Academic literature on the topic 'Phenylacetylcarbinol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phenylacetylcarbinol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phenylacetylcarbinol"

1

Sehl, Torsten, Saskia Bock, Lisa Marx, Zaira Maugeri, Lydia Walter, Robert Westphal, Constantin Vogel, et al. "Asymmetric synthesis of (S)-phenylacetylcarbinol – closing a gap in C–C bond formation." Green Chemistry 19, no. 2 (2017): 380–84. http://dx.doi.org/10.1039/c6gc01803c.

Full text
Abstract:
By the combination of biocatalyst design and reaction engineering, the so far not stereoselectively accessible (S)-phenylacetylcarbinol could be enzymatically synthesized with product concentrations >48 g L−1 and an enantiomeric excess up to 97%.
APA, Harvard, Vancouver, ISO, and other styles
2

Tripathi, Chandrakant M., Suresh C. Agarwal, and Samar K. Basu. "Production of l-phenylacetylcarbinol by fermentation." Journal of Fermentation and Bioengineering 84, no. 6 (January 1997): 487–92. http://dx.doi.org/10.1016/s0922-338x(97)81900-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

B., Rosche, Leksawasdi N., Sandford V., Breuer M., Hauer B., and Rogers P. "Enzymatic ( R )-phenylacetylcarbinol production in benzaldehyde emulsions." Applied Microbiology and Biotechnology 60, no. 1-2 (October 1, 2002): 94–100. http://dx.doi.org/10.1007/s00253-002-1084-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doostmohammadi, Mohsen, Mohammad Ali Asadollahi, Iraj Nahvi, Davoud Biria, Gholam Reza Ghezelbash, and Maryam Kheyrandish. "L-phenylacetylcarbinol production by yeast petite mutants." Annals of Microbiology 66, no. 3 (January 20, 2016): 1049–55. http://dx.doi.org/10.1007/s13213-015-1190-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harini, Madakashira, Jhumpa Adhikari, and K. Yamuna Rani. "Prediction of vapour–liquid coexistence data of Phenylacetylcarbinol." Fluid Phase Equilibria 364 (February 2014): 6–14. http://dx.doi.org/10.1016/j.fluid.2013.11.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liew, Michelle K. H., Anthony G. Fane, and Peter L. Rogers. "Applicability of continuous membrane bioreactor in production of phenylacetylcarbinol." Journal of Chemical Technology AND Biotechnology 64, no. 2 (October 1995): 200–206. http://dx.doi.org/10.1002/jctb.280640214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rosche, Bettina, Vanessa Sandford, Michael Breuer, Bernhard Hauer, and Peter L. Rogers. "Enhanced production of R-phenylacetylcarbinol (R-PAC) through enzymatic biotransformation." Journal of Molecular Catalysis B: Enzymatic 19-20 (December 2002): 109–15. http://dx.doi.org/10.1016/s1381-1177(02)00157-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Engel, Stanislav, Maria Vyazmensky, Shimona Geresh, Ze'ev Barak, and David M. Chipman. "Acetohydroxyacid synthase: A new enzyme for chiral synthesis ofR-phenylacetylcarbinol." Biotechnology and Bioengineering 83, no. 7 (July 24, 2003): 833–40. http://dx.doi.org/10.1002/bit.10728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Joong Kon, and Kwang Deok Lee. "Production of L-phenylacetylcarbinol (L-PAC) by encapsulatedSaccharomyces cerevisiae cells." Korean Journal of Chemical Engineering 18, no. 3 (May 2001): 363–70. http://dx.doi.org/10.1007/bf02699179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Breuer, Michael, Martina Pohl, Bernhard Hauer, and Bettina Lingen. "High-throughput assay of ( R )-phenylacetylcarbinol synthesized by pyruvate decarboxylase." Analytical and Bioanalytical Chemistry 374, no. 6 (November 1, 2002): 1069–73. http://dx.doi.org/10.1007/s00216-002-1579-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phenylacetylcarbinol"

1

Chen, Allen Kuan-Liang Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Enhanced biocatalyst production for (R)-phenylacetylcarbinol synthesis." Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2006. http://handle.unsw.edu.au/1959.4/32825.

Full text
Abstract:
The enzymatic production of R-phenylacetylcarbinol (R-PAC), with either whole cells or partially purified pyruvate decarboxylase (PDC) as the biocatalyst, requires high PDC activity and an inexpensive source of pyruvate for an economical feasible biotransformation process. Microbial pyruvate produced by a vitamin auxotrophic strain of Candida glabrata was selected as a potential substrate for biotransformation. With an optimal thiamine concentration of 60 ??g/l, a pyruvic acid concentration of 43 g/l and yield of 0.42 g/g glucose consumed were obtained. Using microbially-produced unpurified pyruvate resulted in similar PAC concentrations to those with commercial pure substrate confirming its potential for enzymatic PAC production. To obtain high activity yeast PDC, Candida utilis was cultivated in a controlled bioreactor. Optimal conditions for PDC production were identified as: fermentative cell growth at initial pH at 6.0 followed by pH downshift to 3.0. Average specific PDC carboligase activity of 392 ?? 20 U/g DCW was achieved representing a 2.7-fold increase when compared to a constant pH process. A mechanism was proposed in which the cells adapted to the pH decrease by increasing PDC activity to convert the accumulated internal pyruvic acid via acetaldehyde to ethanol thereby reducing intracellular acidification. The effect of pH shift on specific PDC activity of Saccharomyces cerevisiae achieved a comparable increase of specific PDC carboligase activity to 335 U/g DCW. The effect of pyruvic acid at pH 3.0 on induction of PDC activity was confirmed by cultivation at pH 3 with added pyruvic acid. Using microarray techniques, genome-wide transcriptional analyses of the effect of pH shift on S. cerevisiae revealed a transient increased expression of PDC1 after pH shift, which corresponded to the increase in specific PDC activity (although the latter was sustained for a longer period). The results showed significant gene responses to the pH shift with approximately 39 % of the yeast genome involved. The induced transcriptional responses to the pH shift were distinctive and showed only limited resemblance to gene responses reported for other environmental stress conditions, namely increased temperature, oxidative conditions, reduced pH (succinic acid), alkaline pH and increased osmolarity.
APA, Harvard, Vancouver, ISO, and other styles
2

Satianegara, Gernalia Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Comparative studies on different enzyme preparations for (R)-phenylacetylcarbinol production." Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2006. http://handle.unsw.edu.au/1959.4/25236.

Full text
Abstract:
The present study is part of a project to develop a high productivity enzymatic process for (R)-phenylacetylcarbinol (PAC), a precursor for the pharmaceuticals ephedrine and pseudoephedrine, with recent interest for a low cost and more stable biocatalyst pyruvate decarboxylase (PDC) preparation. PDC initially added in the form of Candida utilis cells, viz. whole cell PDC, showed higher stability towards substrate benzaldehyde and temperature in comparison to the partially purified preparation in an aqueous/benzaldehyde emulsion system. Increasing the temperature from 4?? to 21??C for PAC production with whole cell PDC resulted in similar final PAC levels of 39 and 43 g/L (258 and 289 mM) respectively from initial 300 mM benzaldehyde and 364 mM pyruvate. However, the overall volumetric productivity was enhanced by 2.8-fold. Enantiomeric excess values of 98 and 94% for R-PAC were obtained at 4?? and 21??C respectively and benzylalcohol (a potential by-product from benzaldehyde) was not formed. The potential of whole cell PDC was also evident in an aqueous/octanolbenzaldehyde emulsion system at 21??C with a 3-fold higher specific production compared to partially purified PDC. At 2.5 U/mL, PAC levels of 104 g/L in the organic phase and 16 g/L in the aqueous phase (60 g/L total reaction volume, 15 h) and a 99.1% enantiomeric excess for R-PAC were obtained with whole cell PDC. The study of cell membrane components provided a better understanding for the enhanced performance of whole cell PDC in comparison to partially purified PDC. It was apparent that surfactants, both biologically-occurring (e.g. phosphatidylcholine) and synthetically manufactured (e.g. bis(2-ethyl-1-hexyl)sulfosuccinate (AOT)), enhanced PDC stability and/or PAC production in the aqueous/octanol-benzaldehyde biotransformation system with the partially purified enzyme. Addition of 50 mM AOT to the biotransformation with partially purified PDC enhanced the enzyme half-life by 13-fold (19 h) and increased specific PAC production by 2-fold (36 mg/U). Chemical modification studies targeting the amino and carboxyl groups were carried out to achieve increased stability of partially purified PDC. However these were not successful and future work could be directed at PDC protein engineering as well as optimization and scale up of the two-phase process using whole cell PDC.
APA, Harvard, Vancouver, ISO, and other styles
3

Leksawasdi, Noppol Biotechnology &amp Biomolecular Sciences (BABS) UNSW. "Kinetics and modelling of enzymatic process for R-phenylacetylcarbinol (PAC) production." Awarded by:University of New South Wales. Biotechnology and Biomolecular Sciences (BABS), 2004. http://handle.unsw.edu.au/1959.4/20846.

Full text
Abstract:
R-phenylacetylcarbinol (PAC) is used as a precursor for production of ephedrine and pseudoephedrine, which are anti-asthmatics and nasal decongestants. PAC is produced from benzaldehyde and pyruvate mediated by pyruvate decarboxylase (PDC). A strain of Rhizopus javanicus was evaluated for its production of PDC. The morphology of R. javanicus was influenced by the degree of aeration/agitation. A relatively high specific PDC activity (328 U decarboxylase g-1 mycelium) was achieved when aeration/agitation were reduced significantly in the latter stages of cultivation. The stability of partially purified PDC and crude extract from R. javanicus were evaluated by examining the enzyme deactivation kinetic in various conditions. R. javanicus PDC was less stable than Candida utilis PDC currently used in our group. A kinetic model for the deactivation of partially purified PDC extracted from C. utilis by benzaldehyde (0?00 mM) in 2.5 M MOPS buffer has been developed. An initial lag period prior to deactivation was found to occur, with first order dependencies of PDC deactivation on exposure time and on benzaldehyde concentration. A mathematical model for the enzymatic biotransformation of PAC and its associated by-products has been developed using a schematic method devised by King and Altman (1956) for deriving the rate equations. The rate equations for substrates, product and by-products have been derived from the patterns for yeast PDC and combined with a deactivation model for PDC from C. utilis. Initial rate and biotransformation studies were applied to refine and validate a mathematical model for PAC production. The rate of PAC formation was directly proportional to the enzyme activity level up to 5.0 U carboligase ml-1. Michaelis-Menten kinetics were determined for the effect of pyruvate concentration on the reaction rate. The effect of benzaldehyde on the rate of PAC production followed the sigmoidal shape of the Monod-Wyman-Changeux (MWC) model. The biotransformation model, which also included a term for PDC inactivation by benzaldehyde, was used to determine the overall rate constants for the formation of PAC, acetaldehyde and acetoin. Implementation of digital pH control for PAC production in a well-stirred organic-aqueous two-phase biotransformation system with 20 mM MOPS and 2.5 M dipropylene glycol (DPG) in aqueous phase resulted in similar level of PAC production [1.01 M (151 g l-1) in an organic phase and 115 mM (17.2 g l-1) in an aqueous phase after 47 h] to the system with a more expensive 2.5 M MOPS buffer.
APA, Harvard, Vancouver, ISO, and other styles
4

Gunawan, Cindy Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Bioprocess development for (R)-phenylacetylcarbinol (PAC) synthesis in aqueous/organic two-phase system." Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2006. http://handle.unsw.edu.au/1959.4/25711.

Full text
Abstract:
(R)-phenylacetylcarbinol or R-PAC is a chiral precursor for the synthesis of pharmaceuticals ephedrine and pseudoephedrine. PAC is produced through biotransformation of pyruvate and benzaldehyde catalyzed by pyruvate decarboxylase (PDC) enzyme. The present research project aims at characterizing a two-phase aqueous/organic process for enzymatic PAC production. In a comparative study of several selected yeast PDCs, the highest PAC formation was achieved in systems with relatively high benzaldehyde concentrations when using C. utilis PDC. C. tropicalis PDC was associated with the lowest by-product acetoin formation although it also produced lower PAC concentrations. C. utilis PDC was therefore selected as the biocatalyst for the development of the two-phase PAC production. From an enzyme stability study it was established that PDC deactivation rates in the twophase aqueous/octanol-benzaldehyde system were affected by: (1) soluble octanol and benzaldehyde in the aqueous phase, (2) agitation rate, (3) aqueous/organic interfacial area, and (4) initial enzyme concentration. PDC deactivation was less severe in the slowly stirred phase-separated system (low interfacial area) compared to the rapidly stirred emulsion system (high interfacial area), however the latter system was presumably associated with a faster rate of organic-aqueous benzaldehyde transfer. To find a balance between maintaining enzyme stability while enhancing PAC productivity, a two-phase system was designed to reduce the interfacial contact by decreasing the organic to aqueous phase volume ratio. Lowering the ratio from 1:1 to 0.43:1 resulted in increased overall PAC production at 4??C and 20??C (2.5 M MOPS, partially purified PDC) with a higher concentration at the higher temperature. The PAC was highly concentrated in the organic phase with 212 g/L at 0.43:1 in comparison to 111 g/L at 1:1 ratio at 20??C. The potential of further two-phase process simplification was evaluated by reducing the expensive MOPS concentration to 20 mM (pH controlled at 7.0) and employment of whole cell PDC. It was found that 20??C was the optimum temperature for PAC production in such a system, however under these conditions lowering the phase ratio resulted in decreased overall PAC production. Two-phase PAC production was relatively low in 20 mM MOPS compared to biotransformations in 2.5 M MOPS. Addition of 2.5 M dipropylene glycol (DPG) into the aqueous phase with 20 mM MOPS at 0.25:1 ratio and 20??C improved the production with organic phase containing 95 g/L PAC. Although the productivity was lower, the system may have the benefit of a reduction in production cost.
APA, Harvard, Vancouver, ISO, and other styles
5

Iwan, Peter. "Untersuchung der enzymatischen Synthese von (R)-( - )-Phenylacetylcarbinol mit geeigneten Muteinen der Pyruvatdecarboxylase aus Zymomonas mobilis." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964217775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leksawasdi, Noppol. "Kinetics and modelling of enzymatic process for R-phenylacetylcarbinol (PAC) production /." 2004. http://www.library.unsw.edu.au/~thesis/adt-NUN/public/adt-NUN20050426.141245/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KHAN, Tanya Razia. "The Bioproduction of L-phenylacetylcarbinol in solid-liquid two phase partitioning bioreactors." Thesis, 2010. http://hdl.handle.net/1974/5992.

Full text
Abstract:
Biphasic systems such as two-phase partitioning bioreactors (TPPBs) have been used to alleviate biological inhibition by sequestering inhibitory compounds within an immiscible phase. The use of solid polymer beads as this auxiliary phase provides a fully biocompatible alternative to commonly used yet potentially toxic organic solvents. This work focused on the application of solid-liquid TPPBs to the bioproduction of the pharmaceutical precursor L-phenylacetylcarbinol (PAC), a biotransformation which suffers from substrate (benzaldehyde), product (PAC), and by-product (benzyl alcohol) inhibition, and simple strategies to improve TPPB performance in general. A wide range of commercially available, biocompatible, and non-bioavailable polymers were screened for their affinity for benzaldehyde, PAC, and benzyl alcohol. Hytrel G3548L demonstrated the highest affinity for all three target compounds and was subsequently used in solid-liquid TPPBs for PAC production. Using 15% v/v polymer beads, PAC concentration was increased by 104% and benzyl alcohol concentration decreased by 38% over the single phase control. The delivery of benzaldehyde from polymer beads demonstrated only a 6-8% reduction in mass productivity with improved operational simplicity and reduced operator intervention. The final objective of this work was to independently investigate various aspects of the aqueous phase composition and determine how each factor affects the partition coefficient of benzaldehyde in Hytrel G3548L. Temperature and pH were observed to have no significant effect on partitioning. Salt and glucose additions increased the partition coefficient by 173% and 30% respectively compared to RO water, while ethanol was found to decrease the partition coefficient from 44 (±1.6) to 1 (±0.3). These findings may be applied to solid-liquid TPPBs to increase or decrease partitioning as required, leading to improved bioreactor performance. This work has successfully shown that with careful polymer selection, solid-liquid TPPBs can be used to increase the productivity of a biotransformation without the associated biocompatibility problems that have sometimes been observed with organic solvents. The delivery of inhibitory substrate from the polymer phase was successfully accomplished, which is a novel demonstration in the field of solid-liquid TPPBs for biocatalysis. Finally this work contributes a range of simple strategies to improve the partitioning behavior of solid-liquid TPPBs using the aqueous phase composition.
Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-26 10:53:38.569
APA, Harvard, Vancouver, ISO, and other styles
8

Iwan, Peter [Verfasser]. "Untersuchung der enzymatischen Synthese von (R)-(-)-Phenylacetylcarbinol mit geeigneten Muteinen der Pyruvatdecarboxylase aus Zymomonas mobilis / vorgelegt von Peter Iwan." 2002. http://d-nb.info/964217775/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shanati, Tarek. "Enantiokomplementäre Dehydrogenasen aus Arthrobacter sp. TS-15 zur stereoselektiven Oxidation von Ephedrinen und Reduktion aromatischer Ketoverbindungen." 2019. https://tud.qucosa.de/id/qucosa%3A34830.

Full text
Abstract:
Zur stereoselektiven Herstellung von α-Hydroxyketonen aus prochiralen Ketonen stellen die Alkoholdehydrogenasen eine ökologische als auch ökonomische Alternative zu den verfügbaren industriellen Syntheserouten dar. Zurzeit stoßen sowohl die Biokatalyse als auch die organische Katalyse bei der Herstellung von sterisch anspruchsvollen α-Hydroxyketonen an ihre Grenzen. Die Synthese von enantiomerenreinem (R)-Phenylacetylcarbinol [(R)-PAC] und S- Phenylacetylcarbinol [(S)-PAC] aus dem prochiralen α-Diketon Phenylpropan-1,2-dion (PPD) stellt eine anspruchsvolle Synthese sowohl für akademische als auch für industrielle Zwecke dar. Diese chiralen Bausteine dienen als Vorgänger bei der Synthese von (‒)-Ephedrin und (+)-Pseudoephedrin. (‒)-Ephedrin und (+)-Pseudoephedrin werden jährlich in großen Mengen hergestellt, was zunehmend ein ernsthaftes ökologisches Problem darstellt. Aufgrund ihrer Toxizität als auch ihre Persistenz in der Umwelt, beispielsweise in Abwasserkläranlagen, wurden sie kürzlich als neu auftauchende Kontaminanten eingestuft. In dieser Arbeit wurde die Biodegradierung der Isomere von Ephedrin untersucht. Dabei wurde der neue Stamm Arthrobacter sp. TS-15 isoliert, welcher mit Ephedrin als einzige Kohlenstoffquelle wachsen kann. Dieser Stamm wurde bei der DSMZ unter der Nummer (DSM 32400) hinterlegt. Das Genom dieses Stammes wurde sequenziert und unter der Zugangsnummer (SDXQ00000000) in der Genbank verwahrt. Anhand verschiedener phylogenetischer Untersuchungen wurde TS-15 als eine Subspezies von Arthrobacter aurescens eingeordnet. Des Weiteren wurde der Einfluss der Isomerie von Ephedrin auf dessen Biodegradierung sowie auf die Wachstumsrate von TS-15 untersucht. Es wurde festgestellt, dass das Isomer (‒)-Pseudoephedrin am langsamsten abgebaut wird und dementsprechend einen negativen Einfluss auf das Kulturwachstum hat. Hingegen zeigte sein Enantiomer (+)-Pseudoephedrin die schnellste Biodegradierung mit einem positiven Effekt auf das Wachstum von TS-15. Anhand der Analyse der Metabolite im Kultivierungsmedium als auch aus den Zellextrakten von TS-15 wurde ein neuer katabolischer einleitender Schritt detektiert, in dem das Ephedrin zu Methcathinon VII oxidiert wird. Zur Bestimmung der oxidierenden Enzyme wurden Proteinanreicherungsverfahren eingesetzt. Mittels Peptidmassenfingerprints wurden 51 Proteinhits ermittelt. Nach einer kombinierten Analyse mittels der Proteinhits und des rationalen Genomminings wurde ein neues Gencluster zum Abbau von Ephedrin identifiziert. Zwei postulierte Dehydrogenasen wurden aus dem Genom isoliert, kloniert und in dem E. coli T7 SHuffle Stamm heterolog exprimiert. Dadurch wurden neue enantiokomplementäre Enzyme entdeckt. Die Pseudoephedrin Dehydrogenase (PseDH) ist enantiospezifisch für (+)-S,(N)-(Pseudo-)-Ephedrin, während die Ephedrin Dehydrogenase (EDH) nur die enantiospezifische Oxidation von (‒)-R,(N)-(Pseudo-)-Ephedrin katalysieren kann. Beide Dehydrogenasen sind NADH-abhängig und der Superfamilie der kurzkettigen Dehydrogenasen untergeordnet. Bei der Charakterisierung dieser Dehydrogenasen konnte gezeigt werden, dass das Substratspektrum wertvolle chirale Produkte umfasst. Beide Dehydrogenasen zeigen strikte Regio- und Enantioselektivität gegenüber dem α-Diketon Phenylpropan-1,2-Dion (PPD). Somit wurde PPD zu (S)-PAC (ee >99%) und (R)-PAC (ee >99%) mittels PseDH bzw. EDH mit vollem Umsatz reduziert. Darüber hinaus wurde die Kristallstruktur der PseDH im Rahmen einer Zusammenarbeit mit der Universität von York mit einer Auflösung von 1,8 Å aufgeklärt. Die Kristallstruktur wurde in PDB unter der Zugangsnummer (6QHE) hinterlegt. Mittels der Kristallstruktur der PseDH und des Homologiemodells der EDH wurden Strukturanalysen durchgeführt und die ersten Hypothesen zur Funktionsweise dieser Enzyme aufgestellt. Des Weiteren wurden über Peptidsequenzanalysen zu diesen Enzymen Rückschlüsse auf ihren evolutionären Ursprung gezogen. Die Stabilität der Dehydrogenasen wurde mit unterschiedlichen Lösungsmitteln bestimmt. CPME wurde als geeignetstes organisches Lösungsmittel für die Biokatalyse mit diesen Enzymen ermittelt. Beide Enzyme wurden mittels eines organisch-wässrigen Zweiphasensystems unter enzymgekoppelter Cofaktorregenerierung getestet. Dadurch wurde der Zugang zur Produktion von (S)-PAC und (R)-PAC aus PPD mittels PseDH bzw. EDH geschaffen.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phenylacetylcarbinol"

1

Oliver, Alison L., Bruce N. Anderson, and Felicity A. Roddick. "Factors Affecting the Production of l-Phenylacetylcarbinol by Yeast: A Case Study." In Advances in Microbial Physiology, 1–45. Elsevier, 1999. http://dx.doi.org/10.1016/s0065-2911(08)60164-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leksawasdi, N., B. Rosche, and P. Rogers. "Enzymatic Processes for Fine Chemicals and Pharmaceuticals: Kinetic Simulation for Optimal R-Phenylacetylcarbinol Production." In New Developments and Application in Chemical Reaction Engineering, 27–34. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-2991(06)81534-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography