To see the other types of publications on this topic, follow the link: Phase function.

Journal articles on the topic 'Phase function'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Phase function.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lieth, J. H., P. R. Fisher, and R. D. Heins. "A Three-phase Model for the Analysis of Sigmoid Patterns of Growth." HortScience 30, no. 4 (July 1995): 761C—761. http://dx.doi.org/10.21273/hortsci.30.4.761c.

Full text
Abstract:
A growth function was developed for describing the progression of shoot elongation over time. While existing functions, such as the logistic function or Richards function, can be fitted to most sigmoid data, we observed situations where distinct lag, linear, and saturation phases were observed but not well represented by these traditional functions. A function was developed that explicitly models three phases of growth as a curvilinear (exponential) phase, followed by a linear phase, and terminating in a saturation phase. This function was found to be as flexible as the Richards function and can be used for virtually any sigmoid data. The model behavior was an improvement over the Richards function in cases where distinct transitions between the three growth phases are evident. The model also lends itself well to simulation of growth using the differential equation approximation for the function.
APA, Harvard, Vancouver, ISO, and other styles
2

Pannu, Navraj S., Garib N. Murshudov, Eleanor J. Dodson, and Randy J. Read. "Incorporation of Prior Phase Information Strengthens Maximum-Likelihood Structure Refinement." Acta Crystallographica Section D Biological Crystallography 54, no. 6 (November 1, 1998): 1285–94. http://dx.doi.org/10.1107/s0907444998004119.

Full text
Abstract:
The application of a maximum-likelihood analysis to the problem of structure refinement has led to striking improvements over the traditional least-squares methods. Since the method of maximum likelihood allows for a rational incorporation of other sources of information, we have derived a likelihood function that incorporates experimentally determined phase information. In a number of different test cases, this target function performs better than either a least-squares target or a maximum-likelihood function lacking prior phases. Furthermore, this target gives significantly better results compared with other functions incorporating phase information. When combined with a procedure to mask `unexplained' density, the phased likelihood target also makes it possible to refine very incomplete models.
APA, Harvard, Vancouver, ISO, and other styles
3

Ilchmann, Achim, and Fabian Wirth. "On Minimum Phase." at – Automatisierungstechnik 61, no. 12 (December 1, 2013): 805–17. http://dx.doi.org/10.1524/auto.2013.1002.

Full text
Abstract:
Abstract We discuss the concept of `minimum phase' for scalar semi Hurwitz transfer functions. The latter are rational functions where the denominator polynomial has its roots in the closed left half complex plane. In the present note, minimum phase is defined in terms of the derivative of the argument function of the transfer function. The main tool to characterize minimum phase is the Hurwitz reflection. The factorization of a weakly stable transfer function into an all-pass and a minimum phase system leads to the result that any semi Hurwitz transfer function is minimum phase if, and only if, its numerator polynomial is semi Hurwitz. To characterize the zero dynamics, we use the Byrnes-Isidori form in the time domain and the internal loop form in the frequency domain. The uniqueness of both forms is shown. This is used to show in particular that asymptotic stable zero dynamics of a minimal realization of a transfer function yields minimum phase, but not vice versa.
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Huan, and Yongqiang Wang. "On Phase Response Function Based Decentralized Phase Desynchronization." IEEE Transactions on Signal Processing 65, no. 21 (November 1, 2017): 5564–77. http://dx.doi.org/10.1109/tsp.2017.2733452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moya-Cessa, H. ctor. "A number–phase Wigner function." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 3 (June 1, 2003): S339—S341. http://dx.doi.org/10.1088/1464-4266/5/3/367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nicodemi, Mario, and Simona Bianco. "Chromosomes Phase Transition to Function." Biophysical Journal 119, no. 4 (August 2020): 724–25. http://dx.doi.org/10.1016/j.bpj.2020.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goyal, Manish, S. K. Dwivedi, and Ajit Singh Rajput. "Effects of different phases of menstrual cycle on lung functions in young girls of 18-24 years age." International Journal of Research in Medical Sciences 5, no. 2 (January 23, 2017): 612. http://dx.doi.org/10.18203/2320-6012.ijrms20170161.

Full text
Abstract:
Background: The dynamic cyclical changes in the levels of various hormones during different phases of menstrual cycle are known to affect functioning of different systems of the body, including the respiratory system. Objective of the study was to study the effects of different phases of menstrual cycle on lung functions in young girls of 18-24 years age.Methods: 78 girls who were medical students of G.R. Medical College, Gwalior, India were chosen for the study. Their lung function parameters were recorded on Spiro Excel, a computerized spirometer. Four lung function parameters i.e. FVC, FEV1, FEV1/FVC% and PEFR were recorded in the different phases of menstrual cycle i.e. menstrual phase, proliferative phase and secretory phase.Results: All lung function parameters except FEV1/FVC% were least in menstrual phase and highest in secretory phase with in between values in proliferative phase. The values were significantly different among the three phases. FEV1/FVC% values were maximum in menstrual phase, lowest in secretory phase with intermediate values in proliferative phase but the values were not significantly different among the three phases. Mean values of FVC, FEV1 and PEFR were higher in all the phases of menstrual cycle in normal BMI subjects as compared to the corresponding phases of underweight subjects.Conclusions: Higher values of lung functions during proliferative and secretory phases can be attributed to the higher concentrations of sex hormones specially progesterone because in most of the studies progesterone is known to cause relaxation of bronchial smooth muscle.
APA, Harvard, Vancouver, ISO, and other styles
8

Crosbie, A. L., and G. W. Davidson. "Dirac-delta function approximations to the scattering phase function." Journal of Quantitative Spectroscopy and Radiative Transfer 33, no. 4 (April 1985): 391–409. http://dx.doi.org/10.1016/0022-4073(85)90200-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Logan, David, Yuri P. Ivanenko, Tim Kiemel, Germana Cappellini, Francesca Sylos-Labini, Francesco Lacquaniti, and John J. Jeka. "Function dictates the phase dependence of vision during human locomotion." Journal of Neurophysiology 112, no. 1 (July 1, 2014): 165–80. http://dx.doi.org/10.1152/jn.01062.2012.

Full text
Abstract:
In human and animal locomotion, sensory input is thought to be processed in a phase-dependent manner. Here we use full-field transient visual scene motion toward or away from subjects walking on a treadmill. Perturbations were presented at three phases of walking to test 1) whether phase dependence is observed for visual input and 2) whether the nature of phase dependence differs across body segments. Results demonstrated that trunk responses to approaching perturbations were only weakly phase dependent and instead depended primarily on the delay from the perturbation. Recording of kinematic and muscle responses from both right and left lower limb allowed the analysis of six distinct phases of perturbation effects. In contrast to the trunk, leg responses were strongly phase dependent. Leg responses during the same gait cycle as the perturbation exhibited gating, occurring only when perturbations were applied in midstance. In contrast, during the postperturbation gait cycle, leg responses occurred at similar response phases of the gait cycle over a range of perturbation phases. These distinct responses reflect modulation of trunk orientation for upright equilibrium and modulation of leg segments for both hazard accommodation/avoidance and positional maintenance on the treadmill. Overall, these results support the idea that the phase dependence of responses to visual scene motion is determined by different functional tasks during walking.
APA, Harvard, Vancouver, ISO, and other styles
10

Baes, Maarten, Peter Camps, and Anand Utsav Kapoor. "A new analytical scattering phase function for interstellar dust." Astronomy & Astrophysics 659 (March 2022): A149. http://dx.doi.org/10.1051/0004-6361/202142437.

Full text
Abstract:
Context. Properly modelling scattering by interstellar dust grains requires a good characterisation of the scattering phase function. The Henyey-Greenstein phase function has become the standard for describing anisotropic scattering by dust grains, but it is a poor representation of the real scattering phase function outside the optical range. Aims. We investigate alternatives for the Henyey-Greenstein phase function that would allow the scattering properties of dust grains to be described. Our goal is to find a balance between realism and complexity: the scattering phase function should be flexible enough to provide an accurate fit to the scattering properties of dust grains over a wide wavelength range, and it should be simple enough to be easy to handle, especially in the context of radiative transfer calculations. Methods. We fit various analytical phase functions to the scattering phase function corresponding to the BARE-GR-S model, one of the most popular and commonly adopted models for interstellar dust. We weigh the accuracy of the fit against the number of free parameters in the analytical phase functions. Results. We confirm that the Henyey-Greenstein phase functions poorly describe scattering by dust grains, particularly at ultraviolet (UV) wavelengths, with relative differences of up to 50%. The Draine phase function alleviates this problem at near-infrared (NIR) wavelengths, but not in the UV. The two-term Reynolds-McCormick phase function, recently advocated in the context of light scattering in nanoscale materials and aquatic media, describes the BARE-GR-S data very well, but its five free parameters are degenerate. We propose a simpler phase function, the two-term ultraspherical-2 (TTU2) phase function, that also provides an excellent fit to the BARE-GR-S phase function over the entire UV-NIR wavelength range. This new phase function is characterised by three free parameters with a simple physical interpretation. We demonstrate that the TTU2 phase function is easily integrated in both the spherical harmonics and the Monte Carlo radiative transfer approaches, without a significant overhead or increased complexity. Conclusions. The new TTU2 phase function provides an ideal balance between being simple enough to be easily adopted and realistic enough to accurately describe scattering by dust grains. We advocate its application in astrophysical applications, in particular in dust radiative transfer calculations.
APA, Harvard, Vancouver, ISO, and other styles
11

Bunge, H. J., and H. Weiland. "Orientation Correlation in Grain and Phase Boundaries." Textures and Microstructures 7, no. 4 (January 1, 1988): 231–63. http://dx.doi.org/10.1155/tsm.7.231.

Full text
Abstract:
The properties of grain and phase boundaries depend on five angular coordinates, i.e. three parameters specifying the orientation difference across the boundary and two parameters specifying the orientation of the boundary normal direction in space or with respect to the crystal lattice. Hence, five-dimensional boundary distribution functions have to be considered. If one considers only misorientation a three-dimensional misorientation distribution function is obtained. The deviation of this function from the #8220;uncorrelated” misorientation distribution yields the orientation correlation function. The most economical representation of these functions is the one using series expansions in terms of symmetrized harmonic functions. With the present state of experimental technique it seems to be impossible to determine the complete boundary distribution functions. However, two-dimensional analoga of these functions can be obtained from electron diffraction measurements.
APA, Harvard, Vancouver, ISO, and other styles
12

Shevchenko, Vasilij G., Irina N. Belskaya, Olga I. Mikhalchenko, Karri Muinonen, Antti Penttilä, Maria Gritsevich, Yuriy G. Shkuratov, Ivan G. Slyusarev, and Gorden Videen. "Phase integral of asteroids." Astronomy & Astrophysics 626 (June 2019): A87. http://dx.doi.org/10.1051/0004-6361/201935588.

Full text
Abstract:
The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G1, G2 parameters of the HG1G2 function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G1 and G2 parameters are in very good agreement with the available observational data. We recommend using the HG1G2 function for the determination of the phase integral. Comparison of the phase integrals of asteroids and planetary satellites shows that asteroids have systematically lower values of q.
APA, Harvard, Vancouver, ISO, and other styles
13

Piknova, Barbora, Vincent Schram, and StephenB Hall. "Pulmonary surfactant: phase behavior and function." Current Opinion in Structural Biology 12, no. 4 (August 2002): 487–94. http://dx.doi.org/10.1016/s0959-440x(02)00352-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Simeunović, Marko, and Igor Djurović. "Non-uniform sampled cubic phase function." Signal Processing 101 (August 2014): 99–103. http://dx.doi.org/10.1016/j.sigpro.2014.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kim, W., and M. H. Hayes. "Phase retrieval using a window function." IEEE Transactions on Signal Processing 41, no. 3 (March 1993): 1409–12. http://dx.doi.org/10.1109/78.205743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Herzog, U., H. Paul, and Th Richter. "Wigner function for a phase state." Physica Scripta T48 (January 1, 1993): 61–65. http://dx.doi.org/10.1088/0031-8949/1993/t48/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Frisvad, Jeppe Revall. "Importance sampling the Rayleigh phase function." Journal of the Optical Society of America A 28, no. 12 (November 10, 2011): 2436. http://dx.doi.org/10.1364/josaa.28.002436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fried, David L., and Jeffrey L. Vaughn. "Branch cuts in the phase function." Applied Optics 31, no. 15 (May 20, 1992): 2865. http://dx.doi.org/10.1364/ao.31.002865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Vaccaro, John A., and D. T. Pegg. "Wigner function for number and phase." Physical Review A 41, no. 9 (May 1, 1990): 5156–63. http://dx.doi.org/10.1103/physreva.41.5156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Woodruff, Jeffrey, and Daniel Jarosz. "Phase separation: from phenomenon to function." Molecular Biology of the Cell 31, no. 6 (March 15, 2020): 405. http://dx.doi.org/10.1091/mbc.e20-01-0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

McCormick, N. J. "Ocean optics phase-function inverse equations." Applied Optics 41, no. 24 (August 20, 2002): 4958. http://dx.doi.org/10.1364/ao.41.004958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Schilling, Andreas, and Hans Peter Herzig. "Phase function encoding of diffractive structures." Applied Optics 39, no. 29 (October 10, 2000): 5273. http://dx.doi.org/10.1364/ao.39.005273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

TAVANIOTOU, ASIMINA, JOHAN SMITZ, CLAIRE BOURGAIN, and PAUL DEVROEY. "Ovulation Induction Disrupts Luteal Phase Function." Annals of the New York Academy of Sciences 943, no. 1 (September 2001): 55–63. http://dx.doi.org/10.1111/j.1749-6632.2001.tb03790.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Laha, U., N. Haque, T. Nandi, and G. C. Sett. "Phase-function method for elastic?-? scattering." Zeitschrift f�r Physik A Atomic Nuclei 332, no. 3 (September 1989): 305–9. http://dx.doi.org/10.1007/bf01295460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, S. C. "Scattering phase function for fibrous media." International Journal of Heat and Mass Transfer 33, no. 10 (October 1990): 2183–90. http://dx.doi.org/10.1016/0017-9310(90)90119-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Parish, J. L. "Correlation function on quantum phase space." Physics Letters A 132, no. 8-9 (October 1988): 419–22. http://dx.doi.org/10.1016/0375-9601(88)90505-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jana, A. K., J. Pal, T. Nandi, and B. Talukdar. "Phase-function method for complex potentials." Pramana 39, no. 5 (November 1992): 501–8. http://dx.doi.org/10.1007/bf02847338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lederer, P., and Y. Takahashi. "Phase coherence of RVB wave function." Zeitschrift f�r Physik B Condensed Matter 71, no. 3 (September 1988): 311–14. http://dx.doi.org/10.1007/bf01312490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rutkowski, Igor, and Krzysztof Czuba. "Estimation of Phase Noise Transfer Function." Energies 14, no. 24 (December 7, 2021): 8234. http://dx.doi.org/10.3390/en14248234.

Full text
Abstract:
Quantifying frequency converters’ residual phase noise is essential in various applications, including radar systems, high-speed digital communication, or particle accelerators. Multi-input signal source analyzers can perform such measurements out of the box, but the high cost limits their accessibility. Based on an analysis of phase noise transmission theory and the capabilities of popular instrumentation, we propose a technique extending the functionality of single-input devices. The method supplements absolute noise measurements with estimates of the phase noise transfer function (also called the jitter transfer function), allowing the calculation of residual noise. The details of the hardware setup used for the method verification are presented. The injection of single-tone and pseudo-random modulations to the test signal is examined. Optional employment of a spectrum analyzer can reduce the time and number of data needed for characterization. A wideband synthesizer with an integrated voltage-controlled oscillator was investigated using the method. The estimated transfer function matches a white-box model based on synthesizer’s structure and values of loop components. The first results confirm the validity of the proposed technique.
APA, Harvard, Vancouver, ISO, and other styles
30

El Bakrawy, Lamiaa M., and Neveen I. Ghali. "An Improved Hashing Function for Human Authentication System." International Journal of Computer Vision and Image Processing 3, no. 2 (April 2013): 32–42. http://dx.doi.org/10.4018/ijcvip.2013040103.

Full text
Abstract:
Biometrics have the great advantage of recognition based on an intrinsic aspect of a human being and thus requiring the person to be authenticated for physical presentation. Unfortunately, biometrics suffer from some inherent limitation such as high false rejection when the system works at a low false acceptation rate. In this paper, near set are implemented to improve the Standard Secure Hash Function SHA-1 (ISHA-1) for strict multi-modal biometric image authentication system. The proposed system is composed of five phases, starting from feature extraction and selection phase, hashing computing that uses the ISHA-1 phase, embedding watermark phase, extraction and decryption watermark phase, and finally the authentication phase. Experimental results showed that the proposed algorithm guarantees the security assurance and reduces the time of implementation.
APA, Harvard, Vancouver, ISO, and other styles
31

HAKEN, HERMANN. "PHASE-LOCKING IN A GENERAL CLASS OF INTEGRATE AND FIRE MODELS." International Journal of Bifurcation and Chaos 12, no. 11 (November 2002): 2619–23. http://dx.doi.org/10.1142/s0218127402006126.

Full text
Abstract:
This paper studies phase-locking in a network of N neurons. The dynamic variables are the phases of the axonal pulses as well as the dendritic currents. The coupling via synaptic strengths may be arbitrary, up to a specific constraint. Arbitrary time delays of pulses and dendritic currents are included. The class of integrate and fire models treated here is characterized by a great variety of dendritic response functions (Green's functions). We determine the phase-locked state, the pulse interval, and present the stability equation for the case in which the dendritic response function is Rall's α-function, but still arbitrary couplings and delays are admitted.
APA, Harvard, Vancouver, ISO, and other styles
32

Schmit, Joanna, and Katherine Creath. "Window function influence on phase error in phase-shifting algorithms." Applied Optics 35, no. 28 (October 1, 1996): 5642. http://dx.doi.org/10.1364/ao.35.005642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Khamkaew, Charuwan. "Effects of Mobile Phase Composition as a Function of Temperature on Isocratic Elution Behavior of β-carotene in Revered-Phase Liquid Chromatographic Systems." International Journal of Pharma Medicine and Biological Sciences 6, no. 3 (2017): 94–97. http://dx.doi.org/10.18178/ijpmbs.6.3.94-97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nalewajko, C., and H. Godmaire. "Extracellular products of Myriophyllum spicatum L. as a function of growth phase and diel cycle." Archiv für Hydrobiologie 127, no. 3 (June 9, 1993): 345–56. http://dx.doi.org/10.1127/archiv-hydrobiol/127/1993/345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Xiao, Jin-ke, Wei-min Li, Wei Li, and Xin-rong Xiao. "Optimization on Black Box Function Optimization Problem." Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/647234.

Full text
Abstract:
There are a large number of engineering optimization problems in real world, whose input-output relationships are vague and indistinct. Here, they are called black box function optimization problem (BBFOP). Then, inspired by the mechanism of neuroendocrine system regulating immune system, BP neural network modified immune optimization algorithm (NN-MIA) is proposed. NN-MIA consists of two phases: the first phase is training BP neural network with expected precision to confirm input-output relationship and the other phase is immune optimization phase, whose aim is to search global optima. BP neural network fitting without expected fitting precision could be replaced with polynomial fitting or other fitting methods within expected fitting precision. Experimental simulation confirms global optimization capability of MIA and the practical application of BBFOP optimization method.
APA, Harvard, Vancouver, ISO, and other styles
36

Kao, Yi-Hsuan, Wan-Yuo Guo, Adrain Jy-Kang Liou, Ting-Yi Chen, Chau-Chiun Huang, Chih-Che Chou, and Jiing-Feng Lirng. "Transfer Function Analysis of Respiratory and Cardiac Pulsations in Human Brain Observed on Dynamic Magnetic Resonance Images." Computational and Mathematical Methods in Medicine 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/157040.

Full text
Abstract:
Magnetic resonance (MR) imaging provides a noninvasive,in vivoimaging technique for studying respiratory and cardiac pulsations in human brains, because these pulsations can be recorded as flow-related enhancement on dynamic MR images. By applying independent component analysis to dynamic MR images, respiratory and cardiac pulsations were observed. Using the signal-time curves of these pulsations as reference functions, the magnitude and phase of the transfer function were calculated on a pixel-by-pixel basis. The calculated magnitude and phase represented the amplitude change and temporal delay at each pixel as compared with the reference functions. In the transfer function analysis, near constant phases were found at the respiratory and cardiac frequency bands, indicating the existence of phase delay relative to the reference functions. In analyzing the dynamic MR images using the transfer function analysis, we found the following: (1) a good delineation of temporal delay of these pulsations can be achieved; (2) respiratory pulsation exists in the ventricular and cortical cerebrospinal fluid; (3) cardiac pulsation exists in the ventricular cerebrospinal fluid and intracranial vessels; and (4) a 180-degree phase delay or inverted amplitude is observed on phase images.
APA, Harvard, Vancouver, ISO, and other styles
37

Tuan, Wei Hsing. "Design of Multiphase Materials." Key Engineering Materials 280-283 (February 2007): 963–66. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.963.

Full text
Abstract:
In the present study, several principles are introduced as the guidelines to design multi- phased materials. Each phase in the multiphase material can offer one function or property to the material. The functions contributed from the phases within the multiphase material can interact with each other. Such interactions can be tailored by suitable microstructure design. The Al2O3-ZrO2-Ni multiphase material is used to demonstrate the applications of the design principles.
APA, Harvard, Vancouver, ISO, and other styles
38

Dash, Ch Sanjeev Kumar, Ajit Kumar Behera, Satchidananda Dehuri, and Sung-Bae Cho. "Differential Evolution-Based Optimization of Kernel Parameters in Radial Basis Function Networks for Classification." International Journal of Applied Evolutionary Computation 4, no. 1 (January 2013): 56–80. http://dx.doi.org/10.4018/jaec.2013010104.

Full text
Abstract:
In this paper a two phases learning algorithm with a modified kernel for radial basis function neural networks is proposed for classification. In phase one a new meta-heuristic approach differential evolution is used to reveal the parameters of the modified kernel. The second phase focuses on optimization of weights for learning the networks. Further, a predefined set of basis functions is taken for empirical analysis of which basis function is better for which kind of domain. The simulation result shows that the proposed learning mechanism is evidently producing better classification accuracy vis-à-vis radial basis function neural networks (RBFNs) and genetic algorithm-radial basis function (GA-RBF) neural networks.
APA, Harvard, Vancouver, ISO, and other styles
39

Chruściński, Dariusz. "Phase-Space Approach to Berry Phases." Open Systems & Information Dynamics 13, no. 01 (March 2006): 67–74. http://dx.doi.org/10.1007/s11080-006-7268-3.

Full text
Abstract:
We propose a new formula for the adiabatic Berry phase which is based on phase-space formulation of quantum mechanics. This approach sheds a new light onto the correspondence between classical and quantum adiabatic phases — both phases are related with the averaging procedure: Hannay angle with averaging over the classical torus and Berry phase with averaging over the entire classical phase space with respect to the corresponding Wigner function.
APA, Harvard, Vancouver, ISO, and other styles
40

Li, L., L. L. Qie, H. Xu, and Z. Q. Li. "RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (April 30, 2018): 857–63. http://dx.doi.org/10.5194/isprs-archives-xlii-3-857-2018.

Full text
Abstract:
The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters <i>I, Q, U</i> and the polarized radiance <i>L<sub>p</sub></i> of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45&amp;deg; and 65&amp;deg;). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter <i>U</i> and the polarized radiance <i>L<sub>p</sub></i> from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500&amp;thinsp;nm).
APA, Harvard, Vancouver, ISO, and other styles
41

FOREMAN, M. R., C. L. GIUSCA, P. TÖRÖK, and R. K. LEACH. "Phase-retrieved pupil function and coherent transfer function in confocal microscopy." Journal of Microscopy 251, no. 1 (May 20, 2013): 99–107. http://dx.doi.org/10.1111/jmi.12050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Holdaway, M. A. "Phase Calibration of the Proposed Millimeter Array." International Astronomical Union Colloquium 140 (1994): 121–22. http://dx.doi.org/10.1017/s0252921100019266.

Full text
Abstract:
AbstractThe phase structure function can be estimated from water vapor radiometer data. We present typical phase structure functions and indicate how residual calibration errors are related to the phase structure function and the calibration parameters. From this, we can estimate the amount of time the array can be used and compare different calibration methods.
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Wei-Xiang, You-Lin Shang, and Lian-Sheng Zhang. "Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming." Discrete Dynamics in Nature and Society 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/171697.

Full text
Abstract:
This paper presents a filled function method for finding a global optimizer of integer programming problem. The method contains two phases: the local minimization phase and the filling phase. The goal of the former phase is to identify a local minimizer of the objective function, while the filling phase aims to search for a better initial point for the first phase with the aid of the filled function. A two-parameter filled function is proposed, and its properties are investigated. A corresponding filled function algorithm is established. Numerical experiments on several test problems are performed, and preliminary computational results are reported.
APA, Harvard, Vancouver, ISO, and other styles
44

Šurkalović, Dragana. "Modularity, Phase-Phase Faithfulness and prosodification of function words in English." Nordlyd 40, no. 1 (February 15, 2013): 301. http://dx.doi.org/10.7557/12.2507.

Full text
Abstract:
<!--[if gte mso 9]><xml> <o:OfficeDocumentSettings> <o:AllowPNG /> </o:OfficeDocumentSettings> </xml><![endif]--> <!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves /> <w:TrackFormatting /> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF /> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>JA</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:SplitPgBreakAndParaMark /> <w:EnableOpenTypeKerning /> <w:DontFlipMirrorIndents /> <w:OverrideTableStyleHps /> <w:UseFELayout /> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math" /> <m:brkBin m:val="before" /> <m:brkBinSub m:val="&#45;-" /> <m:smallFrac m:val="off" /> <m:dispDef /> <m:lMargin m:val="0" /> <m:rMargin m:val="0" /> <m:defJc m:val="centerGroup" /> <m:wrapIndent m:val="1440" /> <m:intLim m:val="subSup" /> <m:naryLim m:val="undOvr" /> </m:mathPr></w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="276"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal" /> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9" /> <w:LsdException Locked="false" Priority="39" Name="toc 1" /> <w:LsdException Locked="false" Priority="39" Name="toc 2" /> <w:LsdException Locked="false" Priority="39" Name="toc 3" /> <w:LsdException Locked="false" Priority="39" Name="toc 4" /> <w:LsdException Locked="false" Priority="39" Name="toc 5" /> <w:LsdException Locked="false" Priority="39" Name="toc 6" /> <w:LsdException Locked="false" Priority="39" Name="toc 7" /> <w:LsdException Locked="false" Priority="39" Name="toc 8" /> <w:LsdException Locked="false" Priority="39" Name="toc 9" /> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption" /> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title" /> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font" /> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle" /> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong" /> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis" /> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text" /> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision" /> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph" /> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote" /> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6" /> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis" /> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" /> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference" /> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference" /> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title" /> <w:LsdException Locked="false" Priority="37" Name="Bibliography" /> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading" /> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} </style> <![endif]--> <!--StartFragment--><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">This paper investigates the interface of syntax and phonology in a fully modular view of language, deriving the effects of (morpho)syntactic structure on prosodification without referring to that structure in the phonological computation, <em style="mso-bidi-font-style: normal;">contra</em> the use of constraints that map (morpho)syntactic edges or constituents to prosodic ones. The data focus is on function words in English, which receive different prosodic treatment from lexical words. The approach presented here adopts the view of the &lsquo;syntax-all-the-way-down&rsquo; approaches, specifically Nanosyntax, which erase the traditional distinction between lexical and functional categories. The paper argues that phonological computation needs to proceed in phases in order to achieve domain mapping while maintaining an input consisting of purely phonological information, and offers a formalization within the Optimality Theory framework by introducing Phase-Phase Faithfulness constraints. </span><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-GB; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-GB">Spell-out is attempted at each merge, and is successful when lexical matching is successful. </span><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">The paper argues that spell-out cannot proceed in chunks but in concentric circles, producing cumulative cyclic input to phonology. An analysis is provided deriving prosodic domains from phases by phonological computation being faithful to the prosodification output of the previous phase. The prosodic word status of lexical words is derived from their status as phase 1 in the derivation.</span><!--EndFragment-->
APA, Harvard, Vancouver, ISO, and other styles
45

Djurović, Igor, Marko Simeunović, and Pu Wang. "Cubic phase function: A simple solution to polynomial phase signal analysis." Signal Processing 135 (June 2017): 48–66. http://dx.doi.org/10.1016/j.sigpro.2016.12.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gong, Mao Fa, Yan Ping Su, and Bin An. "Design of Single-Phase Multi-Function Energy Meter." Applied Mechanics and Materials 448-453 (October 2013): 2530–34. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2530.

Full text
Abstract:
Taking into account the demands of multi-function meter with high reliability and low cost, a single-phase multi-function energy meter is designed based on the MSP430FE427. There is a multi-parameter measurement, multi-way communication and other functions for the MCU. Hardware circuit and software flow of the system are introduced. The current and voltage design, memory design and communication anti-interface design are described in detail in hardware circuit. Modular design scheme is adopted in the software design. Each module is relatively independent, so the program is easy to modify. It indicates that the energy measurement circuit owns high accuracy through analysis and comparison of test results.
APA, Harvard, Vancouver, ISO, and other styles
47

Masoood, Sarfaraz, and Nida Safdar Jan. "SIMPLEX: An Activation Function with Improved Loss Function Results in Validation." Journal of Computational and Theoretical Nanoscience 17, no. 1 (January 1, 2020): 147–53. http://dx.doi.org/10.1166/jctn.2020.8643.

Full text
Abstract:
An activation function is a mathematical function used for squashing purposes in artificial neural networks, whose domain and the range are two important most features to judge its potency. Overfitting of a neural network, is an issue that has gained considerable importance. This is a consequence of a function developing some complex relationship during the training phase and then these do not show up during the testing phase due to which these relationships aren’t actually relations, but are merely a consequence of sampling noise that arises during the training phase and is absent during testing phase. This creates a significant gap in accuracy which if minimized could result in better results in terms of overall performance of an ANN (Artificial Neural Network). The activation function proposed in this work is called SIMPLEX. Over a set of experiments, it was observed, to have the least overfitting issue among the rest of the analyzed activation functions over the MNIST dataset, selected as the experimental problem.
APA, Harvard, Vancouver, ISO, and other styles
48

Yoon, Myung-Gon, Jina Kim, and Deasik Kim. "A Flame Transfer Function with Nonlinear Phase." Journal of the Korean Society of Propulsion Engineers 20, no. 3 (June 1, 2016): 78–86. http://dx.doi.org/10.6108/kspe.2016.20.3.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ganguly, Vasishta, and Tony L. Schmitz. "Phase correction for frequency response function measurements." Precision Engineering 38, no. 2 (April 2014): 409–13. http://dx.doi.org/10.1016/j.precisioneng.2013.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hennig, J. "Regional myocardial function with tissue phase mapping." Magnetic Resonance Materials in Biology, Physics, and Medicine 6, no. 2-3 (September 1998): 145–46. http://dx.doi.org/10.1016/s1352-8661(98)00046-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography