Academic literature on the topic 'Phases cristallines du cuivre'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phases cristallines du cuivre.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phases cristallines du cuivre"
Abied, H., D. Guillon, A. Skoulios, H. Dexpert, A. M. Giroud-Godquin, and J. C. Marchon. "Etude par spectroscopie EXAFS au seuil K du cuivre des phases cristalline et colomnaire du stéarate de cuivre." Journal de Physique 49, no. 2 (1988): 345–52. http://dx.doi.org/10.1051/jphys:01988004902034500.
Full textGaultier, J. P. "Etude de la repartition des cations interfoliaires dans les phlogopites alterees-(Na, Ca) et (Na, K)." Clay Minerals 20, no. 1 (March 1985): 1–14. http://dx.doi.org/10.1180/claymin.1985.020.1.01.
Full textLévy, F., and H. Berger. "Phases à structures cristallines de basse dimensionnalité : synthèse des cristaux NbTe4 et TaTe4." Journal de Chimie Physique 88 (1991): 1985–91. http://dx.doi.org/10.1051/jcp/1991881985.
Full textFaye, Bernard, and Mohammed Bengoumi. "Données nouvelles sur le métabolisme des principaux éléments-traces chez le dromadaire." Revue d’élevage et de médecine vétérinaire des pays tropicaux 50, no. 1 (January 1, 1997): 47–53. http://dx.doi.org/10.19182/remvt.9601.
Full textGhoumari-Boûanani, H., G. Brun, B. Liautard, and J. C. Tedenac. "Equilibres de phases dans le systeme tellurure de cuivre, tellurure de bismuth." Materials Research Bulletin 28, no. 9 (September 1993): 901–8. http://dx.doi.org/10.1016/0025-5408(93)90036-d.
Full textNodari, I., B. Malaman, and O. Evrard. "Structures cristallines des phases M2Ga2Fe2O9 (M = In,Sc) nouveaux exemples de coordinence 5 du fer." Materials Research Bulletin 20, no. 6 (June 1985): 687–95. http://dx.doi.org/10.1016/0025-5408(85)90147-3.
Full textPiponnier, D., F. Bechtel, D. Florin, J. Molera, Max Schvoerer, and M. Vendrell. "Apport de la Cathodoluminescence à l'Etude des Transformations de Phases Cristallines dans des Céramiques Kaolinitiques Carbonatées." Key Engineering Materials 132-136 (April 1997): 1470–73. http://dx.doi.org/10.4028/www.scientific.net/kem.132-136.1470.
Full textKamoun, M., A. Lautié, F. Romain, and A. Novak. "Etude par Spectrométrie Infrarouge et Raman des Phases Cristallines Basses Temperatures de (NH4)3H(SO4)2." Journal of Raman Spectroscopy 19, no. 5 (August 1988): 329–35. http://dx.doi.org/10.1002/jrs.1250190506.
Full textDubourg, L., F. Hlawka, and A. Cornet. "Contraintes résiduelles et phases durcissantes dans les alliages superficiels aluminium – cuivre obtenus par alliation sous faisceau laser." Le Journal de Physique IV 10, PR10 (September 2000): Pr10–137—Pr10–144. http://dx.doi.org/10.1051/jp4:20001015.
Full textDOURMAD, J. Y., J. Y. DOURMAD, C. RIGOLOT, and C. JONDREVILLE. "Influence de la nutrition sur l’excrétion d’azote, de phosphore, de cuivre et de zinc des porcs, et sur les émissions d’ammoniac, de gaz à effet de serre et d’odeurs." INRAE Productions Animales 22, no. 1 (February 14, 2009): 41–48. http://dx.doi.org/10.20870/productions-animales.2009.22.1.3332.
Full textDissertations / Theses on the topic "Phases cristallines du cuivre"
Abied, Hamid. "Etudes structurales des phases cristalline et colomnaire de cuivre." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13065.
Full textGarcia, Jean-Claude. "Equilibres de phases dans le système Cu-Bi-Se : modélisation des dépôts en phase vapeur des chalcogénures de bismuth." Montpellier 2, 1991. http://www.theses.fr/1991MON20223.
Full textPetit, Samuel. "Structures de complexes dans le système (cuivre (II)-oxine-sulfoxine-eau), étude expérimentale et modélisation moléculaire de la cristallisation et de transitions de phases." Rouen, 1994. http://www.theses.fr/1994ROUES025.
Full textDrbohlav, Otakar. "Matériaux magnétiques nanocristallins métastables à base de fer et de cuivre." Grenoble INPG, 1995. http://www.theses.fr/1995INPG0132.
Full textRiviere, Lucie. "Methyl chloride cracking and formation of coke during the methylchlorosilanes synthesis." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10189.
Full textDuring the Müller-Rochow synthesis, Si and CH3Cl reacts to form methylchlorosilanes (MCS) in presence of a copper precursor, Zn and Sn promoters. CH3Cl can suffer from cracking reactions which results in the formation of carbonaceous compounds (coke) that disturbs the operation of industrial reactors, leading to a production loss. The purpose of this thesis was to study the CH3Cl cracking and the formation of coke during the activation step of the MCS synthesis and to find industrial solutions to prevent coke formation. Copper chloride which is generally used as precursor can either form Cu3Si, active for the MCS synthesis or be reduced into Cu(0) that was found to be inactive for the MCS synthesis but active for the CH3Cl cracking. In this work, this side reaction is correlated with Cu(0) formation which occurs from the beginning of the MCS synthesis and is enhanced by Zn and Sn promoters. However, Cu(0) formation kinetic was shown to be faster than Cu3Si even in the absence of promoters. Therefore, it is impossible to avoid Cu(0) formation which could contribute to CH3Cl cracking. An approach to reduce coke formation was to lower the acidity by adding alkali metals: KCl and CsCl. This provided favorable outcomes: it was possible to lower the coke production rate due to the reduction of the amount of Cu(0) crystalline phase formation. Some explanations were proposed
Achrayah, Ridouan. "Stabilité thermodynamique des phases cristallines et quasi-cristallines bi-dimensionnelles de suspensions colloïdales mono-disperses." Doctoral thesis, Universite Libre de Bruxelles, 1999. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211927.
Full textDupont, Nathalie. "Synthèse, études structurales et magnétiques de quelques fluorures complexes de cuivre (II)." Paris 6, 1999. http://www.theses.fr/1999PA066172.
Full textLiu, Meishuai. "Study on microstructural and crystallogarphic characteristics of phase transformation induced by ECP in annealed Cu-40%Zn alloy." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0210.
Full textA thorough investigation has been conducted on the microstructural and crystallographic features of Electric Current Pulse (ECP) treated Cu-40%Zn alloys. The phase transformation orientation relationship (OR) and its correlation with crystal defects have been studied and the formation mechanisms of ECP induced crystal defects in the parent phase and the sub-structures in the β precipitates were also analyzed. The α to β heating phase transformation can be induced by ECP treatment with the formation of fine β precipitates that can be remained to the room temperature. With the increase of the electric current density, the amount of precipitates is increased and the formation sites increase from α grain boundaries to grain interiors. The β precipitates follow different ORs depending on the formation site. The grain boundary β phase obeys the Kurdjumov-Sachs (K-S) OR; whereas the intragranular β respects the Nishiyama-Wasserman (N-W) OR. In the former sites, the {111}α /<11̅0>α dislocations are observed, whereas in the latter, the {111}α/<112̅>α stacking faults are found. Transformation strain analyses revealed that under the K-S OR the maximum lattice deformation required is a shear on the {111}α /<11̅0>α slip system, whereas under the N-W OR the maximum deformation is a shear on the {111}α /<112̅>α system. Thus the existing {111}α /<11̅0>α dislocations along the α grain boundaries provide pre-strain required by the transformation via the K-S path, whereas the {111}α /<112̅>α stacking faultsboarded by {111}α /<112̅>α partial dislocations offer pre-strain facilitating the transformation via the N-W path. Different types of crystal defects are formed in the α matrix by the ECP treatments depending on the current density. At low density, large amount of {111}α /<112̅>α stacking faults and then nano twins are produced in the α matrix. At high density, dislocation nets are formed near the β precipitates that are composed of edge typed {111}α /< 11̅0 >α perfect dislocations and the Frank typed dislocations. The volume misfit between the α and the β phase analyzed with transformation deformation reveals that the transformation from α to β requires an expansion along [11̅0]α direction and a contraction along [111]α direction. The former results in the appearance of the {111}α /<11̅0>α edge typed dislocation arrays in front of the {31̅1}α broad faces and the latter induces the formation of the Frank typed dislocations in front of the {121}α broad faces. Thus, dislocation nets formed along the edges of the broad faces of the β precipitates where the two kinds of dislocations meet. Furthermore, the β precipitates contain two kinds of nano-sized and diffuse atomic clusters with the structure obeying the Burgers OR and with the ω structure obeying the Blackburn OR with the β matrix. They were each formed through a two-stepped atomic displacement. For the structure, the first step is the atomic shuffle of each second {110}β plane in the <11̅0>βdirection and the second is a structure change mainly by a shear on the {11̅2}β /<1̅11>β. For the ω structure, the first is an atomic shuffle on each second and third {112̅}β plane in the ±[111]β directions and then normal strains in three mutually perpendicular directions (<111>β, <112̅>β and <11̅0>β). The concomitant appearance of the two structures lies in the fact that the volume increase accompanying the formation can be canceled by the volume decrease accompanying the ω distortion, which minimizing the transformation strain energy. The results of this work provide fundamental information on the Cu-40%Zn alloys for interpreting the impact of the crystal defects on the solid phase transformation ORs, on the formation of various types of crystal defects induced by the ultra-rapid phase transformation and on the formation mechanisms of sub structures in the product phase
BAILLEUL, STEPHANE. "Simulation des proprietes optiques et magnetooptiques du cuivre divalent dans differentes matrices cristallines." Paris 11, 1990. http://www.theses.fr/1990PA112062.
Full textFoulon, Michel. "Les phases cristallines des adamantanes 1-substitués (plastiques, ordonnées, vitreuses) : thermodynamique, structures, mouvements moléculaires." Lille 1, 1987. http://www.theses.fr/1987LIL10216.
Full textBooks on the topic "Phases cristallines du cuivre"
Mehdaoui, Ahmed. Etude de la structure locale des phases amorphes et cristallines du système Ni-B. Grenoble: A.N.R.T. Université Pierre Mendès France Grenoble 2, 1986.
Find full textBook chapters on the topic "Phases cristallines du cuivre"
CAURANT, Daniel, Gilles WALLEZ, Odile MAJÉRUS, Gauthier ROISINE, and Thibault CHARPENTIER. "Structure et propriétés des verres de silicates de plomb." In Le plomb dans les matériaux vitreux du patrimoine, 45–99. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9076.ch3.
Full text"Principales phases cristallines aborde´es dans cet ouvrage." In Du verre au cristal, xxxi—xxxii. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1064-2-006.
Full text"Principales phases cristallines aborde´es dans cet ouvrage." In Du verre au cristal, xxxi—xxxii. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1064-2.c006.
Full text"5. Approche cristallochimique des principales phases cristallines observées dans les vitrocéramiques." In Du verre au cristal, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1064-2-011.
Full text"5. Approche cristallochimique des principales phases cristallines observées dans les vitrocéramiques." In Du verre au cristal, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1064-2.c011.
Full text