Academic literature on the topic 'Phenolic acids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phenolic acids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phenolic acids"
Zilic, Sladjana, Vesna Hadzi-Taskovic-Sukalovic, Dejan Dodig, Vuk Maksimovic, and Vesna Kandic. "Soluble free phenolic compound contents and antioxidant capacity of bread and durum wheat genotypes." Genetika 45, no. 1 (2013): 87–100. http://dx.doi.org/10.2298/gensr1301087z.
Full textRoowi, Suri, Z. Hussin, R. Othman, S. A. Muhammad, and Arif Zaidi Jusoh. "Phenolic Acids in Selected Tropical Citrus." Asian Journal of Plant Biology 1, no. 1 (December 26, 2013): 1–5. http://dx.doi.org/10.54987/ajpb.v1i1.13.
Full textYe, Lingxu, Sumei Zhou, Liya Liu, Lei Liu, Daniel L. E. Waters, Kui Zhong, Xianrong Zhou, Xiaojun Ma, and Xingxun Liu. "Phenolic Compounds and Antioxidant Capacity of Brown Rice in China." International Journal of Food Engineering 12, no. 6 (August 1, 2016): 537–46. http://dx.doi.org/10.1515/ijfe-2015-0346.
Full textRebiai, Abdelkrim, Bachir Ben Seghir, Hadia Hemmami, Soumeia Zeghoud, Mohamed Lakhder Belfar, and Imane Kouadri. "Determination of some phenolic acids in Algerian propolis." Ovidius University Annals of Chemistry 32, no. 2 (July 1, 2021): 120–24. http://dx.doi.org/10.2478/auoc-2021-0018.
Full textButsat, S., and S. Siriamornpun. "Phenolic Acids and Antioxidant Activities in Husk of Different Thai Rice Varieties." Food Science and Technology International 16, no. 4 (August 2010): 329–36. http://dx.doi.org/10.1177/1082013210366966.
Full textLiu, Yihan, Sanaa Ragaee, Massimo F. Marcone, and El-Sayed M. Abdel-Aal. "Composition of Phenolic Acids and Antioxidant Properties of Selected Pulses Cooked with Different Heating Conditions." Foods 9, no. 7 (July 10, 2020): 908. http://dx.doi.org/10.3390/foods9070908.
Full textTuyen, Phung Thi, Do Tan Khang, Pham Thi Thu Ha, Tran Ngoc Hai, Abdelnaser Abdelghany Elzaawely, and Tran Dang Xuan. "Antioxidant Capacity and Phenolic Contents of Three Quercus Species." International Letters of Natural Sciences 54 (May 2016): 85–99. http://dx.doi.org/10.18052/www.scipress.com/ilns.54.85.
Full textTuyen, Phung Thi, Do Tan Khang, Pham Thi Thu Ha, Tran Ngoc Hai, Abdelnaser Abdelghany Elzaawely, and Tran Dang Xuan. "Antioxidant Capacity and Phenolic Contents of Three <i>Quercus</i> Species." International Letters of Natural Sciences 54 (May 11, 2016): 85–99. http://dx.doi.org/10.56431/p-u66fhw.
Full textSuprun, Andrey R., Alexandra S. Dubrovina, Alexey P. Tyunin, and Konstantin V. Kiselev. "Profile of Stilbenes and Other Phenolics in Fanagoria White and Red Russian Wines." Metabolites 11, no. 4 (April 9, 2021): 231. http://dx.doi.org/10.3390/metabo11040231.
Full textSun, Wenli, and Mohamad Hesam Shahrajabian. "Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health." Molecules 28, no. 4 (February 15, 2023): 1845. http://dx.doi.org/10.3390/molecules28041845.
Full textDissertations / Theses on the topic "Phenolic acids"
Amombo, Noa Francoise Mystere. "Crystal engineering of selected phenolic acids." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/734.
Full textCrystal engineering based upon acid: base compounds have been studied in this thesis. Selected phenolic acids such as: vanillic acid (VA), phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (HPAA), 3-chloro-4-hydroxyphenylacetic acid (CHPAA), caffeic acid (CFA), p-coumaric acid (pCA), trans-ferulic acid (tFER), 2-phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were the main compounds investigated. These phenolic acids have formed co-crystals/co-crystal hydrates, salts/salt hydrates and hybrid salt-co-crystals with acridine (ACRI), caffeine (CAF), cinchonidine (CIND), isonicotinamide (INM), isonicotinic acid (INA), nicotinamide (NAM), quinidine (QUID), quinine (QUIN), theobromine (THBR), theophylline (THPH) and urea (U). The two racemic compounds 2-phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were used to study chiral discrimination leading to the understanding of separation enantiomers. Compounds were prepared in different solvents (alcohols, ketone and distilled water) to investigate the relationship between solvents used and the crystalline product obtained. (If there is any effect on the crystalline compound obtained by changing the solvent). The structures were elucidated using single crystal X-ray diffraction. Ground products of obtained compounds were characterized by powder X-ray diffraction (PXRD). Thermal analyses like thermogravimetry (TG), differential scanning calorimetry (DSC) and hot stage microscopy (HSM) were used for the determination of thermal character of the new compounds. IR was also performed to characterize the new compounds. Non-isothermal TG was utilised to obtain kinetic parameters for the water and the methanol release in (pCA−)(QUIN+)•pCA•MeOH•H2O. A selective experiment was done in which quinidine and quinine were used to compete between selected phenolic acids (PAA and HPAA). viii The comparison of the crystal structures determined showed that, changing the phenolic acid while using the same co-crystal former has a significant effect on the type of compounds obtained. The obtained crystal structures were either co-crystal/co-crystal hydrates, salts/salt hydrates or hybrid salt-co-crystals which formed network via means of supramolecular interactions.
Poquet, Laure. "Metabolism and effects of dietary phenolic acids." Thesis, University of Surrey, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504944.
Full textLal, Priya Kumari. "Maternal prenatal consumption of bioflavonoids and phenolic acids and risk of childhood brain cancer." Columbus, Ohio : Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1080569687.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvii, 274 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: J. Schwartzbaum, School of Public Health. Includes bibliographical references (p. 171-203).
Yeung, Shing Joseph. "Role of mycophenolic acid in kidney transplantation." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31981860.
Full textSorour, Noha. "Lipase-catalyzed synthesis of phenolic lipids in solvent-free medium using selected edible oils and phenolic acids." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97003.
Full textLa biosynthèse des lipides phénoliques sans solvent, par la transésterification de l'huile de graines de lin (HGL) et l'huile de foie de poisson (HFP) en utilisant comme substrats les acides phénoliques, a été étudiée en utilisant la lipase Candida antarctica comme biocatalyseur. L'optimisation de la biosynthèse des lipides phénoliques à partir de l'HGL a été investiguée en considérant l'activité thermodynamique de l'eau, la vitesse d'agitation, la concentration de l'enzyme et l'acide phénolique. Le rendement de la bioconversion a augmenté de 62 à 77% lorsque l'activité thermodynamique de l'eau du mélange réactionnel de l'HGL a augmenté de 0.18 à 0.38. L'activité enzymatique maximale (178 nmol de PLs/g solide enzyme/min) a été obtenue lors de l'utilisation de 40 mg d'enzyme solide (400 PLU/mL de volume réactionnel) à 150 rpm. En utilisant les conditions réactionnelles optimales, la proportion de l'acide linolénique (C18:3 n-3) a augmenté significativement de 57% dans l'HGL à 75 et 64% dans les produit mono- et diacylglycerols phénoliques, respectivement. La production volumétrique (Pv) de la transésterification de l'HGL et de l'acide dihydroxyphényl acétique (ADHP) en milieu non organique a été 11 fois supérieure à celle obtenue dans le milieu organique. Par ailleurs, le rendement de la bioconversion de 61% a été obtenu lors de la transésterification de l'HFP et de l'acide dihydrocafféique (ADHC). L'optimisation de la synthèse enzymatique des lipides phénoliques a été étudiée en utilisant la méthodologie des surfaces de réponse (MSR), basée sur le factorielle quatre à cinq niveaux sur un plan composite centrale rotatif. Les conditions optimales de la réaction enzymatique ont été déterminées comme suit: 50.0ºC, 20.9 mM d'acide phénolique, 51.2 mg d'enzyme solide (512 PLU)/mL, vitesse de l'agitation 160 rpm, 0.5 de l'activité thermodynamique de l'eau et 3.45 mg de gel Silicate/mL. Le rendement de bioconversion maximum obtenu expérimentalement de 86.5% est très proche de la valeur prédite de 84.5%. Ceci démontre une bonne validation du model. Les résultats, en général, démontrent que la MSR peut être appliquée effectivement pour l'optimisation de la biosynthèse des phénols lipidiques en l'absence de solvant à partir de l'HFP et l'ADHC en utilisant la lipase comme biocatalyseur. Dans les conditions optimales, il y a eu une augmentation significative des proportions relatives des deux acides gras essentiels désirés. L'EPA (C20:5 n-3) dans l'HFP modifié a augmenté de 11.5% à 21.2, 20.7, 20.8, 20.1 et 19.8% dans les lipides dihydrocaffeoylates, 3,4-dihydroxyphenyl acetoylates, caffeoylates, feruloylates et sinapoylates, respectivement, alors que (DHA, C22:6 n-3) a augmenté de 12.0% à 21.4, 19.4, 27.5, 22.1 et 22.0%, respectivement. Les analyses de l'ionisation chimique à pression atmosphérique-spectroscopie de masse (APCI-MS) confirment la formation de six 3,4-dihydroxyphényl acetoylates et de six lipides dihydrocaffeoylates, à partir de la transésterification de l'HGL et de l'HFP avec l'ADHP et l'ADHC, respectivement. Les lipides phenoliques synthetisés ont demontré un pouvoir radicalaire, exprimé par le IC50, de 1.6 à 3.7-fois supérieure à celui des acides phénoliques correspondants, mais il était comparable à celui de α-tocophérol.
Al-Hadhrami, Mohamed N. (Mohamed Nasser). "Degradation of Phenolic Acids by Azotobacter Species Isolated from Sorghum Fields." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc501189/.
Full textPatel, Chirag G. "The pharmacokinetics and pharmacodynamics of mycophenolic acid in kidney transplant recipients /." View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239911.
Full textMothapo, Mmaphefo Patricia. "Comparative evaluation of three fundamentally different analytical methods antioxidant activity determination with reference to bush tea (anthrixia phylicoides." Thesis, University of Limpopo, 2016. http://hdl.handle.net/10386/1517.
Full textIn this study, antioxidant activity methodologies were evaluated in terms of analytical performances. The total antioxidant activity from Athrixia phylicoides leaves (Bush tea) determined using 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH•) method, cupric ion reducing power (CUPRAC) method and cyclic voltammetry (CV). Folin-Ciocalteu method was used to quantify total phenolic content (TPC) in Athrixia phylicoides leaves. The influence of chemical and physical parameters on the total phenolic content and antioxidant activity determination were investigated. Results from direct sample and crude sample were compared. Antioxidant activity and phenolic content from Athrixia phylicoides leaves were compared with those from commercialised green tea, black tea and rooibos tea using two chosen antioxidant capacity method with acceptable characteristics. Results from the evaluation of the methods demonstrated excellent recoveries (99 to 103%) consistently, good linearity within the calibration concentration range (R2 = 0.997) and repeatable low coefficient of variation < 5% were indicative of good precision except for CV method. The average total antioxidant activity of various extracts of Athrixia phylicoides leaves ranged from 0.039 to 0.122 mg/mL (EC50), 0.031 to 0.233 mg/mL (EC50) and 339 to 429 mV (anodic potential) for DPPH method, CUPRAC method and CV method, respectively. The total antioxidant activity values for each Athrixia phylicoides samples determined by CUPRAC method were higher than the values produced by DPPH and CV methods. The highest antioxidant activities in the DPPH and CUPRAC methods were found in water extracts (direct sample). However, concentrated samples for DPPH method and CV gave a different trend with the methanol extract (crude sample) displaying the highest antioxidant capacity. Increasing the infusion time only increased total antioxidant activity determined by CUPRAC method, whilst DPPH and CV methods had the highest antioxidant activity in the lowest infusion time (3 min). Even though the results are inconclusive with regard to the effect of solid to solvent ratio effect on the total antioxidant activity, 1:150 ratio and 1:100 ratio extracts for both CUPRAC and DPPH methods and for CV gave the highest antioxidant capacities, respectively. The total antioxidant activities in pure antioxidant standards and in the teas were ranked in the following order by both CUPRAC and DPPH methods: Quercetin > catechin > Trolox and Chinese green tea > Joko black tea > Athrixia phylicoides leaves > Laager rooibos tea, respectively. Comparative study showed the necessity of employing more than one method, as each method for the same sample yielded different results. CUPRAC and DPPH methods displayed higher sensitivity and repeatability as compared to the CV method with poor precision.
Khoddami, Ali. "Phenolic Compounds in Grains of Australian-Grown Sorghums: Quantitative Analyses including Impacts of Malting and Effects on Broiler Nutrition." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14985.
Full textYeung, Shing Joseph, and 楊誠. "Role of mycophenolic acid in kidney transplantation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31981860.
Full textBooks on the topic "Phenolic acids"
Hänninen, Kari. Phenolic acids in humus chemistry. Helsinki: Suomalainen Tiedeakatemia, 1987.
Find full textKuiters, Aloysius Theodorus. Phenolic acids and plant growth in forest ecosystems. Amsterdam: Free Univ. Pr., 1987.
Find full textMrozik, Agnieszka. Zmiany w składzie bakteryjnych kwasów tłuszczowych w czasie rozkładu fenolu w glebie. Katowice: Wydawn. Uniwersytetu Śląskiego, 2000.
Find full textBlum, Udo. Plant-Plant Allelopathic Interactions: Phenolic Acids, Cover Crops and Weed Emergence. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textShahrzad, Siranoush. Bestimmung bioaktiver Phenolcarbonsäuren in Säften und Weinen und Ermittlung der Metabolisierung und Biokinetik von Gallussäure beim Menschen. Marburg: Tectum Verlag, 1998.
Find full textSalomonsson, Ann-Christine. Studies on carbohydrates and phenolic acids in grains of normal and high-lysine barley genotypes. Upssala: Swedish University of Agricultural Sciences, Dept. of Chemistry and Molecular Biology, 1985.
Find full textJ. J. A. van Loon. Sensory and nutritional effects of amino acids and phenolic plant compounds on the caterpillars of two Pieris species. Wageningen: Landbouwuniversiteit te Wageningen, 1988.
Find full textCaldwell, Charles R. Effect of divalent cations on the phenolic acids and flavonol glycosides of lettuce (Lactuca Sativa L.) leaf tissues. Beltsville, Md: USDA ARS BA, 2001.
Find full textA, Muscolo, and Sidari M, eds. Soil phenols. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textMuscolo, A. Soil phenols. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Phenolic acids"
Goleniowski, Marta, Mercedes Bonfill, Rosa Cusido, and Javier Palazón. "Phenolic Acids." In Natural Products, 1951–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_64.
Full textKostić, Aleksandar Ž., Yusuf Can Gercek, and Nesrin Ecem Bayram. "Phenolic Acids in Pollen." In Pollen Chemistry & Biotechnology, 103–25. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-47563-4_6.
Full textLiberal, Ângela, Rossana V. C. Cardoso, Sandrina A. Heleno, Ângela Fernandes, Lillian Barros, and Anabela Martins. "Phenolic Acids from Fungi." In Natural Secondary Metabolites, 475–95. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18587-8_14.
Full textXu, Zhimin. "Analysis Methods of Phenolic Acids." In Analysis of Antioxidant-Rich Phytochemicals, 69–104. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229378.ch3.
Full textCohen, G. B. "The Analysis of Coffee Phenols and Phenolic Acids." In ACS Symposium Series, 356–63. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0754.ch036.
Full textMandal, Santi M., and Dipjyoti Chakraborty. "Mass Spectrometric Detection of Phenolic Acids." In Natural Products, 2047–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_90.
Full textYen, Gow-Chin, and Chi-Tai Yeh. "Modulation of Human Phenol Sulfotransferases Expression by Dietary Phenolic Acids." In ACS Symposium Series, 62–80. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0993.ch007.
Full textKhatri, Sana, Additiya Paramanya, and Ahmad Ali. "Phenolic Acids and Their Health-Promoting Activity." In Plant and Human Health, Volume 2, 661–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03344-6_27.
Full textGerothanassis, Ioannis P., Vassiliki Exarchou, Anastasios Troganis, Maria Tsimidou, and Dimitrios Boskou. "NMR methodology for the analysis of phenolic acids in complex phenolic mixtures." In Spectroscopy of Biological Molecules: New Directions, 585–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_262.
Full textMiyanaga, Akimasa, and Yasuo Ohnishi. "Phenolic Lipids Synthesized by Type III Polyketide Synthases." In Biogenesis of Fatty Acids, Lipids and Membranes, 1–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43676-0_14-1.
Full textConference papers on the topic "Phenolic acids"
Saldana, Marleny D. "Effect of pressurized fluids on the extraction of phenolics/anthocyanins from crops and by-products." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/pnme7357.
Full textŠaćirović, Sabina, Andrija Ćirić, Mališa Antić, and Zoran Marković. "HPLC ANALYSIS OF PHENOLS OF SLOVENIAN RED WINES: CABERNET SAUVIGNON AND MERLOT." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.165s.
Full textMilenković, Katarina, Jelena Mrmošanin, Stefan Petrović, Bojan Zlatković, Snežana Tošić, Milan Mitić, and Aleksandra Pavlović. "INFLUENCE OF EXTRACTION SOLVENTS ON THE PHENOLIC PROFILE OF ROSA DUMALIS BECHST. FRUIT SAMPLES." In 2nd International Symposium on Biotechnology. Faculty of Agronomy in Čačak, University of Kragujevac, 2024. http://dx.doi.org/10.46793/sbt29.72km.
Full textMello-Júnior, Ronaldo Elias, João Renato De Jesus Junqueira, Jefferson Luiz Gomes Corrêa, Kamilla Soares de Mendonça, and Lucas Barreto de Carvalho. "Osmotic dehydration of eggplant, carrot and beetroot slices: Effect of vacuum on phenolic acid composition." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7787.
Full textBICHOT, Aurélie, Jean Philippe DELGENES, Marilena RADOIU, and Diana GARCIA BERNET. "MICROWAVE PRETREATMENT OF LIGNOCELLULOSIC BIOMASS TO RELEASE MAXIMUM PHENOLIC ACIDS." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9629.
Full textOhindovschi, Angelica, and Maria Cojocaru-Toma. "Identification of phenolic compounds from extract of Galium verum." In Scientific seminar with international participation "New frontiers in natural product chemistry". Institute of Chemistry, Republic of Moldova, 2023. http://dx.doi.org/10.19261/nfnpc.2023.ab21.
Full textLi, Cunyu, Yun Ma, Hongyang Li, and Guoping Peng. "Concentrating phenolic acids from Lonicera japonica by nanofiltration technology." In 11TH ASIAN CONFERENCE ON CHEMICAL SENSORS: (ACCS2015). Author(s), 2017. http://dx.doi.org/10.1063/1.4977259.
Full textAmić, Ana, and Valentina Bumba. "Antioxidant potential of selected phenolic acids – a theoretical approach." In 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11510.
Full textGuardado Yordi, Estela, Maria João Matos, Roxana Castro Pupo, Lourdes Santana, Eugenio Uriarte, and Enrique Molina Pérez. "QSAR Study of the Potential Clastogenic Activity of Phenolic Acids." In The 16th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/ecsoc-16-01035.
Full textKłosok, Konrad, Renata Welc, Monika Szymańska-Chargot, Zbigniew Niewiadomski, and Agnieszka Nawrocka. "Changes within gluten network after supplementation with selected phenolic acids." In 1st International PhD Student’s Conference at the University of Life Sciences in Lublin, Poland: ENVIRONMENT – PLANT – ANIMAL – PRODUCT. Publishing House of The University of Life Sciences in Lublin, 2022. http://dx.doi.org/10.24326/icdsupl1.t014.
Full textReports on the topic "Phenolic acids"
Naim, Michael, Steven Nagy, Uri Zehavi, and Russell Rouseff. Bound and Free Phenolic Acids as Precursors to Objectional Aroma in Citrus Products. United States Department of Agriculture, December 1992. http://dx.doi.org/10.32747/1992.7603824.bard.
Full textOzkan, Gursel. Phenolic Compounds, Organic Acids, Vitamin C and Antioxidant Capacity in Prunus spinosa L. Fruits. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.17.
Full textKanner, Joseph, Edwin Frankel, Stella Harel, and Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Full textKoziel, Jacek, Yael Laor, Jeffrey Zimmerman, Robert Armon, Steven Hoff, and Uzi Ravid. Simultaneous Treatment of Odorants and Pathogens Emitted from Confined Animal Feeding Operations (CAFOs) by Advanced Oxidation Technologies. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7592646.bard.
Full textNicholson, Ralph, Reuven Reuveni, and Moshe Shimoni. Biochemical Markers for Disease Resistance in Corn. United States Department of Agriculture, May 1996. http://dx.doi.org/10.32747/1996.7613037.bard.
Full textCarpita, Nicholas C., Ruth Ben-Arie, and Amnon Lers. Pectin Cross-Linking Dynamics and Wall Softening during Fruit Ripening. United States Department of Agriculture, July 2002. http://dx.doi.org/10.32747/2002.7585197.bard.
Full textBostock, Richard M., Dov Prusky, and Martin Dickman. Redox Climate in Quiescence and Pathogenicity of Postharvest Fungal Pathogens. United States Department of Agriculture, May 2003. http://dx.doi.org/10.32747/2003.7586466.bard.
Full text