Academic literature on the topic 'Phase field modeling of brittle fracture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase field modeling of brittle fracture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phase field modeling of brittle fracture":

1

Li, Haifeng, Wei Wang, Yajun Cao, and Shifan Liu. "Phase-Field Modeling Fracture in Anisotropic Materials." Advances in Civil Engineering 2021 (July 30, 2021): 1–13. http://dx.doi.org/10.1155/2021/4313755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The phase-field method is a widely used technique to simulate crack initiation, propagation, and coalescence without the need to trace the fracture surface. In the phase-field theory, the energy to create a fracture surface per unit area is equal to the critical energy release rate. Therefore, the precise definition of the crack-driving part is the key to simulate crack propagation. In this work, we propose a modified phase-field model to capture the complex crack propagation, in which the elastic strain energy is decomposed into volumetric-deviatoric energy parts. Because of the volumetric-deviatoric energy split, we introduce a novel form of the crack-driving energy to simulate mixed-mode fracture. Furthermore, a new degradation function is proposed to simulate crack processes in brittle materials with different degradation rates. The proposed model is implemented by a staggered algorithm and to validate the performance of the phase-field modelling, and several numerical examples are constructed under plane strain condition. All the presented examples demonstrate the capability of the proposed approach in solving problems of brittle fracture propagation.
2

Ulmer, Heike, Martina Hofacker, and Christian Miehe. "Phase Field Modeling of Brittle and Ductile Fracture." PAMM 13, no. 1 (November 29, 2013): 533–36. http://dx.doi.org/10.1002/pamm.201310258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ulloa, Jacinto, Patricio Rodríguez, Cristóbal Samaniego, and Esteban Samaniego. "Phase-field modeling of fracture for quasi-brittle materials." Underground Space 4, no. 1 (March 2019): 10–21. http://dx.doi.org/10.1016/j.undsp.2018.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teichtmeister, S., D. Kienle, F. Aldakheel, and M. A. Keip. "Phase field modeling of fracture in anisotropic brittle solids." International Journal of Non-Linear Mechanics 97 (December 2017): 1–21. http://dx.doi.org/10.1016/j.ijnonlinmec.2017.06.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seleš, Karlo, Tomislav Lesičar, Zdenko Tonković, and Jurica Sorić. "A Phase Field Staggered Algorithm for Fracture Modeling in Heterogeneous Microstructure." Key Engineering Materials 774 (August 2018): 632–37. http://dx.doi.org/10.4028/www.scientific.net/kem.774.632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The phase field approach to fracture modelling is based on a variational principle of the energy minimization as an extension of the Griffith’s brittle fracture theory. It introduces a scalar damage field, to differentiate between the fractured and intact material state. That way, it regularizes the sharp crack discontinuities and eliminates the need for the explicit tracking of the fracture surfaces. Moreover, the numerical implementation complexity is thus vastly reduced. In this contribution, the staggered phase field algorithm for the modelling of brittle fracture is implemented within the finite element program Abaqus. A common issue of the existing Abaqus implementations of the staggered phase field schemes is the computationally demanding fine incrementation of the loading applied, required to obtain an accurate solution. The computational time is reduced by imposing an appropriate convergence control paired with the Abaqus automatic time incrementation. Therefore, by taking advantage of the Abaqus computational efficiency, an accurate solution can be obtained for a moderate time step. The proposed model is verified on the symmetrically double notched tensile benchmark test. Compared to the existing implementations, it demonstrates an improvement in accuracy and the computational performance. Furthermore, a heterogeneous steel microstructure is analyzed displaying the model’s ability to solve crack nucleation and curvilinear crack paths.
6

Hou, Yue, Fengyan Sun, Wenjuan Sun, Meng Guo, Chao Xing, and Jiangfeng Wu. "Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model." Advances in Materials Science and Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/8751646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.
7

Wu, Chi, Jianguang Fang, Zhongpu Zhang, Ali Entezari, Guangyong Sun, Michael V. Swain, and Qing Li. "Fracture modeling of brittle biomaterials by the phase-field method." Engineering Fracture Mechanics 224 (February 2020): 106752. http://dx.doi.org/10.1016/j.engfracmech.2019.106752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagaraja, Sindhu, Ulrich Römer, Hermann G. Matthies, and Laura De Lorenzis. "Deterministic and stochastic phase-field modeling of anisotropic brittle fracture." Computer Methods in Applied Mechanics and Engineering 408 (April 2023): 115960. http://dx.doi.org/10.1016/j.cma.2023.115960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Santillan Sanchez, David, Hichem Mazighi, and Mustapha Kamel Mihoubi. "Hybrid phase-field modeling of multi-level concrete gravity dam notched cracks." Frattura ed Integrità Strutturale 16, no. 61 (June 19, 2022): 154–75. http://dx.doi.org/10.3221/igf-esis.61.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Phase-field models have become a powerful tool to simulate crack propagation. They regularize the fracture discontinuity and smooth the transition between the intact and the damaged regions. Based on the thermodynamic function and a diffusive field, they regularize the variational approach to fracture that generalizes Griffith’s theory for brittle fracture. Phase-field models are capable to simulate complex fracture patterns efficiently and straightforwardly. In this paper, we introduce a hybrid phase-field approach to simulate the crack propagation in laboratory-scale and life-scale structures. First, we apply our methodology to the three-point bending test on notched laboratory beams. Second, we simulate the fracture propagation in a life-size structure: the Koyna gravity dam. We account for the pressure load inside the fracture, and we study the effect of the position and number of initial fractures in the upstream face and the value of the Griffith critical energy release, on the fracture propagation under a flood event. The position of the fracture plays an important role in the final fracture pattern and crest displacements, whereas the value of the Griffith critical energy release alters the onset of the fracture propagation. We conclude that phase-field models are a promising computational tool that may be applied to real engineering problems.
10

Singh, N., C. V. Verhoosel, R. de Borst, and E. H. van Brummelen. "A fracture-controlled path-following technique for phase-field modeling of brittle fracture." Finite Elements in Analysis and Design 113 (June 2016): 14–29. http://dx.doi.org/10.1016/j.finel.2015.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phase field modeling of brittle fracture":

1

Omatuku, Emmanuel Ngongo. "Phase field modeling of dynamic brittle fracture at finite strains." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fracture is the total or partial separation of an initially intact body through the propagation of one or several cracks. Computational methods for fracture mechanics are becoming increasingly important in dealing with the nucleation and propagation of these cracks. One method is the phase field approach, which approximates sharp crack discontinuities with a continuous scalar field, the so-called phase field. The latter represents the smooth transition between the intact and broken material phases. The evolution of the phase field due to external loads describes the fracture process. An original length scale is used to govern the diffusive approximation of sharp cracks. This method further employs a degradation function to account for the loss of the material stiffness during fracture by linking the phase field to the body’s bulk energy. To prevent the development of unrealistic crack patterns and interpenetration of crack faces under compression, this study uses the anisotropic split of the bulk energy, as proposed by Amor et al. [5], to model the different fracture behavior in tension, shear and compression. This research is part of a larger project aimed at the modeling of Antarctic sea ice dynamics. One aspect of this project is the modeling of the gradual break-up of the consolidated ice during spring. As a first step, this study reviews a phase field model used for dynamic brittle fracture at finite strains. Subsequently, this model is implemented into the in-house finite element software SESKA to solve the benchmark tension and shear tests on a single-edge notched block. The implementation adopts the so-called monolithic scheme, which computes the displacement and phase field solutions simultaneously, with a Newmark time integration scheme. The results of the solved problems demonstrate the capabilities of the implemented dynamic phase field model to capture the nucleation and propagation of cracks. They further confirm that the choice of length-scale and mesh size influences the solutions. In this regard, a small value of the length-scale converges to the sharp crack topology and yields a larger stress value. On the other hand, a large length-scale parameter combined with a too coarse mesh size can yield unrealistic results.
2

Schlueter, Alexander [Verfasser], and Charlotte [Akademischer Betreuer] Kuhn. "Phase Field Modeling of Dynamic Brittle Fracture / Alexander Schlueter ; Betreuer: Charlotte Kuhn." Kaiserslautern : Technische Universität Kaiserslautern, 2018. http://d-nb.info/116213397X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Tianyi. "Gradient-damage modeling of dynamic brittle fracture : variational principles and numerical simulations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX042/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Une bonne tenue mécanique des structures du génie civil en béton armé sous chargements dynamiques sévères est primordiale pour la sécurité et nécessite une évaluation précise de leur comportement en présence de propagation dynamique de fissures. Dans ce travail, on se focalise sur la modélisation constitutive du béton assimilé à un matériau élastique-fragile endommageable. La localisation des déformations sera régie par un modèle d'endommagement à gradient où un champ scalaire réalise une description régularisée des phénomènes de rupture dynamique. La contribution de cette étude est à la fois théorique et numérique. On propose une formulation variationnelle des modèles d'endommagement à gradient en dynamique. Une définition rigoureuse de plusieurs taux de restitution d'énergie dans le modèle d'endommagement est donnée et on démontre que la propagation dynamique de fissures est régie par un critère de Griffith généralisé. On décrit ensuite une implémentation numérique efficace basée sur une discrétisation par éléments finis standards en espace et la méthode de Newmark en temps dans un cadre de calcul parallèle. Les résultats de simulation de plusieurs problèmes modèles sont discutés d'un point de vue numérique et physique. Les lois constitutives d'endommagement et les formulations d'asymétrie en traction et compression sont comparées par rapport à leur aptitude à modéliser la rupture fragile. Les propriétés spécifiques du modèle d'endommagement à gradient en dynamique sont analysées pour différentes phases de l'évolution de fissures : nucléation, initiation, propagation, arrêt, branchement et bifurcation. Des comparaisons avec les résultats expérimentaux sont aussi réalisées afin de valider le modèle et proposer des axes d'amélioration
In civil engineering, mechanical integrity of the reinforced concrete structures under severe transient dynamic loading conditions is of paramount importance for safety and calls for an accurate assessment of structural behaviors in presence of dynamic crack propagation. In this work, we focus on the constitutive modeling of concrete regarded as an elastic-damage brittle material. The strain localization evolution is governed by a gradient-damage approach where a scalar field achieves a smeared description of dynamic fracture phenomena. The contribution of the present work is both theoretical and numerical. We propose a variationally consistent formulation of dynamic gradient damage models. A formal definition of several energy release rate concepts in the gradient damage model is given and we show that the dynamic crack tip equation of motion is governed by a generalized Griffith criterion. We then give an efficient numerical implementation of the model based on a standard finite-element spatial discretization and the Newmark time-stepping methods in a parallel computing framework. Simulation results of several problems are discussed both from a computational and physical point of view. Different damage constitutive laws and tension-compression asymmetry formulations are compared with respect to their aptitude to approximate brittle fracture. Specific properties of the dynamic gradient damage model are investigated for different phases of the crack evolution: nucleation, initiation, propagation, arrest, kinking and branching. Comparisons with experimental results are also performed in order to validate the model and indicate its further improvement
4

Zhai, Xinyuan. "Crack propagation in elastic media with anisotropic fracture toughness : experiments and numerical modeling." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAE010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La fabrication additive attire une attention croissante en raison de ses avantages en termes de flexibilité de modélisation et de facilité de conception de microstructures complexes. Nous avons constaté qu'en manipulant la stratégie d'impression, les échantillons imprimés par dépôt de fusion de polycarbonate peuvent présenter un comportement fortement anisotrope en termes de résistance à la rupture, tout en conservant des propriétés isotropes en termes d'élasticité.Le focus de cette thèse est d'explorer le comportement en matière de rupture dans des milieux élastiques isotropes présentant une ténacité de rupture anisotrope, en utilisant une combinaison d'investigations expérimentales et de simulations numériques. Dans la partie expérimentale, nous examinons la propagation des fissures dans diverses conditions de chargement en utilisant des géométries d'échantillons variées, englobant à la fois le Mode I et le Mode I+II. Dans la partie numérique, nous adoptons la modélisation de la fissuration fragile par champ de phase basée sur l'approche variationnelle, en utilisant des données expérimentales pour l'étalonnage et l'identification des paramètres numériques. À travers ces méthodologies complètes, notre objectif est de favoriser une compréhension plus profonde de l'interaction entre les motifs d'impression et la sélection des trajectoires de fissures. Cette compréhension a des implications significatives pour guider et gérer la propagation des fissures dans les composants fabriqués par fabrication additive. De plus, nous adoptons les critères classiques basés sur le taux de restitution d'énergie maximale généralisé pour améliorer notre compréhension de la sélection des trajectoires de fissures et de la force critique correspondante.Dans la dernière partie de cette thèse, nous présentons quelques investigations préliminaires concernant l'éventuelle émergence d'un motif de fissure en Zig-Zag dans des spécimens imprimés en 3D. De plus, nous plongeons en profondeur dans le comportement de rupture des spécimens imprimés sous chargement cyclique, offrant une comparaison exhaustive entre les observations expérimentales et les prévisions numériques
Additive manufacturing is receiving increasing attention due to its advantages in terms of modelling flexibility and allowing to easily design complex micro-structures. Through the manipulation of the printing strategy, we observed that fused deposition of polycarbonate can result in printed samples showcasing a distinct anisotropic behavior in fracture toughness, all the while retaining isotropic properties in elasticity.This thesis is dedicated to investigating fracture behavior within isotropic elastic media with anisotropic fracture toughness. The approach involves a combination of fracture experiments and numerical simulations. In the experimental part, we examine crack propagation under various loading conditions using diverse sample geometries, encompassing both Mode I and Mode I+II loading condition. In the numerical part, we adopt the phase-field modeling of brittle fracture based on a variational approach, using experimental data for calibrating and identification of the numerical parameters. Through these comprehensive methodologies, our objective is to foster a deeper comprehension of the interplay between printing patterns and the selection of crack paths. This understanding holds significant implications for guiding and controlling crack propagation in additive manufacturing-produced components. Besides, we adopted the classical based criteria Generalized Maximum Energy Release Rate to enhance our understanding of crack path selection and the relevant critical force.In the last part of this thesis, we presents some preliminary investigations regarding the potential emergence of Zig-Zag crack patterns in 3D printed specimens. Additionally, we delve extensively into the fracture behavior of printed specimens under cyclic loading, offering a comprehensive comparison between experimental observations and numerical forecasts
5

Cheng, Zifeng. "Modelling Brittle Fractures with Finite Elements: A Time-independent Phase-field Model." Thesis, Faculty of Engineering, School of Civil Engineering, 2020. https://hdl.handle.net/2123/29350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objective of this paper is to propose a 2-D time-independent phase-field model with validating its performance as well as applying it for simulating existing representative experiments. Firstly, the section of the literature review provides an overview of quasi-brittle material and brittle fracture behaviours, as well as the existing FE models from both discontinuous and continuous approaches for simulating fracture behaviours. Next, the governing equations of the proposed phase-field model are determined, which are based on traditional Griffith’s theory as well as a specific variational method evolved from that. The proposed model is implemented in Abaqus. In particular, the implementation is achieved by using the User Subroutine in order to take the phase-field into account. The proposed model is validated by simulating a pure-tension and a pure shear test. In this part, not only the effect of discretisation but also the effects of length parameter and energy release rate has been discussed, of which the latter effect is exclusive in phase-field method. Finally, the validated model is used for simulating two sets of existing experiments, including a mixed-mode test and a series of Brazilian disks test. The results in both validation and simulation part indicate that the proposed model can successfully simulate both crack initiation and propagation in these cases, and good qualitative agreement with theoretical or experimental results can be observed.
6

Deogekar, Sai Sharad. "A Computational Study of Dynamic Brittle Fracture Using the Phase-Field Method." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439455086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tanne, Erwan. "Variational phase-field models from brittle to ductile fracture : nucleation and propagation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX088/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les simulations numériques des fissures fragiles par les modèles d’endommagement à gradient deviennent main- tenant très répandues. Les résultats théoriques et numériques montrent que dans le cadre de l’existence d’une pre-fissure la propagation suit le critère de Griffith. Alors que pour le problème à une dimension la nucléation de la fissure se fait à la contrainte critique, cette dernière propriété dimensionne le paramètre de longueur interne.Dans ce travail, on s’attarde sur le phénomène de nucléation de fissures pour les géométries communément rencontrées et qui ne présentent pas de solutions analytiques. On montre que pour une entaille en U- et V- l’initiation de la fissure varie continument entre la solution prédite par la contrainte critique et celle par la ténacité du matériau. Une série de vérifications et de validations sur diffèrent matériaux est réalisée pour les deux géométries considérées. On s’intéresse ensuite à un défaut elliptique dans un domaine infini ou très élancé pour illustrer la capacité du modèle à prendre en compte les effets d’échelles des matériaux et des structures.Dans un deuxième temps, ce modèle est étendu à la fracturation hydraulique. Une première phase de vérification du modèle est effectuée en stimulant une pré-fissure seule par l’injection d’une quantité donnée de fluide. Ensuite on étudie la simulation d’un réseau parallèle de fissures. Les résultats obtenus montrent qu’il a qu’une seule fissure qui se propage et que ce type de configuration minimise mieux l’énergie la propagation d’un réseau de fractures. Le dernier exemple se concentre sur la stabilité des fissures dans le cadre d’une expérience d’éclatement à pression imposée pour l’industrie pétrolière. Cette expérience d’éclatement de la roche est réalisée en laboratoire afin de simuler les conditions de confinement retrouvées lors des forages.La dernière partie de ce travail se concentre sur la rupture ductile en couplant le modèle à champ de phase avec les modèles de plasticité parfaite. Grâce à l’approche variationnelle du problème on décrit l’implantation numérique retenue pour le calcul parallèle. Les simulations réalisées montrent que pour une géométrie légèrement entaillée la phénoménologie des fissures ductiles comme par exemple la nucléation et la propagation sont en concordances avec ceux reportées dans la littérature
Phase-field models, sometimes referred to as gradient damage, are widely used methods for the numerical simulation of crack propagation in brittle materials. Theoretical results and numerical evidences show that they can predict the propagation of a pre-existing crack according to Griffith’s criterion. For a one- dimensional problem, it has been shown that they can predict nucleation upon a critical stress, provided that the regularization parameter is identified with the material’s internal characteristic length.In this work, we draw on numerical simulations to study crack nucleation in commonly encountered geometries for which closed-form solutions are not available. We use U- and V-notches to show that the nucleation load varies smoothly from the one predicted by a strength criterion to the one of a toughness criterion when the strength of the stress concentration or singularity varies. We present validation and verification of numerical simulations for both types of geometries. We consider the problem of an elliptic cavity in an infinite or elongated domain to show that variational phase field models properly account for structural and material size effects.In a second movement, this model is extended to hydraulic fracturing. We present a validation of the model by simulating a single fracture in a large domain subject to a control amount of fluid. Then we study an infinite network of pressurized parallel cracks. Results show that the stimulation of a single fracture is the best energy minimizer compared to multi-fracking case. The last example focuses on fracturing stability regimes using linear elastic fracture mechanics for pressure driven fractures in an experimental geometry used in petroleum industry which replicates a situation encountered downhole with a borehole called burst experiment.The last part of this work focuses on ductile fracture by coupling phase-field models with perfect plasticity. Based on the variational structure of the problem we give a numerical implementation of the coupled model for parallel computing. Simulation results of a mild notch specimens are in agreement with the phenomenology of ductile fracture such that nucleation and propagation commonly reported in the literature
8

Abdollahi, Amir. "Phase-field modeling of fracture in ferroelectric materials." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The unique electro-mechanical coupling properties of ferroelectrics make them ideal materials for use in micro-devices as sensors, actuators and transducers. Nevertheless, because of the intrinsic brittleness of ferroelectrics, the optimal design of the electro-mechanical devices is strongly dependent on the understanding of the fracture behavior in these materials. Fracture processes in ferroelectrics are notoriously complex, mostly due to the interactions between the crack tip stress and electric fields and the localized switching phenomena in this zone (formation and evolution of domains of different crystallographic variants). Phase-field models are particularly interesting for such a complex problem, since a single partial differential equation governing the phase-field accomplishes at once (1) the tracking of the interfaces in a smeared way (cracks, domain walls) and (2) the modeling of the interfacial phenomena such as domain-wall energies or crack face boundary conditions. Such a model has no difficulty for instance in describing the nucleation of domains and cracks or the branching and merging of cracks. Furthermore, the variational nature of these models makes the coupling of multiple physics (electrical and mechanical fields in this case) very natural. The main contribution of this thesis is to propose a phase-field model for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single crystal ferroelectric materials. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. The finite element implementation of the theory is described. Simulations show the interactions between the microstructure and the crack under mechanical and electro-mechanical loadings. Another objective of this thesis is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions, electro-mechanical loadings and media filling the crack gap on the crack propagation and the microstructure of the material. In a third step, the coupled model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future application. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally and for completeness, the phase-field theory is extended for the simulation of conducting cracks and some preliminary simulations are also performed in three dimensions. Salient features of the crack propagation phenomenon predicted by the simulations of this thesis are directly compared with experimental observations.
Los materiales ferroeléctricos poseen únicas propiedades electro-mecánicas y por eso se utilizan para los micro-dispositivos como sensores, actuadores y transductores. No obstante, debido a la fragilidad intrínseca de los ferroeléctricos, el diseño óptimo de los dispositivos electro-mecánicos es altamente dependiente de la comprensión del comportamiento de fractura en estos materiales. Los procesos de fractura en ferroeléctricos son notoriamente complejos, sobre todo debido a las interacciones entre campos de tensión y eléctricos y los fenómenos localizados en zona de fractura (formación y evolución de los dominios de las diferentes variantes cristalográficas). Los modelos de campo de fase son particularmente útiles para un problema tan complejo, ya que una sola ecuación diferencial parcial que gobierna el campo de fase lleva a cabo a la vez (1) el seguimiento de las interfaces de una manera suave (grietas, paredes de dominio) y (2) la modelización de los fenómenos interfaciales como las energías de la pared de dominio o las condiciones de las caras de grieta. Tal modelo no tiene ninguna dificultad, por ejemplo en la descripción de la nucleación de los dominios y las grietas o la ramificación y la fusión de las grietas. Además, la naturaleza variacional de estos modelos facilita el acoplamiento de múltiples físicas (campos eléctricos y mecánicos en este caso). La principal aportación de esta tesis es la propuesta de un modelo campo de fase para la simulación de la formación y evolución de la microestructura y la nucleación y propagación de grietas en materiales ferroeléctricos. El modelo aúna dos modelos de campo de fase para la fractura frágil y para la formación de dominios ferroeléctricos. La aplicación de elementos finitos a la teoría es descrita. Las simulaciones muestran las interacciones entre la microestructura y la fractura del bajo cargas mecánicas y electro-mecánicas. Otro de los objetivos de esta tesis es la codificación de diferentes condiciones de contorno de grieta porque estas condiciones afectan en gran medida el comportamiento de la fractura de ferroeléctricos. La imposición de estas condiciones se discuten y se comparan con los resultados de modelos clasicos para validar los modelos propuestos. Las simulaciones muestran los efectos de diferentes condiciones, cargas electro-mecánicas y medios que llena el hueco de la grieta en la propagación de las fisuras y la microestructura del material. En un tercer paso, el modelo se modifica mediante la introducción de una condición que representa el comportamiento asimétrico en tensión y compresión. El modelo modificado hace posible explicar el crecimiento de la grieta anisotrópica en ferroeléctricos. Este modelo también se utiliza para el análisis de la fractura de los actuadores ferroeléctricos, lo que demuestra el potencial del modelo para su futura aplicación. El modelo se extiende también a policristales mediante la introducción de microestructuras policristalinas realistas en el modelo. Modos de fractura inter y trans-granulares de propagación se observan en las simulaciones. Por último y para completar, la teoría del campo de fase se extiende para la simulación de las grietas conductivas y algunas simulaciones preliminares también se realizan en tres dimensiones. Principales características del fenómeno de la propagación de la grieta predicho por las simulaciones de esta tesis se comparan directamente con las observaciones experimentales.
9

Parrinello, Antonino. "A rate-pressure-dependent thermodynamically-consistent phase field model for the description of failure patterns in dynamic brittle fracture." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:c6590f4f-f4e2-40e3-ada1-49ba35c2a594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The investigation of failure in brittle materials, subjected to dynamic transient loading conditions, represents one of the ongoing challenges in the mechanics community. Progresses on this front are required to support the design of engineering components which are employed in applications involving extreme operational regimes. To this purpose, this thesis is devoted to the development of a framework which provides the capabilities to model how crack patterns form and evolve in brittle materials and how they affect the quantitative description of failure. The proposed model is developed within the context of diffusive interfaces which are at the basis of a new class of theories named phase field models. In this work, a set of additional features is proposed to expand their domain of applicability to the modelling of (i) rate and (ii) pressure dependent effects. The path towards the achievement of the first goal has been traced on the desire to account for micro-inertia effects associated with high rates of loading. Pressure dependency has been addressed by postulating a mode-of-failure transition law whose scaling depends upon the local material triaxiality. The governing equations have been derived within a thermodynamically-consistent framework supplemented by the employment of a micro-forces balance approach. The numerical implementation has been carried out within an updated lagrangian finite element scheme with explicit time integration. A series of benchmarks will be provided to appraise the model capabilities in predicting rate-pressure-dependent crack initiation and propagation. Results will be compared against experimental evidences which closely resemble the boundary value problems examined in this work. Concurrently, the design and optimization of a complimentary, improved, experimental characterization platform, based on the split Hopkinson pressure bar, will be presented as a mean for further validation and calibration.
10

Lee, Ji Soo. "Time-Dependent Crack Growth in Brittle Rocks and Field Applications to Geologic Hazards." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/193784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The primary focus of this research is to evaluate the time-dependent crack growth in rocks using lab tests and numerical modeling and its application to geologic hazard problems. This research utilized Coconino sandstone and Columbia granite as the study materials and produced the subcritical crack growth parameters in both mode I and II loadings using the rock materials. The mode I loading test employs three different types of fracture mechanics tests: the Double Torsion (DT), the Wedge Splitting (WS), and the Double Cantilever Beam (DCB) test. Each test measured the mode I crack velocity. The DT test indirectly measured the crack velocity using the load relaxation method. The WS and DCB tests directly measured the crack velocity by monitoring using a video recording. The different mode I subcritical crack growth parameters obtained from the three tests are discussed. For the mode II loading test, this study developed a new shear fracture toughness test called the modified Punch-Through Shear (MPTS). The MPTS test conducted at different loading rates produced the mode II subcritical crack growth parameters. These fracture mechanics tests were calibrated and simulated using the distinct element method (DEM) and the finite element method (FEM). DEM analysis employed the particle flow code (PFC) to simulate the mixed mode crack growth and to match with the failure strength envelop of the triaxial compressive tests. FEM analysis employed the Phase2 program to analyze the crack tip stress distribution and the FRANC2D program to calculate the modes I and II stress intensity factors. The fracture mechanics tests and numerical modeling showed well the dependency of the mode II subcritical crack growth parameters according to confining pressure, loading rate, and the mode II fracture toughness. Finally, the UDEC modeling based on DEM is utilized in this study to forecast the long-term stability of the Coconino rock slope, as one of geologic hazards. The fracture mechanics approach is implemented in the program using the modes I and II subcritical crack growth parameters obtained from the lab tests and numerical modeling. Considering the progressive failure of rock bridges due to subcritical crack growth, the UDEC results predicted the stable condition of the Coconino rock cliff over 10,000 years. This result was validated by comparing it with the previous planar failure case.

Books on the topic "Phase field modeling of brittle fracture":

1

Miguel Torre do Vale Arriaga e Cunha. Stability Analysis of Metals Capturing Brittle and Ductile Fracture through a Phase Field Method and Shear Band Localization. [New York, N.Y.?]: [publisher not identified], 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wick, Thomas. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Louchet, Francois. Snow Avalanches. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198866930.001.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work is a critical update of the most recent and innovative developments of the avalanche science. It aims at re-founding it on clear scientific bases, from field observations and experiments up to strong mathematical and physical analysis and modeling. It points out snow peculiarities, regarding both static mechanical properties and flow dynamics, that may strongly differ from those of compact solids for the former, and of Newtonian fluids for the latter. It analyzes the general processes involved in avalanche release, in terms of brittle fracture and ductile plasticity, specific friction laws, flow of healable granular materials, percolation concepts, cellular automata, scale invariance, criticality, theory of dynamical systems, bifurcations, etc. As a result, slab triggering (including remote triggering) can be summarized by the “slab avalanche release in 4 steps” concept, based on weak layer local collapse and subsequent propagation driven by slab weight. The frequent abortion of many incipient avalanches is easily explained in terms of snow grain dynamical healing. Sluffs and full-depth avalanches are also analyzed. Such advances pave the way for significant progress in risk evaluation procedures. In the present context of a speeding-up climate warming, possible evolutions of snow cover extent and stability are also tentatively discussed. We show how, in mountainous areas, the present analysis can be extended to other gravitational failures (rock-falls, landslides) that are likely to take over from avalanches in such circumstances. The text is supported by on-line links to field experiments and lectures on triggering mechanisms, risk management, and decision making.

Book chapters on the topic "Phase field modeling of brittle fracture":

1

Jukić, Krešimir, Tomislav Jarak, Karlo Seleš, and Zdenko Tonković. "Adaptive Phase-Field Modeling of Brittle Fracture." In Lecture Notes in Civil Engineering, 145–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7216-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuhn, Charlotte, Timo Noll, Darius Olesch, and Ralf Müller. "Phase Field Modeling of Brittle and Ductile Fracture." In Non-standard Discretisation Methods in Solid Mechanics, 283–325. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92672-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Lorenzis, Laura, and Tymofiy Gerasimov. "Numerical Implementation of Phase-Field Models of Brittle Fracture." In Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, 75–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37518-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hentati, Hamdi, Yosra Kriaa, Gregory Haugou, and Fahmi Chaari. "Brittle Fracture: Experimental and Numerical Modeling Using Phase-Field Approach." In Design and Modeling of Mechanical Systems—III, 1061–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dinh, Minh Ngoc, Chien Trung Vo, Cuong Tan Nguyen, and Ngoc Minh La. "Phase-Field Modelling of Brittle Fracture Using Time-Series Forecasting." In Computational Science – ICCS 2022, 266–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08754-7_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Santos, H. A. F. A., and V. V. Silberschmidt. "Finite Element Modelling of 2D Brittle Fracture: The Phase-Field Approach." In Mechanics of Advanced Materials, 1–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17118-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tangella, Raja Gopal, Pramod Kumbhar, and Ratna Kumar Annabattula. "Hybrid Phase Field Modelling of Dynamic Brittle Fracture and Implementation in FEniCS." In Composite Materials for Extreme Loading, 15–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4138-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saidane, Mariem, Sana Koubaa, Zoubeir Bouaziz, and Radhi Abdelmoula. "A Phase Field Numerical Modelling of Quasi-brittle Material Fracture Applied to Low Velocity Impact." In Applied Condition Monitoring, 407–14. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34190-8_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schreiber, Christoph, Ralf Müller, and Fadi Aldakheel. "Phase Field Modeling of Fatigue Fracture." In Current Trends and Open Problems in Computational Mechanics, 475–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87312-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yunteng, Shun Wang, Enrico Soranzo, Xiaoping Zhou, and Wei Wu. "Phase-field Modeling of Brittle Failure in Rockslides." In Recent Geotechnical Research at BOKU, 241–64. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52159-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phase field modeling of brittle fracture":

1

Lesičar, Tomislav, Tomislav Polančec, Karlo Seleš, and Zdenko Tonković. "Separated phase-field algorithm for modelling of brittle fracture." In ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0145039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Turbino, Diego, Thiago Barreto de Aguiar, Gabriel Mario Guerra Bernadá, and Fernando Pereira Duda. "Phase-field modeling for brittle fracture due to residual stress." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sarem, Mina, Nuhamin Deresse, Jacinto Ulloa, Els Verstrynge, and Stijn Francois. "Micromechanics-Based Phase-Field Modeling Of Fatigue In (Quasi-)Brittle Materials." In 11th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2023. http://dx.doi.org/10.21012/fc11.092392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, W. "Phase-field Modeling of Brittle Fracture and its Adaptive Moving Mesh Solution." In 10th International Conference on Adaptative Modeling and Simulation. CIMNE, 2021. http://dx.doi.org/10.23967/admos.2021.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rajagopal, Amirtham, Mrunmayee S, and Pranavi D. "Modeling Anisotropic Fracture In Quasi-Brittle Materials By A Phase Field Approach." In 11th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2023. http://dx.doi.org/10.21012/fc11.0923108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Freddi, F., and L. Mingazzi. "Energy Based Global-Local Strategies with Adaptive Mesh Refinement for the Phase-Field Approach to Brittle Fracture." In 10th International Conference on Adaptative Modeling and Simulation. CIMNE, 2021. http://dx.doi.org/10.23967/admos.2021.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moshkelgosha, Ehsan, and Mahmood Mamivand. "Anisotropic Phase-Field Modeling of Crack Growth in Shape Memory Ceramics: Application to Zirconia." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Shape memory ceramics (SMCs) are promising candidates for actuators in extreme environments such as high temperature and corrosive applications. Despite outstanding energy dissipation, compared to metallic shape memory materials, SMCs suffer from sudden brittle fracture. While the interaction of crack propagation and phase transformation in SMCs have been subject of several experimental and theoretical studies, mainly at macroscale, the fundamental understanding of the interaction of crack propagation dynamics with evolving martensitic transformation is poorly understood. In this work we use the phase field technique to fully couple the martensitic transformation to the variational formulation of brittle fracture. The model is parameterized for zirconia which experiences tetragonal to monoclinic transformation during crack propagation. For the mode I of fracture, opening mode, crack shows an unusual propagation path which indicates the effect of phase transformation on crack path. The model is efficiently capable of predicting the crack initiation as well as propagation. The results show the dramatic effect of phase transformation on fracture toughening and crack propagation path.
8

Hu, Xiaokun, Xiao Yan, and Haitao Yu. "A PD-FEM Coupling Approach for Modeling Cracks Propagation in Brittle Rock Under Compressive Load." In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACT Considering the low computational efficiency and accuracy of peridynamics (PD), a concurrent multiscale method coupling PD and finite element method (FEM) is proposed for modeling crack propagation of brittle rock under compressive load. In the coupling method, the fracture behavior is solved by the ordinary state-based peridynamics (OSBPD), while the elastic deformation of the rock mass is simulated by FEM. The implementation of the approach is as the following steps: first, a hybrid region is introduced in the framework to realize the strain energy equivalence between PD and FEM and eliminate the boundary effect. Then, the short-range force is utilized in PD to model the contact of the crack surface and prevent the particles from penetrating each other. In addition, the tangential force of the short-range force is introduced to simulate the friction sliding effect of the crack surface. Finally, the dynamic relaxation method is used to solve the displacement in the PD-FEM coupling model. The crack propagation of rock samples with a single pre-existing closed fracture under uniaxial compression is simulated by the PD-FEM coupling approach, and the numerical calculation results are in good agreement with the rule of the experimental results. The proposed coupling approach can capture the failure process of rocks under uniaxial compression and reduce the computational cost, simultaneously. INTRODUCTION The failure of rock can lead to structural damage, landslides, and rock bursts, which can endanger human life and property. Therefore, studying the fracture behavior of rock is essential for ensuring the safety of engineering projects. The law of crack growth in the brittle rock remains a great challenge in rock mechanics. In order to predict crack growth, many numerical methods have been developed. The numerical methods often used in the field of rock fracture mechanics include continuous methods and discontinuous methods. Common continuous methods include the extended finite element method (Eftekhari et al., 2016), the cohesive force element method (Zhou & Molinari, 2004), and the phase field method (Zhou et al., 2018). However, traditional continuum mechanics theory-based modeling makes it difficult to deal with complex crack propagation problems. The discrete element method (Cundall, 1971) is a commonly used technique in discontinuous methods to simulate fracture problems in rocks. However, the microscopic parameters of the discrete element method lack physical meaning and need to be calibrated through experiments.
9

Agbo, Sylvester, Farhad Davaripour, and Kshama Roy. "Effects of Hydrogen Embrittlement on the Fracture Toughness of High-Strength Steel Structures." In 2022 14th International Pipeline Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipc2022-87174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Blending hydrogen into existing natural gas pipelines is being pursued as a means of delivering hydrogen to markets. However, as stated in ASME B31.12, high-strength steel pipelines under stress can be susceptible to hydrogen embrittlement, which is a phenomenon that could induce brittle fracture in steel. This study proposes a numerical framework using phase-field fracture modelling techniques to model the hydrogen embrittlement phenomenon in high-strength steels. The proposed numerical framework is validated against a Compact Tension experimental test specimen, which is deemed suitable to capture the crack-tip constraint observed in high strength steel. The finite element results show a good agreement with experimental results, which demonstrate the capability of the phase-field fracture model in reasonably predicting hydrogen embrittlement in high-strength steel. As such, the proposed numerical modelling framework could also be applicable to typical high strength steel pipelines.
10

Liao, Minmao, and Peng Ma. "Computation of brittle phase field fracture by the quadrature element method." In BIC 2022: 2022 2nd International Conference on Bioinformatics and Intelligent Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3523286.3524557.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phase field modeling of brittle fracture":

1

Author, Not Given. Brittle fracture phase-field modeling of a short-rod specimen. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Landis, Chad M., and Thomas J. Hughes. Phase-Field Modeling and Computation of Crack Propagation and Fracture. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cusini, M., and F. Fei. PHASE FIELD MODELING OF NEAR-WELLBORE HYDRAULIC FRACTURE NUCLEATION AND PROPAGATION. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2287725.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography