Academic literature on the topic 'Phenotypic plasticity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phenotypic plasticity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phenotypic plasticity"
Nicotra, Adrienne B., and Amy Davidson. "Adaptive phenotypic plasticity and plant water use." Functional Plant Biology 37, no. 2 (2010): 117. http://dx.doi.org/10.1071/fp09139.
Full textBibi, Zubaira, Muhammad Junaid Maqsood, Ayesha Idrees, Hafisa Rafique, Aliza Amjad Butt, Rameesha Ali, Zunaira Arif, and Mutie Un Nabi. "Exploring the Role of Phenotypic Plasticity in Plant Adaptation to Changing Climate: A Review." Asian Journal of Research in Crop Science 9, no. 1 (January 2, 2024): 1–9. http://dx.doi.org/10.9734/ajrcs/2024/v9i1241.
Full textNishiura, Naoto, and Kunihiko Kaneko. "Evolution of phenotypic fluctuation under host-parasite interactions." PLOS Computational Biology 17, no. 11 (November 9, 2021): e1008694. http://dx.doi.org/10.1371/journal.pcbi.1008694.
Full textKaragic, Nidal, Axel Meyer, and C. Darrin Hulsey. "Phenotypic Plasticity in Vertebrate Dentitions." Integrative and Comparative Biology 60, no. 3 (June 16, 2020): 608–18. http://dx.doi.org/10.1093/icb/icaa077.
Full textKishida, Osamu, Yuuki Mizuta, and Kinya Nishimura. "PHENOTYPIC PLASTICITY." Bulletin of the Ecological Society of America 87, no. 2 (April 2006): 106–7. http://dx.doi.org/10.1890/0012-9623(2006)87[106:pp]2.0.co;2.
Full textPhillips, K. "PHENOTYPIC PLASTICITY." Journal of Experimental Biology 209, no. 12 (June 15, 2006): i—iii. http://dx.doi.org/10.1242/jeb.02324.
Full textCallahan, Hilary S., Heather Maughan, and Ulrich K. Steiner. "Phenotypic Plasticity, Costs of Phenotypes, and Costs of Plasticity." Annals of the New York Academy of Sciences 1133, no. 1 (June 2008): 44–66. http://dx.doi.org/10.1196/annals.1438.008.
Full textFusco, Giuseppe, and Alessandro Minelli. "Phenotypic plasticity in development and evolution: facts and concepts." Philosophical Transactions of the Royal Society B: Biological Sciences 365, no. 1540 (February 27, 2010): 547–56. http://dx.doi.org/10.1098/rstb.2009.0267.
Full textZhang, Luna, Anqun Chen, Yanjiao Li, Duohui Li, Shiping Cheng, Liping Cheng, and Yinzhan Liu. "Differences in Phenotypic Plasticity between Invasive and Native Plants Responding to Three Environmental Factors." Life 12, no. 12 (November 25, 2022): 1970. http://dx.doi.org/10.3390/life12121970.
Full textWang, Ye, Huigan Xie, Tiechui Yang, Dan Gao, and Xiwen Li. "Primary Investigation of Phenotypic Plasticity in Fritillaria cirrhosa Based on Metabolome and Transcriptome Analyses." Cells 11, no. 23 (November 30, 2022): 3844. http://dx.doi.org/10.3390/cells11233844.
Full textDissertations / Theses on the topic "Phenotypic plasticity"
Al-Mazrouai, Ahmed Mohammed. "Phenotypic plasticity in marine intertidal gastropods." Thesis, University of Plymouth, 2008. http://hdl.handle.net/10026.1/1973.
Full textGold, Leslie. "Phenotypic plasticity of wetland species of Carex." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0031/MQ64363.pdf.
Full textTibbits, Matthew Alan. "Scleractinian micromorphology : taxonomic value vs. phenotypic plasticity." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2155.
Full textHooker, Oliver Edward. "The consequences of phenotypic plasticity on postglacial fishes." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7794/.
Full textPascoal, Sónia Cristina Marques. "Nucella lapillus: imposex transcriptome analysis and phenotypic plasticity." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/4267.
Full textO conhecimento de mecanismos de genómica funcional tem sido maioritariamente adquirido pela utilização de organismos modelo que são mantidos em condições laboratoriais. Contudo, estes organismos não reflectem as respostas a alterações ambientais. Por outro lado, várias espécies, ecologicamente bem estudadas, reflectem bem as interacções entre genes e ambiente mas que, das quais não existem recursos genéticos disponíveis. O imposex, caracterizado pela superimposição de caracteres sexuais masculinos em fêmeas, é induzido pelo tributilestanho (TBT) e trifenilestanho (TPT) e representa um dos melhores exemplos de disrupção endócrina com causas antropogénicas no ambiente aquático. Com o intuito de elucidar as bases moleculares deste fenómeno, procedeu-se à combinação das metodologias de pirosequenciação (sequenciação 454 da Roche) e microarrays (Agilent 4*180K) de forma a contribuir para um melhor conhecimento desta interacção gene-ambiente no gastrópode Nucella lapillus, uma espécie sentinela para imposex. O trancriptoma de N. lapillus foi sequenciado, reconstruído e anotado e posteriormente utilizado para a produção de um “array” de nucleótidos. Este array foi então utilizado para explorar níveis de expressão génica em resposta à contaminação por TBT. Os resultados obtidos confirmaram as hipóteses anteriormente propostas (esteróidica, neuroendócrina, retinóica) e adicionalmente revelou a existência de potenciais novos mecanismos envolvidos no fenómeno imposex. Evidência para alvos moleculares de disrupção endócrina não relacionados com funções reprodutoras, tais como, sistema imunitário, apoptose e supressores de tumores, foram identificados. Apesar disso, tendo em conta a forte componente reprodutiva do imposex, esta componente funcional foi a mais explorada. Assim, factores de transcrição e receptores nucleares lipofílicos, funções mitocondriais e actividade de transporte celular envolvidos na diferenciação de géneros estão na base de potenciais novos mecanismos associados ao imposex em N. lapillus. Em particular, foi identificado como estando sobre-expresso, um possível homólogo do receptor nuclear “peroxisome proliferator-activated receptor gamma” (PPARγ), cuja função na indução de imposex foi confirmada experimentalmente in vivo após injecção dos animais com Rosiglitazone, um conhecido ligando de PPARγ em vertebrados. De uma forma geral, os resultados obtidos mostram que o fenómeno imposex é um mecanismo complexo, que possivelmente envolve a cascata de sinalização envolvendo o receptor retinoid X (RXR):PPARγ “heterodimer” que, até à data não foi descrito em invertebrados. Adicionalmente, os resultados obtidos apontam para alguma conservação de mecanismos de acção envolvidos na disrupção endócrina em invertebrados e vertebrados. Finalmente, a informação molecular produzida e as ferramentas moleculares desenvolvidas contribuem de forma significativa para um melhor conhecimento do fenómeno imposex e constituem importantes recursos para a continuação da investigação deste fenómeno e, adicionalmente, poderão vir a ser aplicadas no estudo de outras respostas a alterações ambientais usando N. lapillus como organismo modelo. Neste sentido, N. lapillus foi também utilizada para explorar a adaptação na morfologia da concha em resposta a alterações naturais induzidas por acção das ondas e pelo risco de predação por caranguejos. O contributo da componente genética, plástica e da sua interacção para a expressão fenotípica é crucial para compreender a evolução de caracteres adaptativos a ambientes heterogéneos. A contribuição destes factores na morfologia da concha de N. lapillus foi explorada recorrendo a transplantes recíprocos e experiências laboratoriais em ambiente comum (com e sem influência de predação) e complementada com análises genéticas, utilizando juvenis provenientes de locais representativos de costas expostas e abrigadas da acção das ondas. As populações estudadas são diferentes geneticamente mas possuem o mesmo cariótipo. Adicionalmente, análises morfométricas revelaram plasticidade da morfologia da concha em ambas as direcções dos transplantes recíprocos e também a retenção parcial, em ambiente comum, da forma da concha nos indivíduos da F2, indicando uma correlação positiva (co-gradiente) entre heritabilidade e plasticidade. A presença de estímulos de predação por caranguejos estimulou a produção de conchas com labros mais grossos, de forma mais evidente em animais recolhidos de costas expostas e também provocou alterações na forma da concha em animais desta proveniência. Estes dados sugerem contra-gradiente em alterações provocadas por predação na morfologia da concha, na produção de labros mais grossos e em níveis de crescimento. O estudo das interacções gene-ambiente descritas acima demonstram a actual possibilidade de produzir recursos e conhecimento genómico numa espécie bem caracterizada ecologicamente mas com limitada informação genómica. Estes recursos permitem um maior conhecimento biológico desta espécie e abrirão novas oportunidades de investigação, que até aqui seriam impossíveis de abordar.
Our understanding of functional genomic mechanisms is largely acquired from model organisms through laboratory conditions of exposure. Yet, these laboratory models typically have little environmental relevance. Conversely, there are numerous “ecological” model species that present important geneenvironment interactions, but lack genomic resources. Imposex, the superimposition of male sexual characteristics in females, is caused by tributyltin (TBT) and triphenyltin (TPT) and provides among the most widely cited ecological examples of anthropogenically-induced endocrine disruption in aquatic ecosystems. To further elucidate the functional genomic basis of imposex, combinations of 454 Roche pyrosequencing and microarray technologies (Agilent 4*180K) were employed to elucidate the nature and extent of gene-environment interactions in the prosobranch gastropod, Nucella lapillus, a recognized sentinel for TBT-induced imposex. Following transcriptome characterization (de novo sequencing, assembly and annotation), microarray fabrication and competitive hybridizations, differential gene expression analyses provided support for previously suggested hypotheses underpinning imposex (steroid, neuroendocrine, retinoid), but also revealed potential new mechanisms. Evidence for endocrine disruption (ED) targets such as the immune system, apoptosis and tumour suppressors other than reproduction-related functions were found; however, given the ED nature of imposex, primary focus was on gender-differentiation pathways. Among these, transcription factors and lipophilic nuclear receptors as transducers of TBT toxicity along with mitochondrial functions and deregulation in transport activity suggested new putative mechanisms for the TBT-induced imposex in N. lapillus. Particularly, up-regulation of a putative nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) homolog was evident, and its role was further confirmed by inducing imposex in vivo using Rosiglizatone, a well-known vertebrate PPARγ ligand. Our analyses show that TBT-induced imposex is a complex mechanism, but is likely to act through the retinoid X receptor (RXR):PPARγ heterodimer signalling pathway, hitherto not described in invertebrates. Moreover, collectively, our findings support a commonality of signalling between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption. The genomic resources generated here largely contribute to the molecular understanding of imposex, yielding valuable insights for further examination of responses to TBT contamination exposure. Additionally, we anticipate that the new genomic resources described herein will contribute to the further exploration of adaptive responses of dogwhelks to environmental variation. N. lapillus was also used to explore adaptive shell shape morphology in response to natural variation in wave-action and crab predation. Knowledge of the contributions of genotype, plasticity and their interaction to phenotypic expression is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed contributions of the above factors by reciprocal transplantation of snails between two shores differing in exposure to wave action and predation, and rearing snails of the same provenance in a laboratory common garden experiment with crab-predation odour, complemented by genetic analysis. The two target populations are genetically different but maintain the same karyotype. Truss-length and morphometric analyses revealed plasticity of shell shape in reciprocal transplants, but also the partial retention of parental shape by F2 snails in common garden controls, indicating co-gradient variation between heritable and plasticity components. Crab-predation odour influenced shell shape of snails from exposed-site origin and stimulated the production of thicker shell lips with greater response in snails of exposed-site ancestry. We interpret these data as countergradient variation on predator-induced changes in shell shape and increased thickening of the shell lip as well as on growth rates. The above exploration of gene-environment interactions demonstrates the feasibility, insights and novel opportunities that can now be addressed in a species that is well characterised ecologically, but hitherto constrained by the general lack of genomic tools and archived resources. Notably, a greater focus on detailed responses of a single species facilitates the comparative approach, as illustrated by the apparent commonality in regulation of endocrine disruption processes in invertebrates and vertebrates.
FCT; FSE - SFRH/BD/27711/2006
Miner, Benjamin G. "Evolution of phenotypic plasticity insights from echinoid larvae /." Connect to this title online, 2003. http://purl.fcla.edu/fcla/etd/UFE0001450.
Full textMeyer, Aret. "Phenotypic plasticity of phages with diverse genome sizes." Diss., University of Pretoria, 2006. http://hdl.handle.net/2263/26157.
Full textDissertation (MSc (Genetics))--University of Pretoria, 2006.
Genetics
unrestricted
Leone, Stacy E. "Predator induced plasticity in barnacle shell morphology /." Abstract Full Text (HTML) Full Text (PDF), 2008. http://eprints.ccsu.edu/archive/00000496/02/1952FT.htm.
Full textThesis advisor: Jeremiah Jarrett. "... in partial fulfillment of the requirements for the degree of Master of Arts in Biology." Includes bibliographical references (leaves 27-29). Also available via the World Wide Web.
Crispo, Erika. "Interplay among phenotypic plasticity, local adaptation, and gene flow." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92201.
Full textKraft, Peter G. "The evolution of predator-induced phenotypic plasticity in tadpoles /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18434.pdf.
Full textBooks on the topic "Phenotypic plasticity"
J, DeWitt Thomas, and Scheiner Samuel M. 1956-, eds. Phenotypic plasticity: Functional and conceptual approaches. New York: Oxford University Press, 2004.
Find full textvan, Gils Jan A., ed. The flexible phenotype: Towards a body-centred integration of ecology, physiology, and behaviour. Oxford: Oxford University Press, 2010.
Find full textDouglas, Whitman, and Ananthakrishnan T. N. 1925-, eds. Phenotypic plasticity of insects: Mechanisms and consequences. Enfield, N.H: Science Publishers, 2008.
Find full textTrainor, F. R. Biol ogical aspects of Scenedesmus (Chlorophyceae) - phenotypic plasticity. Berlin: J. Cramer, 1998.
Find full textKammenga, Jan Edward. Phenotypic plasticity and fitness consequences in nematodes exposed to toxicants. Wageningen: [s.n.], 1995.
Find full textReimer, Olof. Predator-induced phenotypic plasticity in the marine mussel Mytilus edulis. Stockholm: Univ., 1999.
Find full textRocky Mountain Research Station (Fort Collins, Colo.), ed. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings. Fort Collins, CO: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2010.
Find full textGluckman, Peter (Peter D.), 1949- author, ed. Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press, 2011.
Find full textKrishnaraj, Rangathilakam. Phenotypic plasticity of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae) and its implications for mass rearing. Ottawa: National Library of Canada, 2000.
Find full textD, Varfolomeyev S., and Zaikov Gennadiĭ Efremovich, eds. Molecular polymorphism of man: Structural and functional individual multiformity of biomacromolecules. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Phenotypic plasticity"
Frank, J. Howard, J. Howard Frank, Michael C. Thomas, Allan A. Yousten, F. William Howard, Robin M. Giblin-davis, John B. Heppner, et al. "Phenotypic Plasticity." In Encyclopedia of Entomology, 2842. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_2900.
Full textSnell-Rood, Emilie, and Meredith Steck. "Phenotypic Plasticity." In Encyclopedia of Personality and Individual Differences, 3911–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_1557.
Full textSnell-Rood, Emilie, and Meredith Steck. "Phenotypic Plasticity." In Encyclopedia of Personality and Individual Differences, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28099-8_1557-1.
Full textLuzete, J., I. F. Oliveira, L. A. Ferreira, and Julia Klaczko. "Phenotypic Plasticity." In Encyclopedia of Animal Cognition and Behavior, 5211–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_2118.
Full textLuzete, J., I. F. Oliveira, L. A. Ferreira, and J. Klaczko. "Phenotypic Plasticity." In Encyclopedia of Animal Cognition and Behavior, 1–4. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-47829-6_2118-1.
Full textHughes, Kimberly A., Mary H. Burleson, and F. Helen Rodd. "Is Phenotypic Plasticity Adaptive?" In The Biodemography of Human Reproduction and Fertility, 23–42. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1137-3_2.
Full textPatterson, P. H. "Phenotypic Plasticity and Neural Grafting." In Research and Perspectives in Neurosciences, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84842-1_4.
Full textGeng, Y., L. Gao, and J. Yang. "Epigenetic Flexibility Underlying Phenotypic Plasticity." In Progress in Botany, 153–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30967-0_5.
Full textPigliucci, Massimo. "Phenotypic Plasticity." In Evolutionary Ecology. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195131543.003.0009.
Full textWindig, Jack J., Carolien G. F. De Kovel, and Gerdien De Jong. "Genetics and Mechanics of Plasticity." In Phenotypic Plasticity, 31–49. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195138962.003.0003.
Full textConference papers on the topic "Phenotypic plasticity"
Tibbits, Matthew A. "THE MORPHOMETRICS OF PHENOTYPIC PLASTICITY." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312174.
Full textAshlock, Daniel, EunYoun Kim, and Amanda Saunders. "Prisoner’s Dilemma Agents with Phenotypic Plasticity." In 2019 IEEE Conference on Games (CoG). IEEE, 2019. http://dx.doi.org/10.1109/cig.2019.8848067.
Full textLalejini, Alexander, and Charles Ofria. "The Evolutionary Origins of Phenotypic Plasticity." In Proceedings of the Artificial Life Conference 2016. Cambridge, MA: MIT Press, 2016. http://dx.doi.org/10.1162/978-0-262-33936-0-ch063.
Full textLalejini, Alexander, and Charles Ofria. "The Evolutionary Origins of Phenotypic Plasticity." In Proceedings of the Artificial Life Conference 2016. Cambridge, MA: MIT Press, 2016. http://dx.doi.org/10.7551/978-0-262-33936-0-ch063.
Full textKebede, F. G., H. Komen, T. Dessie, O. Hanotte, S. Kemp, C. Pita Barros, R. Crooijmans, M. Derks, S. W. Alemu, and J. W. M. Bastiaansen. "421. Exploiting phenotypic plasticity in animal breeding." In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_421.
Full textAshlock, Daniel, Wendy Ashlock, and James Montgomery. "Implementing Phenotypic Plasticity with an Adaptive Generative Representation." In 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2019. http://dx.doi.org/10.1109/cibcb.2019.8791496.
Full textSauder, Candice Anne Marcum, Jillian E. Koziel, MiRan Choi, Melanie J. Fox, Sunil Badve, Rachel J. Blosser, Theresa Mathieson, et al. "Abstract 3322: Phenotypic plasticity in the normal breast." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3322.
Full textSauder, CAM, JE Koziel, M. Choi, MJ Fox, S. Badve, RJ Blosser, T. Mathieson, et al. "P5-05-02: Phenotypic Plasticity in the Normal Breast." In Abstracts: Thirty-Fourth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 6‐10, 2011; San Antonio, TX. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/0008-5472.sabcs11-p5-05-02.
Full textBapat, Sharmila A., Sagar Varankar, and Swapnil Kamble. "Abstract 2017: Phenotypic plasticity and class switching in ovarian cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2017.
Full textRichard, Gautier. "Epigenetic regulation of aphid phenotypic plasticity of the reproductive mode." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.89542.
Full textReports on the topic "Phenotypic plasticity"
Koehn, A. C., G. I. McDonald, D. L. Turner, and D. L. Adams. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2010. http://dx.doi.org/10.2737/rmrs-rp-79.
Full textMeiri, Noam, Michael D. Denbow, and Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Full textArmstrong, Andrew J. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada612312.
Full textArmstrong, Andrew. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada566209.
Full text