Academic literature on the topic 'Phase field fracture method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase field fracture method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phase field fracture method"
Xue, Tianju, Sigrid Adriaenssens, and Sheng Mao. "Mapped phase field method for brittle fracture." Computer Methods in Applied Mechanics and Engineering 385 (November 2021): 114046. http://dx.doi.org/10.1016/j.cma.2021.114046.
Full textZhao, Jinzhou, Qing Yin, John McLennan, Yongming Li, Yu Peng, Xiyu Chen, Cheng Chang, Weiyang Xie, and Zhongyi Zhu. "Iteratively Coupled Flow and Geomechanics in Fractured Poroelastic Reservoirs: A Phase Field Fracture Model." Geofluids 2021 (December 20, 2021): 1–13. http://dx.doi.org/10.1155/2021/6235441.
Full textLabanda, Nicolás A., Luis Espath, and Victor M. Calo. "A spatio-temporal adaptive phase-field fracture method." Computer Methods in Applied Mechanics and Engineering 392 (March 2022): 114675. http://dx.doi.org/10.1016/j.cma.2022.114675.
Full textKakouris, E. G., and S. P. Triantafyllou. "Phase-field material point method for brittle fracture." International Journal for Numerical Methods in Engineering 112, no. 12 (August 14, 2017): 1750–76. http://dx.doi.org/10.1002/nme.5580.
Full textChoo, Jinhyun, and Fan Fei. "Phase-field modeling of geologic fracture incorporating pressure-dependence and frictional contact." E3S Web of Conferences 205 (2020): 03004. http://dx.doi.org/10.1051/e3sconf/202020503004.
Full textCHEN, Pengcheng, Yu'e MA, Fan PENG, and Linglong ZHOU. "Simulating hydrogen embrittlement fracture based on phase field method." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, no. 3 (June 2022): 504–11. http://dx.doi.org/10.1051/jnwpu/20224030504.
Full textFeng, Yuan, Qihan Wang, Di Wu, Zhen Luo, Xiaojun Chen, Tianyu Zhang, and Wei Gao. "Machine learning aided phase field method for fracture mechanics." International Journal of Engineering Science 169 (December 2021): 103587. http://dx.doi.org/10.1016/j.ijengsci.2021.103587.
Full textPatil, R. U., B. K. Mishra, and I. V. Singh. "An adaptive multiscale phase field method for brittle fracture." Computer Methods in Applied Mechanics and Engineering 329 (February 2018): 254–88. http://dx.doi.org/10.1016/j.cma.2017.09.021.
Full textRen, H. L., X. Y. Zhuang, C. Anitescu, and T. Rabczuk. "An explicit phase field method for brittle dynamic fracture." Computers & Structures 217 (June 2019): 45–56. http://dx.doi.org/10.1016/j.compstruc.2019.03.005.
Full textJammoul, M., and M. F. Wheeler. "A Phase-Field-Based Approach for Modeling Flow and Geomechanics in Fractured Reservoirs." SPE Journal 27, no. 02 (December 21, 2021): 1195–208. http://dx.doi.org/10.2118/203906-pa.
Full textDissertations / Theses on the topic "Phase field fracture method"
Deogekar, Sai Sharad. "A Computational Study of Dynamic Brittle Fracture Using the Phase-Field Method." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439455086.
Full textNigro, Claudio F. "Phase field modeling of flaw-induced hydride precipitation kinetics in metals." Licentiate thesis, Malmö högskola, Institutionen för materialvetenskap och tillämpad matematik (MTM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7787.
Full textWu, Yi. "Topology optimization in structural dynamics : vibrations, fracture resistance and uncertainties." Thesis, Paris Est, 2022. http://www.theses.fr/2022PESC2007.
Full textThe objective of this thesis is to develop density based-topology optimization methods for several challenging dynamic structural problems. First, we propose a normalization strategy for elastodynamics to obtain optimized material distributions of the structures that reduces frequency response and improves the numerical stabilities of the bi-directional evolutionary structural optimization (BESO). Then, to take into account uncertainties in practical engineering problems, a hybrid interval uncertainty model is employed to efficiently model uncertainties in dynamic structural optimization. A perturbation method is developed to implement an uncertainty-insensitive robust dynamic topology optimization in a form that greatly reduces the computational costs. In addition, we introduce a model of interval field uncertainty into dynamic topology optimization. The approach is applied to single material, composites and multi-scale structures topology optimization. Finally, we develop a topology optimization for dynamic brittle fracture structural resistance, by combining topology optimization with dynamic phase field fracture simulations. This framework is extended to design impact-resistant structures. In contrast to stress-based approaches, the whole crack propagation is taken into account into the optimization process
Li, Tianyi. "Gradient-damage modeling of dynamic brittle fracture : variational principles and numerical simulations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX042/document.
Full textIn civil engineering, mechanical integrity of the reinforced concrete structures under severe transient dynamic loading conditions is of paramount importance for safety and calls for an accurate assessment of structural behaviors in presence of dynamic crack propagation. In this work, we focus on the constitutive modeling of concrete regarded as an elastic-damage brittle material. The strain localization evolution is governed by a gradient-damage approach where a scalar field achieves a smeared description of dynamic fracture phenomena. The contribution of the present work is both theoretical and numerical. We propose a variationally consistent formulation of dynamic gradient damage models. A formal definition of several energy release rate concepts in the gradient damage model is given and we show that the dynamic crack tip equation of motion is governed by a generalized Griffith criterion. We then give an efficient numerical implementation of the model based on a standard finite-element spatial discretization and the Newmark time-stepping methods in a parallel computing framework. Simulation results of several problems are discussed both from a computational and physical point of view. Different damage constitutive laws and tension-compression asymmetry formulations are compared with respect to their aptitude to approximate brittle fracture. Specific properties of the dynamic gradient damage model are investigated for different phases of the crack evolution: nucleation, initiation, propagation, arrest, kinking and branching. Comparisons with experimental results are also performed in order to validate the model and indicate its further improvement
Goswami, Somdatta [Verfasser], Timon [Akademischer Betreuer] Rabczuk, Stephane [Gutachter] Bordas, and Magd Abel [Gutachter] Wahab. "Phase field modeling of fracture with isogeometric analysis and machine learning methods / Somdatta Goswami ; Gutachter: Stephane Bordas, Magd Abel Wahab ; Betreuer: Timon Rabczuk." Weimar : Bauhaus-Universität Weimar, 2021. http://d-nb.info/122878924X/34.
Full textKramer, Sharlotte Lorraine Bolyard Ravichandran G. (Guruswami) Ravichandran G. (Guruswami) Bhattacharya Kaushik. "Phase-shifting full-field interferometric methods for in-plane tensorial stress determination for fracture studies /cSharlotte Lorraine Bolyard Kramer ; Guruswami Ravichandran, committee chair and advisor ; Kaushik Bhattacharya, co-advisor." Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-05272009-094456.
Full textAgrawal, Vaibhav. "Multiscale Phase-field Model for Phase Transformation and Fracture." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/850.
Full textRiad, Soukaina. "Vers une modélisation de la corrosion sous contrainte assistée par l'irradiation du superalliage 718." Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0039.
Full textInconel 718 alloy is renowned for having excellent corrosion resistance, very high mechanical strength and good resistance to irradiation. Thus, it is a material of choice within a nuclear power reactor for parts subjected to extreme stresses (springs, retaining systems,...). However, failures in service have been observed in this material under irradiationassisted stress corrosion cracking phenomenon. This thesis aims to bring new elements of understanding of this complex phenomenon from the point of view of numerical modeling. The stress corrosion cracking process is modeled by the phase field fracture method. A unified implementation, able to deal with inter and intergranular fracture, is proposedand allows to couple efficiently different scales of work (from continuous medium to polycrystal) and different physics (mechanics of continuous and generalized media and internal oxidation). This modeling allows to propose simulations of the complex stages of stress corrosion cracking, namely initiation, coalescence and propagation
Abdollahi, Amir. "Phase-field modeling of fracture in ferroelectric materials." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285833.
Full textLos materiales ferroeléctricos poseen únicas propiedades electro-mecánicas y por eso se utilizan para los micro-dispositivos como sensores, actuadores y transductores. No obstante, debido a la fragilidad intrínseca de los ferroeléctricos, el diseño óptimo de los dispositivos electro-mecánicos es altamente dependiente de la comprensión del comportamiento de fractura en estos materiales. Los procesos de fractura en ferroeléctricos son notoriamente complejos, sobre todo debido a las interacciones entre campos de tensión y eléctricos y los fenómenos localizados en zona de fractura (formación y evolución de los dominios de las diferentes variantes cristalográficas). Los modelos de campo de fase son particularmente útiles para un problema tan complejo, ya que una sola ecuación diferencial parcial que gobierna el campo de fase lleva a cabo a la vez (1) el seguimiento de las interfaces de una manera suave (grietas, paredes de dominio) y (2) la modelización de los fenómenos interfaciales como las energías de la pared de dominio o las condiciones de las caras de grieta. Tal modelo no tiene ninguna dificultad, por ejemplo en la descripción de la nucleación de los dominios y las grietas o la ramificación y la fusión de las grietas. Además, la naturaleza variacional de estos modelos facilita el acoplamiento de múltiples físicas (campos eléctricos y mecánicos en este caso). La principal aportación de esta tesis es la propuesta de un modelo campo de fase para la simulación de la formación y evolución de la microestructura y la nucleación y propagación de grietas en materiales ferroeléctricos. El modelo aúna dos modelos de campo de fase para la fractura frágil y para la formación de dominios ferroeléctricos. La aplicación de elementos finitos a la teoría es descrita. Las simulaciones muestran las interacciones entre la microestructura y la fractura del bajo cargas mecánicas y electro-mecánicas. Otro de los objetivos de esta tesis es la codificación de diferentes condiciones de contorno de grieta porque estas condiciones afectan en gran medida el comportamiento de la fractura de ferroeléctricos. La imposición de estas condiciones se discuten y se comparan con los resultados de modelos clasicos para validar los modelos propuestos. Las simulaciones muestran los efectos de diferentes condiciones, cargas electro-mecánicas y medios que llena el hueco de la grieta en la propagación de las fisuras y la microestructura del material. En un tercer paso, el modelo se modifica mediante la introducción de una condición que representa el comportamiento asimétrico en tensión y compresión. El modelo modificado hace posible explicar el crecimiento de la grieta anisotrópica en ferroeléctricos. Este modelo también se utiliza para el análisis de la fractura de los actuadores ferroeléctricos, lo que demuestra el potencial del modelo para su futura aplicación. El modelo se extiende también a policristales mediante la introducción de microestructuras policristalinas realistas en el modelo. Modos de fractura inter y trans-granulares de propagación se observan en las simulaciones. Por último y para completar, la teoría del campo de fase se extiende para la simulación de las grietas conductivas y algunas simulaciones preliminares también se realizan en tres dimensiones. Principales características del fenómeno de la propagación de la grieta predicho por las simulaciones de esta tesis se comparan directamente con las observaciones experimentales.
Muixí, Ballonga Alba. "Locally adaptive phase-field models and transition to fracture." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669747.
Full textEn aquesta tesi es proposa un nou model computacional per a simular la propagació de fractures de manera eficient, a partir de la combinació d’un model de camp de fase en petits subdominis al voltant dels extrems de les fissures, i d’un model discontinu a la resta del domini. El model combinat manté els avantatges de tots dos tipus de model. El model continu determina la propagació de la fissura, i el model discontinu descriu explícitament la fissura en gairebé tot del domini, amb una discretització més grollera i el conseqüent estalvi en cost computacional. Als subdominis de camp de fase, la discretització es refina per tal d’aproximar bé la solució, mentre que a la part discontínua, les fissures s’incorporen a la discretització grollera a partir de l’eXtended Finite Element Method (XFEM). A mesura que les fissures es propaguen pel domini, la discretització s’actualitza automàticament i, lluny dels extrems, la representació suavitzada de les fissures a partir del camp de fase es reemplaça per una representació discontínua. El primer pas és definir una estratègia de refinament adaptatiu pels models continus de camp de fase. En aquesta tesi es proposen dues alternatives diferents. Totes dues consideren dos tipus d’elements, estàndards i refinats, que es mapen a la malla inicial. Als elements refinats, l’espai d’aproximació es refina uniformement. La continuïtat entre elements de tipus diferent s’imposa en forma feble per facilitar el tractament de les aproximacions no conformes, sense que s’escampi el refinament ni haver d’imposar restriccions als nodes de la interfície, donant lloc a un refinament molt localitzat. La primera estratègia adaptativa es basa en una formulació Hybridizable Discontinuous Galerkin (HDG) del problema, que imposa continuïtat entre elements en forma feble. La segona es basa en una formulació contínua més eficient; es fa servir una aproximació contínua del Mètode dels Elements Finits a les regions estàndards i refinades i, aleshores, a la interfície entre les dues regions s’imposa la continuïtat en forma feble amb el mètode de Nitsche. Les estratègies adaptatives refinen la discretització a mesura que les fissures es propaguen, i es poden afegir a un codi per a models de camp de fase de manera senzilla. No obstant, el cost computacional es pot reduir encara més fent servir el model combinat. Lluny dels extrems de les fissures, la representació suavitzada del camp de fase es substitueix per discontinuïtats en una discretització de XFEM, i els elements es desrefinen. El model combinat es formula a partir de l’estratègia adaptativa contínua. Els exemples numèrics inclouen bifurcació i coalescència de fissures, i un exemple en 3D.
Books on the topic "Phase field fracture method"
Miguel Torre do Vale Arriaga e Cunha. Stability Analysis of Metals Capturing Brittle and Ductile Fracture through a Phase Field Method and Shear Band Localization. [New York, N.Y.?]: [publisher not identified], 2016.
Find full textservice), SpringerLink (Online, ed. Field Theoretic Method in Phase Transformations. New York, NY: Springer New York, 2012.
Find full textUmantsev, Alexander. Field Theoretic Method in Phase Transformations. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1487-2.
Full textCorsi, Daniele, and Cèlia Nadal Pasqual. Studi Iberici. Dialoghi dall’Italia. Venice: Fondazione Università Ca’ Foscari, 2021. http://dx.doi.org/10.30687/978-88-6969-505-6.
Full textMazo, Aleksandr, and Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Full textWick, Thomas. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. de Gruyter GmbH, Walter, 2020.
Find full textField Theoretic Method In Phase Transformations. Springer, 2012.
Find full textUmantsev, Alexander. Field Theoretic Method in Phase Transformations. Springer, 2012.
Find full textVondrous, Alexander. Grain Growth Behavior and Efficient Large Scale Simulations of Recrystallization With the Phase-field Method. Saint Philip Street Press, 2020.
Find full textBoudreau, Joseph F., and Eric S. Swanson. Quantum field theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0024.
Full textBook chapters on the topic "Phase field fracture method"
Borden, Michael J., Thomas J. R. Hughes, Chad M. Landis, Amin Anvari, and Isaac J. Lee. "Phase-Field Formulation for Ductile Fracture." In Computational Methods in Applied Sciences, 45–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60885-3_3.
Full textBilgen, C., A. Kopaničáková, R. Krause, and K. Weinberg. "A Phase-Field Approach to Pneumatic Fracture." In Non-standard Discretisation Methods in Solid Mechanics, 217–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92672-4_9.
Full textHudobivnik, Blaž, Fadi Aldakheel, and Peter Wriggers. "Adaptive Virtual Element Method for Large-Strain Phase-Field Fracture." In Current Trends and Open Problems in Computational Mechanics, 195–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87312-7_20.
Full textKuhn, Charlotte, Timo Noll, Darius Olesch, and Ralf Müller. "Phase Field Modeling of Brittle and Ductile Fracture." In Non-standard Discretisation Methods in Solid Mechanics, 283–325. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92672-4_11.
Full textDe Lorenzis, Laura, and Tymofiy Gerasimov. "Numerical Implementation of Phase-Field Models of Brittle Fracture." In Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, 75–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37518-8_3.
Full textAlessi, R., M. Ambati, T. Gerasimov, S. Vidoli, and L. De Lorenzis. "Comparison of Phase-Field Models of Fracture Coupled with Plasticity." In Computational Methods in Applied Sciences, 1–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60885-3_1.
Full textDimaki, Andrey V., and Evgeny V. Shilko. "Theoretical Study of Physico-mechanical Response of Permeable Fluid-Saturated Materials Under Complex Loading Based on the Hybrid Cellular Automaton Method." In Springer Tracts in Mechanical Engineering, 485–501. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_21.
Full textRabczuk, Timon, Huilong Ren, and Xiaoying Zhuang. "Nonlocal Operator Method for Dynamic Brittle Fracture Based on an Explicit Phase Field Model." In Computational Methods Based on Peridynamics and Nonlocal Operators, 243–69. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20906-2_9.
Full textYoshioka, Keita, Mathias Nest, Daniel Pötschke, Amir Shoarian Sattari, Patrick Schmidt, and David Krach. "Numerical Platform." In GeomInt–Mechanical Integrity of Host Rocks, 63–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61909-1_3.
Full textSteinke, Christian, Imadeddin Zreid, and Michael Kaliske. "Modelling of Ductile Fracture of Strain-hardening Cement-based Composites - Novel Approaches Based on Microplane and Phase-field Method." In Plasticity, Damage and Fracture in Advanced Materials, 175–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34851-9_10.
Full textConference papers on the topic "Phase field fracture method"
Sondershaus, R., and R. Müller. "Phase field model for simulating fracture of ice." In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.219.
Full textLiao, Minmao, and Peng Ma. "Computation of brittle phase field fracture by the quadrature element method." In BIC 2022: 2022 2nd International Conference on Bioinformatics and Intelligent Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3523286.3524557.
Full textYvonnet, J. "Phase field method for microcracking simulations in concrete microstructure models obtained from 3D microtomography images." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.233759.
Full textFei, Fan, Andre Costa, John E. Dolbow, Randolph R. Settgast, and Matteo Cusini. "Phase-Field Simulation of Near-Wellbore Nucleation and Propagation of Hydraulic Fractures in Enhanced Geothermal Systems (EGS)." In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212251-ms.
Full textHe, Xupeng, Zhen Zhang, Marwah AlSinan, Yiteng Li, Hyung Kwak, and Hussein Hoteit. "Uncertainty and Sensitivity Analysis of Multi-Phase Flow in Fractured Rocks: A Pore-To-Field Scale Investigation." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210131-ms.
Full textTsitova, A. "Experimental and numerical study of crack propagation with the phase field method: application to three-point bending test." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.233322.
Full textLi, Wei. "Phase-Field Fracture Simulation of Dual-Cooled Annular Fuel Pellet." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92230.
Full textJammoul, Mohamad, and Mary Wheeler. "A Phase-Field Based Approach for Modeling the Cementation and Shear Slip of Fracture Networks." In SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203906-ms.
Full textFranke, Marlon, Christian Hesch, and Maik Dittmann. "A HIGHER ORDER PHASE-FIELD APPROACH TO FRACTURE FOR FINITE-DEFORMATION CONTACT PROBLEMS." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2295.9907.
Full textKUMAR, AKASH, and TRISHA SAIN. "PHASE FIELD BASED COHESIVE ZONE FRACTURE APPROACH TO MODEL ANISOTROPIC EFFECT AND INTERFACE FRACTURE IN FIBER REINFORCED POLYMER COMPOSITES." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36400.
Full textReports on the topic "Phase field fracture method"
Robertson, Brett Anthony. Phase Field Fracture Mechanics. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1227184.
Full textBiner, Bullent, Michael Tonks, Paul C. Millett, Yulan Li, Shenyang Y. Hu, Fei Gao, Xin Sun, E. Martinez, and D. Anderson. PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1059624.
Full textTupek, Michael R. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1409369.
Full textAuthor, Not Given. Brittle fracture phase-field modeling of a short-rod specimen. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225864.
Full textLandis, Chad M., and Thomas J. Hughes. Phase-Field Modeling and Computation of Crack Propagation and Fracture. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603638.
Full textCulp, David, Nathan Miller, and Laura Schweizer. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1378175.
Full textYue, Dick K. Assimilation of Three-Dimensional Phase-Resolved Wave-Field Data Using an Efficient High-Order Spectral Method. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada626896.
Full textFried, Eliot, and Morton E. Gurtin. Continuum mechanical and computational aspects of phase field elasticity as applied to phase transitions and fracture. Final report: DE-FG02-97ER25318, June 1, 1997 - May 31, 2000. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/808066.
Full textAllen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam, and Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42605.
Full textConrady, Morgan, Markus Bauer, Kyoo Jo, Donald Cropek, and Ryan Busby. Solid-phase microextraction (SPME) for determination of geosmin and 2-methylisoborneol in volatile emissions from soil disturbance. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42289.
Full text