick, and B. N. Anderson. "Cleaner production of phenylacetylcarbinol by yeast through productivity improvements and waste minimiaation." Pure and Applied Chemistry 69, no. 11 (January 1, 1997): 2371–86. http://dx.doi.org/10.1351/pac199769112371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

B., Rosche, Sandford V., Breuer M., Hauer B., and Rogers P. "Biotransformation of benzaldehyde into ( R )-phenylacetylcarbinol by filamentous fungi or their extracts." Applied Microbiology and Biotechnology 57, no. 3 (October 1, 2001): 309–15. http://dx.doi.org/10.1007/s002530100781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Seifi, Mohammad Mahdi, Elham Iranmanesh, Mohammad Ali Asadollahi, and Ayyoob Arpanaei. "Biotransformation of benzaldehyde into l-phenylacetylcarbinol using magnetic nanoparticles-coated yeast cells." Biotechnology Letters 42, no. 4 (January 16, 2020): 597–603. http://dx.doi.org/10.1007/s10529-020-02798-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Iwan, Peter, Günter Goetz, Susanne Schmitz, Bernhard Hauer, Michael Breuer, and Martina Pohl. "Studies on the continuous production of (R)-(−)-phenylacetylcarbinol in an enzyme-membrane reactor." Journal of Molecular Catalysis B: Enzymatic 11, no. 4-6 (January 2001): 387–96. http://dx.doi.org/10.1016/s1381-1177(00)00029-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Satianegara, Gernalia, Michael Breuer, Bernhard Hauer, Peter L. Rogers, and Bettina Rosche. "Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emulsion system with Candida utilis cells." Applied Microbiology and Biotechnology 70, no. 2 (March 2006): 170–75. http://dx.doi.org/10.1007/s00253-005-0063-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Iranmanesh, Elham, Mohammad Ali Asadollahi, and Davoud Biria. "Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering." Journal of Biotechnology 308 (January 2020): 27–34. http://dx.doi.org/10.1016/j.jbiotec.2019.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Andreu, Cecilia, and Marcel ·lí del Olmo. "Biotransformation using halotolerant yeast in seawater: a sustainable strategy to produce R-(−)-phenylacetylcarbinol." Applied Microbiology and Biotechnology 102, no. 11 (April 7, 2018): 4717–27. http://dx.doi.org/10.1007/s00253-018-8945-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shin, Hyoun S., and Peter L. Rogers. "Production of L-phenylacetylcarbinol (L-PAC) from benzaldehyde using partially purified pyruvate decarboxylase (PDC)." Biotechnology and Bioengineering 49, no. 1 (March 26, 2000): 52–62. http://dx.doi.org/10.1002/(sici)1097-0290(19960105)49:1<52::aid-bit7>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Wenzhi, Zhilong Wang, Wei Li, Baohua Zhuang, and Hanshi Qi. "Production of l-phenylacetylcarbinol by microbial transformation in polyethylene glycol-induced cloud point system." Applied Microbiology and Biotechnology 78, no. 2 (February 2008): 233–39. http://dx.doi.org/10.1007/s00253-007-1304-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Leksawasdi, Noppol, Bettina Rosche, and Peter L. Rogers. "Mathematical model for kinetics of enzymatic conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol." Biochemical Engineering Journal 23, no. 3 (May 2005): 211–20. http://dx.doi.org/10.1016/j.bej.2004.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bruder, Stefan, and Eckhard Boles. "Improvement of the yeast based (R)-phenylacetylcarbinol production process via reduction of by-product formation." Biochemical Engineering Journal 120 (April 2017): 103–12. http://dx.doi.org/10.1016/j.bej.2016.09.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shin, Hyoun S., and Peter L. Rogers. "Kinetic evaluation of biotransformation of benzaldehyde to L-phenylacetylcarbinol by immobilized pyruvate decarboxylase from Candida utilis." Biotechnology and Bioengineering 49, no. 4 (March 26, 2000): 429–36. http://dx.doi.org/10.1002/(sici)1097-0290(19960220)49:4<429::aid-bit10>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Khan, Tanya R., and Andrew J. Daugulis. "Application of solid-liquid TPPBs to the production of L-phenylacetylcarbinol from benzaldehyde using Candida utilis." Biotechnology and Bioengineering 107, no. 4 (June 15, 2010): 633–41. http://dx.doi.org/10.1002/bit.22839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sandford, Vanessa, Michael Breuer, Bernhard Hauer, Peter Rogers, and Bettina Rosche. "(R)-phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase fromCandida utilis." Biotechnology and Bioengineering 91, no. 2 (2005): 190–98. http://dx.doi.org/10.1002/bit.20513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shin, H. S., and P. L. Rogers. "Biotransformation of benzeldehyde to L -phenylacetylcarbinol, an intermediate in L -ephedrine production, by immobilized Candida utilis." Applied Microbiology and Biotechnology 44, no. 1-2 (December 11, 1995): 7–14. http://dx.doi.org/10.1007/s002530050512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mahendran, Prabhu, A. Jeya Rajendran, C. Balachandran, A. Stalin, Saravanan Rangan, Loganathan Kothandapani, Kella Chennakesava Rao, Suresh Awale, and B. N. Hiteshkumar. "Synthesis of novel β-amino alcohols from phenylacetylcarbinol: cytotoxicity activity against A549 cells and molecular docking." Research on Chemical Intermediates 44, no. 1 (September 4, 2017): 535–52. http://dx.doi.org/10.1007/s11164-017-3118-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shin, H. S., and P. L. Rogers. "Biotransformation of benzeldehyde to l-phenylacetylcarbinol, an intermediate in l-ephedrine production, by immobilized Candida utilis." Applied Microbiology and Biotechnology 44, no. 1-2 (December 1995): 7–14. http://dx.doi.org/10.1007/bf00164473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shukla, Vilas B., Virendra R. Madyar, Bhushan M. Khadilkar, and Pushpa R. Kulkarni. "Biotransformation of benzaldehyde toL-phenylacetylcarbinol (L-PAC) byTorulaspora delbrueckii and conversion to ephedrine by microwave radiation." Journal of Chemical Technology & Biotechnology 77, no. 2 (2002): 137–40. http://dx.doi.org/10.1002/jctb.534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sahm, Hermann. "Acetoin and Phenylacetylcarbinol Formation by the Pyruvate Decarboxylases of Zymomonas Mobilis and Saccharomyces Carlsbergensis Stephanie Bringer-Meyer." Biocatalysis 1, no. 4 (January 1988): 321–31. http://dx.doi.org/10.3109/10242428808998172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Leksawasdi, Noppol, Peter L. Rogers, and Bettina Rosche. "Improved enzymatic two-phase biotransformation for (R)-phenylacetylcarbinol: Effect of dipropylene glycol and modes of pH control." Biocatalysis and Biotransformation 23, no. 6 (January 2005): 445–51. http://dx.doi.org/10.1080/10242420500444135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rosche, Bettina, Michael Breuer, Bernhard Hauer, and Peter L. Rogers. "Cells of Candida utilis for in vitro (R)-phenylacetylcarbinol production in an aqueous/octanol two-phase reactor." Biotechnology Letters 27, no. 8 (April 2005): 575–81. http://dx.doi.org/10.1007/s10529-005-3252-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gunawan, Cindy, Michael Breuer, Bernhard Hauer, Peter L. Rogers, and Bettina Rosche. "Improved (R)-phenylacetylcarbinol production with Candida utilis pyruvate decarboxylase at decreased organic to aqueous phase volume ratios." Biotechnology Letters 30, no. 2 (September 18, 2007): 281–86. http://dx.doi.org/10.1007/s10529-007-9525-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shukla, Vilas B., and Pushpa R. Kulkarni. "Biotransformation of Benzaldehyde to L-Phenylacetylcarbinol (L-PAC) by Free Cells of Torulaspora delbrueckii in presence of Beta-Cyclodextrin." Brazilian Archives of Biology and Technology 45, no. 3 (September 2002): 265–68. http://dx.doi.org/10.1590/s1516-89132002000300003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Satianegara, Gernalia, Peter L. Rogers, and Bettina Rosche. "Comparative studies on enzyme preparations and role of cell components for (R)-phenylacetylcarbinol production in a two-phase biotransformation." Biotechnology and Bioengineering 94, no. 6 (2006): 1189–95. http://dx.doi.org/10.1002/bit.20959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Goetz, G�nter, Peter Iwan, Bernhard Hauer, Michael Breuer, and Martina Pohl. "Continuous production of (R)-phenylacetylcarbinol in an enzyme-membrane reactor using a potent mutant of pyruvate decarboxylase fromZymomonas mobilis." Biotechnology and Bioengineering 74, no. 4 (2001): 317–25. http://dx.doi.org/10.1002/bit.1122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Alvarado, Omar, Rafael García-Meseguer, Jose Javier Ruiz-Pernía, Iñaki Tuñon, and Eduardo J. Delgado. "Mechanistic study of the biosynthesis of R-phenylacetylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations." Archives of Biochemistry and Biophysics 707 (August 2021): 108849. http://dx.doi.org/10.1016/j.abb.2021.108849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shukla, Vilas B., and Pushpa R. Kulkarni. "Comparative studies on bioconversion of benzaldehyde toL-phenylacetylcarbinol (L-PAC) using calcium alginate- and barium alginate-immobilized cells ofTorulaspora delbrueckii." Journal of Chemical Technology & Biotechnology 78, no. 9 (2003): 949–51. http://dx.doi.org/10.1002/jctb.863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nunta, Rojarej, Charin Techapun, Ampin Kuntiya, Prasert Hanmuangjai, Churairat Moukamnerd, Julaluk Khemacheewakul, Sumeth Sommanee, Alissara Reungsang, Mallika Boonmee Kongkeitkajorn, and Noppol Leksawasdi. "Ethanol and phenylacetylcarbinol production processes of Candida tropicalis TISTR 5306 and Saccharomyces cerevisiae TISTR 5606 in fresh juices from longan fruit of various sizes." Journal of Food Processing and Preservation 42, no. 11 (October 21, 2018): e13815. http://dx.doi.org/10.1111/jfpp.13815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Khan, Tanya R., and Andrew J. Daugulis. "The effects of polymer phase ratio and feeding strategy on solid–liquid TPPBs for the production of l-phenylacetylcarbinol from benzaldehyde using Candida utilis." Biotechnology Letters 33, no. 1 (September 29, 2010): 63–70. http://dx.doi.org/10.1007/s10529-010-0408-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Zhilong, Rui Liang, Jian-He Xu, Yubo Liu, and Hanshi Qi. "A Closed Concept of Extractive Whole Cell Microbial Transformation of Benzaldehyde into l-Phenylacetylcarbinol by Saccharomyces cerevisiae in Novel Polyethylene-Glycol-Induced Cloud-Point System." Applied Biochemistry and Biotechnology 160, no. 6 (June 27, 2009): 1865–77. http://dx.doi.org/10.1007/s12010-009-8695-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Alvarado, Omar, Rafael García-Meseguer, Jose Javier Ruiz-Pernía, Iñaki Tuñon, and Eduardo J. Delgado. "Corrigendum to “Mechanistic study of the biosynthesis of R-phenylacetylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations” [Arch. Biochem. Biophys. 701 (2021) 108807]." Archives of Biochemistry and Biophysics 707 (August 2021): 108848. http://dx.doi.org/10.1016/j.abb.2021.108848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Andreu, Cecilia, and Marcel·lí del Olmo. "Potential of some yeast strains in the stereoselective synthesis of (R)-(−)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1,2-dialcohol derivatives." Applied Microbiology and Biotechnology, March 27, 2014. http://dx.doi.org/10.1007/s00253-014-5635-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liang, Yan-Fei, Le-Tian Yan, Qiao Yue, Ji-Kui Zhao, Cai-Yun Luo, Feng Gao, Heng Li, and Wen-Yun Gao. "Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones." Scientific Reports 10, no. 1 (September 21, 2020). http://dx.doi.org/10.1038/s41598-020-72416-6.

Full text
Abstract:
Abstract The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
APA, Harvard, Vancouver, ISO, and other styles
49

Khemacheewakul, Julaluk, Siraphat Taesuwan, Rojarej Nunta, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Kittisak Jantanasakulwong, et al. "Validation of mathematical model with phosphate activation effect by batch (R)-phenylacetylcarbinol biotransformation process utilizing Candida tropicalis pyruvate decarboxylase in phosphate buffer." Scientific Reports 11, no. 1 (June 3, 2021). http://dx.doi.org/10.1038/s41598-021-91294-0.

Full text
Abstract:
AbstractThe (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min−1). A parameter search strategy aimed at minimizing overall residual sum of square (RSST) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (ka) of (9.38 ± < 0.01) × 10–6% relative PDC activity min−1 mM−1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSST, mean sum of square error (MSE), and coefficient of determination (R2) values of 662, 17.4, and 0.9863, respectively.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography