Academic literature on the topic 'Phase Field Fracture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase Field Fracture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phase Field Fracture"

1

Zhao, Jinzhou, Qing Yin, John McLennan, Yongming Li, Yu Peng, Xiyu Chen, Cheng Chang, Weiyang Xie, and Zhongyi Zhu. "Iteratively Coupled Flow and Geomechanics in Fractured Poroelastic Reservoirs: A Phase Field Fracture Model." Geofluids 2021 (December 20, 2021): 1–13. http://dx.doi.org/10.1155/2021/6235441.

Full text
Abstract:
Fluid-solid coupling in fractured reservoirs plays a critical role for optimizing and managing in energy and geophysical engineering. Computational difficulties associated with sharp fracture models motivate phase field fracture modeling. However, for geomechanical problems, the fully coupled hydromechanical modeling with the phase field framework is still under development. In this work, we propose a fluid-solid fully coupled model, in which discrete fractures are regularized by the phase field. Specifically, this model takes into account the complex coupled interaction of Darcy-Biot-type fluid flow in poroelastic media, Reynolds lubrication governing flow inside fractures, mass exchange between fractures and matrix, and the subsequent geomechanical response of the solid. An iterative coupling method is developed to solve this multifield problem efficiently. We present numerical studies that demonstrate the performance of our model.
APA, Harvard, Vancouver, ISO, and other styles
2

Ni, Lin, Xue Zhang, Liangchao Zou, and Jinsong Huang. "Phase-field modeling of hydraulic fracture network propagation in poroelastic rocks." Computational Geosciences 24, no. 5 (April 19, 2020): 1767–82. http://dx.doi.org/10.1007/s10596-020-09955-4.

Full text
Abstract:
Abstract Modeling of hydraulic fracturing processes is of great importance in computational geosciences. In this paper, a phase-field model is developed and applied for investigating the hydraulic fracturing propagation in saturated poroelastic rocks with pre-existing fractures. The phase-field model replaces discrete, discontinuous fractures by continuous diffused damage field, and thus is capable of simulating complex cracking phenomena such as crack branching and coalescence. Specifically, hydraulic fracturing propagation in a rock sample of a single pre-existing natural fracture or natural fracture networks is simulated using the proposed model. It is shown that distance between fractures plays a significant role in the determination of propagation direction of hydraulic fracture. While the rock permeability has a limited influence on the final crack topology induced by hydraulic fracturing, it considerably impacts the distribution of the fluid pressure in rocks. The propagation of hydraulic fractures driven by the injected fluid increases the connectivity of the natural fracture networks, which consequently enhances the effective permeability of the rocks.
APA, Harvard, Vancouver, ISO, and other styles
3

Berry, M. D., D. W. Stearns, and M. Friedman. "THE DEVELOPMENT OF A FRACTURED RESERVOIR MODEL FOR THE PALM VALLEY GAS FIELD." APPEA Journal 36, no. 1 (1996): 82. http://dx.doi.org/10.1071/aj95005.

Full text
Abstract:
A fractured reservoir model has been developed for the Palm Valley gas field, located WSW of Alice Springs, in the Amadeus Basin, NT. Definition of this complex, naturally fractured, Ordovician gas reservoir has required an integrated approach involving multiple studies to develop the geological model that has formed the basis for reservoir simulation and the rationale for the location of new wells. In addition, new seismic data provided fundamental input to the structure/fracture model of the field. Results suggest a primary, northsouth compression for the origin of structures in the basin and that Palm Valley resulted from a single, balanced folding phase. The seismic data show that Palm Valley is not an arcuate anticline as previously mapped, but is an elongate WSW to ENE trending, doubly plunging anticline with an offset crest and minor reverse faults at reservoir level. Investigations have shown that the majority of fractures in the reservoir outcrop are extremely ordered and there is definite structural control of the fracture spacing in the brittle reservoir rocks. Fracture trajectory and fracture intensity maps have been constructed, the latter providing the mechanism for distribution of fracture parameters around the field. The orientation of fractures measured at depth in the reservoir match exactly the fractures predicted from the structure/fracture model. This is the first time a fractured reservoir model that has been developed for Palm Valley, and it will form the basis for the further study and future development of the field.
APA, Harvard, Vancouver, ISO, and other styles
4

Tsoflias, Georgios P., Jean‐Paul Van Gestel, Paul L. Stoffa, Donald D. Blankenship, and Mrinal Sen. "Vertical fracture detection by exploiting the polarization properties of ground‐penetrating radar signals." GEOPHYSICS 69, no. 3 (May 2004): 803–10. http://dx.doi.org/10.1190/1.1759466.

Full text
Abstract:
Vertically oriented thin fractures are not always detected by conventional single‐polarization reflection profiling ground‐penetrating radar (GPR) techniques. We study the polarization properties of EM wavefields and suggest multipolarization acquisition surveying to detect the location and azimuth of vertically oriented fractures. We employ analytical solutions, 3D finite‐difference time‐domain modeling, and field measurements of multipolarization GPR data to investigate EM wave transmission through fractured geologic formations. For surface‐based multipolarization GPR measurements across vertical fractures, we observe a phase lead when the incident electric‐field component is oriented perpendicular to the plane of the fracture. This observation is consistent for nonmagnetic geologic environments and allows the determination of vertical fracture location and azimuth based on the presence of a phase difference and a phase lead relationship between varying polarization GPR data.
APA, Harvard, Vancouver, ISO, and other styles
5

Choo, Jinhyun, and Fan Fei. "Phase-field modeling of geologic fracture incorporating pressure-dependence and frictional contact." E3S Web of Conferences 205 (2020): 03004. http://dx.doi.org/10.1051/e3sconf/202020503004.

Full text
Abstract:
Geologic fractures such as joints and faults are central to many problems in energy geotechnics. Notable examples include hydraulic fracturing, injection-induced earthquakes, and geologic carbon storage. Nevertheless, our current capabilities for simulating the development and evolution of geologic fractures in these problems are still insufficient in terms of efficiency and accuracy. Recently, phase-field modeling has emerged as an efficient numerical method for fracture simulation which does not require any algorithm for tracking the geometry of fracture. However, existing phase-field models of fracture neglected two distinct characteristics of geologic fractures, namely, the pressure-dependence and frictional contact. To overcome these limitations, new phase-field models have been developed and described in this paper. The new phase-field models are demonstrably capable of simulating pressure-dependent, frictional fractures propagating in arbitrary directions, which is a notoriously challenging task.
APA, Harvard, Vancouver, ISO, and other styles
6

Santillan Sanchez, David, Hichem Mazighi, and Mustapha Kamel Mihoubi. "Hybrid phase-field modeling of multi-level concrete gravity dam notched cracks." Frattura ed Integrità Strutturale 16, no. 61 (June 19, 2022): 154–75. http://dx.doi.org/10.3221/igf-esis.61.11.

Full text
Abstract:
Phase-field models have become a powerful tool to simulate crack propagation. They regularize the fracture discontinuity and smooth the transition between the intact and the damaged regions. Based on the thermodynamic function and a diffusive field, they regularize the variational approach to fracture that generalizes Griffith’s theory for brittle fracture. Phase-field models are capable to simulate complex fracture patterns efficiently and straightforwardly. In this paper, we introduce a hybrid phase-field approach to simulate the crack propagation in laboratory-scale and life-scale structures. First, we apply our methodology to the three-point bending test on notched laboratory beams. Second, we simulate the fracture propagation in a life-size structure: the Koyna gravity dam. We account for the pressure load inside the fracture, and we study the effect of the position and number of initial fractures in the upstream face and the value of the Griffith critical energy release, on the fracture propagation under a flood event. The position of the fracture plays an important role in the final fracture pattern and crest displacements, whereas the value of the Griffith critical energy release alters the onset of the fracture propagation. We conclude that phase-field models are a promising computational tool that may be applied to real engineering problems.
APA, Harvard, Vancouver, ISO, and other styles
7

Bourne, Stephen J., Lex Rijkels, Ben J. Stephenson, and Emanuel J. M. Willemse. "Predictive Modelling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation." GeoArabia 6, no. 1 (January 1, 2001): 27–42. http://dx.doi.org/10.2113/geoarabia060127.

Full text
Abstract:
ABSTRACT To optimise recovery in naturally fractured reservoirs, the field-scale distribution of fracture properties must be understood and quantified. We present a method to systematically predict the spatial distribution of natural fractures related to faulting and their effect on flow simulations. This approach yields field-scale models for the geometry and permeability of connected fracture networks. These are calibrated by geological, well test and field production data to constrain the distributions of fractures within the inter-well space. First, we calculate the stress distribution at the time of fracturing using the present-day structural reservoir geometry. This calculation is based on a geomechanical model of rock deformation that represents faults as frictionless surfaces within an isotropic homogeneous linear elastic medium. Second, the calculated stress field is used to govern the simulated growth of fracture networks. Finally, the fractures are upscaled dynamically by simulating flow through the discrete fracture network per grid block, enabling field-scale multi-phase reservoir simulation. Uncertainties associated with these predictions are considerably reduced as the model is constrained and validated by seismic, borehole, well test and production data. This approach is able to predict physically and geologically realistic fracture networks. Its successful application to outcrops and reservoirs demonstrates that there is a high degree of predictability in the properties of natural fracture networks. In cases of limited data, field-wide heterogeneity in fracture permeability can be modelled without the need for field-wide well coverage.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Huimin, J. G. Wang, Feng Gao, and Xiaolin Wang. "A Two-Phase Flowback Model for Multiscale Diffusion and Flow in Fractured Shale Gas Reservoirs." Geofluids 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/5910437.

Full text
Abstract:
A shale gas reservoir is usually hydraulically fractured to enhance its gas production. When the injection of water-based fracturing fluid is stopped, a two-phase flowback is observed at the wellbore of the shale gas reservoir. So far, how this water production affects the long-term gas recovery of this fractured shale gas reservoir has not been clear. In this paper, a two-phase flowback model is developed with multiscale diffusion mechanisms. First, a fractured gas reservoir is divided into three zones: naturally fractured zone or matrix (zone 1), stimulated reservoir volume (SRV) or fractured zone (zone 2), and hydraulic fractures (zone 3). Second, a dual-porosity model is applied to zones 1 and 2, and the macroscale two-phase flow flowback is formulated in the fracture network in zones 2 and 3. Third, the gas exchange between fractures (fracture network) and matrix in zones 1 and 2 is described by a diffusion process. The interactions between microscale gas diffusion in matrix and macroscale flow in fracture network are incorporated in zones 1 and 2. This model is validated by two sets of field data. Finally, parametric study is conducted to explore key parameters which affect the short-term and long-term gas productions. It is found that the two-phase flowback and the flow consistency between matrix and fracture network have significant influences on cumulative gas production. The multiscale diffusion mechanisms in different zones should be carefully considered in the flowback model.
APA, Harvard, Vancouver, ISO, and other styles
9

Bharali, Ritukesh, Fredrik Larsson, and Ralf Jänicke. "Computational homogenisation of phase-field fracture." European Journal of Mechanics - A/Solids 88 (July 2021): 104247. http://dx.doi.org/10.1016/j.euromechsol.2021.104247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Lin, and René de Borst. "Phase-field modelling of cohesive fracture." European Journal of Mechanics - A/Solids 90 (November 2021): 104343. http://dx.doi.org/10.1016/j.euromechsol.2021.104343.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phase Field Fracture"

1

Agrawal, Vaibhav. "Multiscale Phase-field Model for Phase Transformation and Fracture." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/850.

Full text
Abstract:
We address two problems in this thesis. First, a phase-field model for structural phase transformations in solids and second, a model for dynamic fracture. The existing approaches for both phase transformations and fracture can be grouped into two categories. Sharp-interface models, where interfaces are singular surfaces; and regularized-interface models, such as phase-field models, where interfaces are smeared out. The former are challenging for numerical solutions because the interfaces or crack needs to be explicitly tracked, but have the advantage that the kinetics of existing interfaces or cracks and the nucleation of new interfaces can be transparently and precisely prescribed. The diffused interface models such as phasefield models do not require explicit tracking of interfaces and makes them computationally attractive. However, the specification of kinetics and nucleation is both restrictive and extremely opaque in such models. This prevents straightforward calibration of phase-field models to experiment and/or molecular simulations, and breaks the multiscale hierarchy of passing information from atomic to continuum. Consequently, phase-field models cannot be confidently used in dynamic settings. We present a model which has all the advantages of existing phase-field models but also allows us to prescribe kinetics and nucleation criteria. We present a number of examples to characterize and demonstrate the features of the model. We also extend it to the case of multiple phases where preserving kinetics of each kind of interface is more complex. We use the phase transformation model with certain changes to model dynamic fracture. We achieve the advantage of prescribing nucleation and kinetics independent of each other. We demonstrate examples of anisotropic crack propagation and crack propagation on an interface in a composite material. We also report some limitations of phase-field models for fracture which have not been mentioned in the existing literature. These limitations include dependence of effective crack width and hence the effective surface energy on the crack speed, lack of a reasonable approximation for the mechanical response of cracked region and inability to model large deformations.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdollahi, Amir. "Phase-field modeling of fracture in ferroelectric materials." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285833.

Full text
Abstract:
The unique electro-mechanical coupling properties of ferroelectrics make them ideal materials for use in micro-devices as sensors, actuators and transducers. Nevertheless, because of the intrinsic brittleness of ferroelectrics, the optimal design of the electro-mechanical devices is strongly dependent on the understanding of the fracture behavior in these materials. Fracture processes in ferroelectrics are notoriously complex, mostly due to the interactions between the crack tip stress and electric fields and the localized switching phenomena in this zone (formation and evolution of domains of different crystallographic variants). Phase-field models are particularly interesting for such a complex problem, since a single partial differential equation governing the phase-field accomplishes at once (1) the tracking of the interfaces in a smeared way (cracks, domain walls) and (2) the modeling of the interfacial phenomena such as domain-wall energies or crack face boundary conditions. Such a model has no difficulty for instance in describing the nucleation of domains and cracks or the branching and merging of cracks. Furthermore, the variational nature of these models makes the coupling of multiple physics (electrical and mechanical fields in this case) very natural. The main contribution of this thesis is to propose a phase-field model for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single crystal ferroelectric materials. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. The finite element implementation of the theory is described. Simulations show the interactions between the microstructure and the crack under mechanical and electro-mechanical loadings. Another objective of this thesis is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions, electro-mechanical loadings and media filling the crack gap on the crack propagation and the microstructure of the material. In a third step, the coupled model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future application. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally and for completeness, the phase-field theory is extended for the simulation of conducting cracks and some preliminary simulations are also performed in three dimensions. Salient features of the crack propagation phenomenon predicted by the simulations of this thesis are directly compared with experimental observations.
Los materiales ferroeléctricos poseen únicas propiedades electro-mecánicas y por eso se utilizan para los micro-dispositivos como sensores, actuadores y transductores. No obstante, debido a la fragilidad intrínseca de los ferroeléctricos, el diseño óptimo de los dispositivos electro-mecánicos es altamente dependiente de la comprensión del comportamiento de fractura en estos materiales. Los procesos de fractura en ferroeléctricos son notoriamente complejos, sobre todo debido a las interacciones entre campos de tensión y eléctricos y los fenómenos localizados en zona de fractura (formación y evolución de los dominios de las diferentes variantes cristalográficas). Los modelos de campo de fase son particularmente útiles para un problema tan complejo, ya que una sola ecuación diferencial parcial que gobierna el campo de fase lleva a cabo a la vez (1) el seguimiento de las interfaces de una manera suave (grietas, paredes de dominio) y (2) la modelización de los fenómenos interfaciales como las energías de la pared de dominio o las condiciones de las caras de grieta. Tal modelo no tiene ninguna dificultad, por ejemplo en la descripción de la nucleación de los dominios y las grietas o la ramificación y la fusión de las grietas. Además, la naturaleza variacional de estos modelos facilita el acoplamiento de múltiples físicas (campos eléctricos y mecánicos en este caso). La principal aportación de esta tesis es la propuesta de un modelo campo de fase para la simulación de la formación y evolución de la microestructura y la nucleación y propagación de grietas en materiales ferroeléctricos. El modelo aúna dos modelos de campo de fase para la fractura frágil y para la formación de dominios ferroeléctricos. La aplicación de elementos finitos a la teoría es descrita. Las simulaciones muestran las interacciones entre la microestructura y la fractura del bajo cargas mecánicas y electro-mecánicas. Otro de los objetivos de esta tesis es la codificación de diferentes condiciones de contorno de grieta porque estas condiciones afectan en gran medida el comportamiento de la fractura de ferroeléctricos. La imposición de estas condiciones se discuten y se comparan con los resultados de modelos clasicos para validar los modelos propuestos. Las simulaciones muestran los efectos de diferentes condiciones, cargas electro-mecánicas y medios que llena el hueco de la grieta en la propagación de las fisuras y la microestructura del material. En un tercer paso, el modelo se modifica mediante la introducción de una condición que representa el comportamiento asimétrico en tensión y compresión. El modelo modificado hace posible explicar el crecimiento de la grieta anisotrópica en ferroeléctricos. Este modelo también se utiliza para el análisis de la fractura de los actuadores ferroeléctricos, lo que demuestra el potencial del modelo para su futura aplicación. El modelo se extiende también a policristales mediante la introducción de microestructuras policristalinas realistas en el modelo. Modos de fractura inter y trans-granulares de propagación se observan en las simulaciones. Por último y para completar, la teoría del campo de fase se extiende para la simulación de las grietas conductivas y algunas simulaciones preliminares también se realizan en tres dimensiones. Principales características del fenómeno de la propagación de la grieta predicho por las simulaciones de esta tesis se comparan directamente con las observaciones experimentales.
APA, Harvard, Vancouver, ISO, and other styles
3

Muixí, Ballonga Alba. "Locally adaptive phase-field models and transition to fracture." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669747.

Full text
Abstract:
This thesis proposes a new computational model for the efficient simulation of crack propagation, through the combination of a phase-field model in small subdomains around crack tips and a discontinuous model in the rest of the domain. The combined model inherits the advantages of both approaches. The phase-field model determines crack propagation at crack tips, and the discontinuous model explicitly describes the crack elsewhere, enabling to use a coarser discretization and thus reducing the computational cost. In crack-tip subdomains, the discretization is refined to capture the phase-field solution, while in the discontinuous part, sharp cracks are incorporated into the coarse background discretization by the eXtended Finite Element Method (XFEM). As crack-tip subdomains move with crack growth, the discretization is automatically updated and phase-field bands are replaced by sharp cracks in the wake of cracks. The first step is the development of an adaptive refinement strategy for phase-field models. To this end, two alternatives are proposed. Both of them consider two types of elements, standard and refined, which are mapped into a fixed background mesh. In refined elements, the space of approximation is uniformly $h$-refined. Continuity between elements of different type is imposed in weak form to handle the non-conformal approximations in a natural way, without spreading of refinement nor having to deal with hanging nodes, leading to a very local refinement along cracks. The first adaptive strategy relies on a Hybridizable Discontinuous Galerkin (HDG) formulation of the problem, in which continuity between elements is imposed in weak form. The second one is based on a more efficient Continuous Galerkin (CG) formulation; a continuous FEM approximation is used in the standard and refined regions and, then, continuity on the interface between regions is imposed in weak form by Nitsche's method. The proposed strategies robustly refine the discretization as cracks propagate and can be easily incorporated into a working code for phase-field models. However, the computational cost can be further reduced by transitioning to the discontinuous in the combined model. In the wake of crack tips, the phase-field diffuse cracks are replaced by XFEM discontinuous cracks and elements are derefined. The combined model is studied within the adaptive CG formulation. Numerical experiments include branching and coalescence of cracks, and a fully 3D test.
En aquesta tesi es proposa un nou model computacional per a simular la propagació de fractures de manera eficient, a partir de la combinació d’un model de camp de fase en petits subdominis al voltant dels extrems de les fissures, i d’un model discontinu a la resta del domini. El model combinat manté els avantatges de tots dos tipus de model. El model continu determina la propagació de la fissura, i el model discontinu descriu explícitament la fissura en gairebé tot del domini, amb una discretització més grollera i el conseqüent estalvi en cost computacional. Als subdominis de camp de fase, la discretització es refina per tal d’aproximar bé la solució, mentre que a la part discontínua, les fissures s’incorporen a la discretització grollera a partir de l’eXtended Finite Element Method (XFEM). A mesura que les fissures es propaguen pel domini, la discretització s’actualitza automàticament i, lluny dels extrems, la representació suavitzada de les fissures a partir del camp de fase es reemplaça per una representació discontínua. El primer pas és definir una estratègia de refinament adaptatiu pels models continus de camp de fase. En aquesta tesi es proposen dues alternatives diferents. Totes dues consideren dos tipus d’elements, estàndards i refinats, que es mapen a la malla inicial. Als elements refinats, l’espai d’aproximació es refina uniformement. La continuïtat entre elements de tipus diferent s’imposa en forma feble per facilitar el tractament de les aproximacions no conformes, sense que s’escampi el refinament ni haver d’imposar restriccions als nodes de la interfície, donant lloc a un refinament molt localitzat. La primera estratègia adaptativa es basa en una formulació Hybridizable Discontinuous Galerkin (HDG) del problema, que imposa continuïtat entre elements en forma feble. La segona es basa en una formulació contínua més eficient; es fa servir una aproximació contínua del Mètode dels Elements Finits a les regions estàndards i refinades i, aleshores, a la interfície entre les dues regions s’imposa la continuïtat en forma feble amb el mètode de Nitsche. Les estratègies adaptatives refinen la discretització a mesura que les fissures es propaguen, i es poden afegir a un codi per a models de camp de fase de manera senzilla. No obstant, el cost computacional es pot reduir encara més fent servir el model combinat. Lluny dels extrems de les fissures, la representació suavitzada del camp de fase es substitueix per discontinuïtats en una discretització de XFEM, i els elements es desrefinen. El model combinat es formula a partir de l’estratègia adaptativa contínua. Els exemples numèrics inclouen bifurcació i coalescència de fissures, i un exemple en 3D.
APA, Harvard, Vancouver, ISO, and other styles
4

Ziaei-Rad, Vahid. "Phase field approach to fracture : massive parallelization and crack identification." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/396154.

Full text
Abstract:
The phase field method has proven to be an important tool in computational fracture mechanics in that it does not require complicated crack tracking and is able to predict crack nucleation and branching. However, the computational cost of such a method is high due to a small regularization length parameter, which in turns restricts the maximum element size that can be used in a finite element mesh. In this work, we developed a massively parallel algorithm on the graphical processing unit (GPU) to alleviate this difficulty in the case of dynamic brittle fracture. In particular, we adopted the standard finite element method on an unstructured mesh combined with second order explicit integrators. As the explicit methods fit nicely with the GPU paradigm especially in terms of thread and memory hierarchy, we solve an elastodynamic problem when the phase field update is based on a gradient flow, so that a fully explicit implementation is feasible. To ensure stability, we designed a time adaptivity strategy to account for the decreasing critical time step during the evolution of the fields. We demonstrated the performance of the GPU-implemented phase field models by means of representative numerical examples, with which we studied the effect of the artificial viscosity, an artificial parameter to be input, and compared the crack path branching predictions from three popular phase field models. Moreover, we verified the method with convergence studies and performed a scalability study to demonstrate the desired linear scaling of the program in terms of the wall time per physical time as a function of the number of degrees of freedom. One of the main ideas of the phase field method is to employ a smeared representation of discrete cracks. However, in some applications it is still convenient to have the explicit crack path available, or even to develop a mechanism to introduce crack paths to partially replace a smeared crack propagation model. In this work, we presents a variational method to identify the crack path from phase field approaches to fracture. The method is proven to be successful not only for a simple curved crack but also for multiple and branched cracks. The algorithm employs the non-maximum suppression technique, a procedure borrowed from the image processing field, to detect a bounding area which covers the ridge of the phase field profile. After that, it is continued with the step to determine a cubic spline to represent the crack path and to improve it via a constrained optimization process. To demonstrate the performance of our method, we provide the results with three sets of representative examples. The developed algorithm can be combined with one on crack opening, for more elaborate interpretation of phase field simulations. This is the topic of the next part of the work. In this dissertation, we also provide a variational way to calculate the crack opening from phase field approaches to fracture. We also demonstrate the performance of our method with three sets of representative examples, and verify the results with a proper benchmark. Having the crack geometry available from a phase field approach can provide more elaborate interpretation of the phase field simulations. It may also offer a possibility of developing less expensive numerical schemes for a fluid-driven crack propagation of impermeable solids. This will be the topic of our future work.
El método de phase field ha demostrado ser una herramienta importante en la mecánica de fractura computacional el cual no requiere el seguimiento complicado de una fractura y es capaz de predecir la nucleación y la ramificación. Sin embargo, el coste computacional de un método de este tipo es alto debido a un pequeño parámetro de regularización de longitud, que a su vez limita el tamaño del elemento máximo que se puede utilizar en una malla de los elementos finitos. En esta disertación, hemos desarrollado un algoritmo paralelo de forma masiva en la unidad de procesamiento gráfico (GPU) para aliviar esta dificultad en el caso de rotura frágil dinámica. En particular, hemos adoptado el método de los elementos finitos en una malla no estructurada combinada con integradores explícitos de segundo orden. A medida que los métodos explícitos encajan adecuadamente con el paradigma de la GPU especialmente en términos de hilo y la jerarquía de memoria, se resuelve un problema de elastodinámica cuando la actualización de phase field se basa en un flujo de gradiente, de modo que una implementación totalmente explícita es factible. Para asegurar la estabilidad, se diseñó una estrategia adaptativa de tiempo para tener en cuenta la disminución del paso de tiempo crítico durante la evolución de los campos. Hemos demostrado el rendimiento de los modelos de phase field GPU-implementado por medio de ejemplos numéricos representativos, con los que se estudió el efecto de la viscosidad artificial, un parámetro artificial que sirva como entrada, y se compara las predicciones de la trayectoria ramificada de la grieta a partir de tres modelos de phase field populares. Por otra parte, se verificó el método de convergencia con los estudios y se realizó un estudio para demostrar la escala lineal deseada del programa en términos del tiempo de reloj de pared por el tiempo físico en función del número de grados de libertad. Una de las ideas principales del método de phase field es emplear una representación distribuida de una grieta discreta. Sin embargo, en algunas aplicaciones todavía es conveniente tener la ruta de grieta explícita disponible, o incluso desarrollar un mecanismo para introducir caminos de crack con el objetivo de sustituir en parte un modelo de fisura distribuida de propagación. En esta disertación, se presenta un método variacional para identificar la ruta de grietas en los enfoques de phase field en problemas de fractura. El método ha demostrado ser un éxito no sólo por una simple grieta curvada, sino también por múltiples grietas y ramificadas. El algoritmo emplea la técnica de supresión no máxima, un procedimiento tomado del campo de procesamiento de imágenes, para detectar un área de delimitación que cubre la cresta del perfil de phase field. A continuación, se continúa con la etapa de determinar un spline cúbico para representar la trayectoria de la grieta y mejorarlo a través de un proceso de optimización restringida. Para demostrar la eficacia de nuestro método, proporcionamos los resultados con tres conjuntos de ejemplos representativos. El algoritmo desarrollado se puede combinar con uno en apertura crack, para la interpretación más elaborada de simulaciones de phase field. Este es el tema de la siguiente parte de la tesis. En esta tesis, también ofrecemos una forma variacional para calcular la apertura de grietas de los enfoques de phase field a la fractura. También demostramos el rendimiento de nuestro método con tres conjuntos de ejemplos representativos, y verificar los resultados con un valor de referencia apropiado. Tener la geometría grieta disponible a partir de un enfoque de phase field puede proporcionar una interpretación más elaborada de las simulaciones de phase field. También puede ofrecer una posibilidad de desarrollar esquemas numéricos con menos costes para una propagación de la grieta de accionamiento hidráulico de sólidos impermeables. Este será el tema de nuestro futuro trabajo.
APA, Harvard, Vancouver, ISO, and other styles
5

Omatuku, Emmanuel Ngongo. "Phase field modeling of dynamic brittle fracture at finite strains." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30172.

Full text
Abstract:
Fracture is the total or partial separation of an initially intact body through the propagation of one or several cracks. Computational methods for fracture mechanics are becoming increasingly important in dealing with the nucleation and propagation of these cracks. One method is the phase field approach, which approximates sharp crack discontinuities with a continuous scalar field, the so-called phase field. The latter represents the smooth transition between the intact and broken material phases. The evolution of the phase field due to external loads describes the fracture process. An original length scale is used to govern the diffusive approximation of sharp cracks. This method further employs a degradation function to account for the loss of the material stiffness during fracture by linking the phase field to the body’s bulk energy. To prevent the development of unrealistic crack patterns and interpenetration of crack faces under compression, this study uses the anisotropic split of the bulk energy, as proposed by Amor et al. [5], to model the different fracture behavior in tension, shear and compression. This research is part of a larger project aimed at the modeling of Antarctic sea ice dynamics. One aspect of this project is the modeling of the gradual break-up of the consolidated ice during spring. As a first step, this study reviews a phase field model used for dynamic brittle fracture at finite strains. Subsequently, this model is implemented into the in-house finite element software SESKA to solve the benchmark tension and shear tests on a single-edge notched block. The implementation adopts the so-called monolithic scheme, which computes the displacement and phase field solutions simultaneously, with a Newmark time integration scheme. The results of the solved problems demonstrate the capabilities of the implemented dynamic phase field model to capture the nucleation and propagation of cracks. They further confirm that the choice of length-scale and mesh size influences the solutions. In this regard, a small value of the length-scale converges to the sharp crack topology and yields a larger stress value. On the other hand, a large length-scale parameter combined with a too coarse mesh size can yield unrealistic results.
APA, Harvard, Vancouver, ISO, and other styles
6

Schlueter, Alexander [Verfasser], and Charlotte [Akademischer Betreuer] Kuhn. "Phase Field Modeling of Dynamic Brittle Fracture / Alexander Schlueter ; Betreuer: Charlotte Kuhn." Kaiserslautern : Technische Universität Kaiserslautern, 2018. http://d-nb.info/116213397X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deogekar, Sai Sharad. "A Computational Study of Dynamic Brittle Fracture Using the Phase-Field Method." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439455086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanne, Erwan. "Variational phase-field models from brittle to ductile fracture : nucleation and propagation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX088/document.

Full text
Abstract:
Les simulations numériques des fissures fragiles par les modèles d’endommagement à gradient deviennent main- tenant très répandues. Les résultats théoriques et numériques montrent que dans le cadre de l’existence d’une pre-fissure la propagation suit le critère de Griffith. Alors que pour le problème à une dimension la nucléation de la fissure se fait à la contrainte critique, cette dernière propriété dimensionne le paramètre de longueur interne.Dans ce travail, on s’attarde sur le phénomène de nucléation de fissures pour les géométries communément rencontrées et qui ne présentent pas de solutions analytiques. On montre que pour une entaille en U- et V- l’initiation de la fissure varie continument entre la solution prédite par la contrainte critique et celle par la ténacité du matériau. Une série de vérifications et de validations sur diffèrent matériaux est réalisée pour les deux géométries considérées. On s’intéresse ensuite à un défaut elliptique dans un domaine infini ou très élancé pour illustrer la capacité du modèle à prendre en compte les effets d’échelles des matériaux et des structures.Dans un deuxième temps, ce modèle est étendu à la fracturation hydraulique. Une première phase de vérification du modèle est effectuée en stimulant une pré-fissure seule par l’injection d’une quantité donnée de fluide. Ensuite on étudie la simulation d’un réseau parallèle de fissures. Les résultats obtenus montrent qu’il a qu’une seule fissure qui se propage et que ce type de configuration minimise mieux l’énergie la propagation d’un réseau de fractures. Le dernier exemple se concentre sur la stabilité des fissures dans le cadre d’une expérience d’éclatement à pression imposée pour l’industrie pétrolière. Cette expérience d’éclatement de la roche est réalisée en laboratoire afin de simuler les conditions de confinement retrouvées lors des forages.La dernière partie de ce travail se concentre sur la rupture ductile en couplant le modèle à champ de phase avec les modèles de plasticité parfaite. Grâce à l’approche variationnelle du problème on décrit l’implantation numérique retenue pour le calcul parallèle. Les simulations réalisées montrent que pour une géométrie légèrement entaillée la phénoménologie des fissures ductiles comme par exemple la nucléation et la propagation sont en concordances avec ceux reportées dans la littérature
Phase-field models, sometimes referred to as gradient damage, are widely used methods for the numerical simulation of crack propagation in brittle materials. Theoretical results and numerical evidences show that they can predict the propagation of a pre-existing crack according to Griffith’s criterion. For a one- dimensional problem, it has been shown that they can predict nucleation upon a critical stress, provided that the regularization parameter is identified with the material’s internal characteristic length.In this work, we draw on numerical simulations to study crack nucleation in commonly encountered geometries for which closed-form solutions are not available. We use U- and V-notches to show that the nucleation load varies smoothly from the one predicted by a strength criterion to the one of a toughness criterion when the strength of the stress concentration or singularity varies. We present validation and verification of numerical simulations for both types of geometries. We consider the problem of an elliptic cavity in an infinite or elongated domain to show that variational phase field models properly account for structural and material size effects.In a second movement, this model is extended to hydraulic fracturing. We present a validation of the model by simulating a single fracture in a large domain subject to a control amount of fluid. Then we study an infinite network of pressurized parallel cracks. Results show that the stimulation of a single fracture is the best energy minimizer compared to multi-fracking case. The last example focuses on fracturing stability regimes using linear elastic fracture mechanics for pressure driven fractures in an experimental geometry used in petroleum industry which replicates a situation encountered downhole with a borehole called burst experiment.The last part of this work focuses on ductile fracture by coupling phase-field models with perfect plasticity. Based on the variational structure of the problem we give a numerical implementation of the coupled model for parallel computing. Simulation results of a mild notch specimens are in agreement with the phenomenology of ductile fracture such that nucleation and propagation commonly reported in the literature
APA, Harvard, Vancouver, ISO, and other styles
9

Parrinello, Antonino. "A rate-pressure-dependent thermodynamically-consistent phase field model for the description of failure patterns in dynamic brittle fracture." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:c6590f4f-f4e2-40e3-ada1-49ba35c2a594.

Full text
Abstract:
The investigation of failure in brittle materials, subjected to dynamic transient loading conditions, represents one of the ongoing challenges in the mechanics community. Progresses on this front are required to support the design of engineering components which are employed in applications involving extreme operational regimes. To this purpose, this thesis is devoted to the development of a framework which provides the capabilities to model how crack patterns form and evolve in brittle materials and how they affect the quantitative description of failure. The proposed model is developed within the context of diffusive interfaces which are at the basis of a new class of theories named phase field models. In this work, a set of additional features is proposed to expand their domain of applicability to the modelling of (i) rate and (ii) pressure dependent effects. The path towards the achievement of the first goal has been traced on the desire to account for micro-inertia effects associated with high rates of loading. Pressure dependency has been addressed by postulating a mode-of-failure transition law whose scaling depends upon the local material triaxiality. The governing equations have been derived within a thermodynamically-consistent framework supplemented by the employment of a micro-forces balance approach. The numerical implementation has been carried out within an updated lagrangian finite element scheme with explicit time integration. A series of benchmarks will be provided to appraise the model capabilities in predicting rate-pressure-dependent crack initiation and propagation. Results will be compared against experimental evidences which closely resemble the boundary value problems examined in this work. Concurrently, the design and optimization of a complimentary, improved, experimental characterization platform, based on the split Hopkinson pressure bar, will be presented as a mean for further validation and calibration.
APA, Harvard, Vancouver, ISO, and other styles
10

Kuhn, Charlotte [Verfasser], and Ralf [Akademischer Betreuer] Müller. "Numerical and Analytical Investigation of a Phase Field Model for Fracture / Charlotte Kuhn. Betreuer: Ralf Müller." Kaiserslautern : Technische Universität Kaiserslautern, 2013. http://d-nb.info/1035405563/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phase Field Fracture"

1

Wick, Thomas. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phase Field Fracture"

1

Borden, Michael J., Thomas J. R. Hughes, Chad M. Landis, Amin Anvari, and Isaac J. Lee. "Phase-Field Formulation for Ductile Fracture." In Computational Methods in Applied Sciences, 45–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60885-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schreiber, Christoph, Ralf Müller, and Fadi Aldakheel. "Phase Field Modeling of Fatigue Fracture." In Current Trends and Open Problems in Computational Mechanics, 475–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87312-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jukić, Krešimir, Tomislav Jarak, Karlo Seleš, and Zdenko Tonković. "Adaptive Phase-Field Modeling of Brittle Fracture." In Lecture Notes in Civil Engineering, 145–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7216-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bilgen, C., A. Kopaničáková, R. Krause, and K. Weinberg. "A Phase-Field Approach to Pneumatic Fracture." In Non-standard Discretisation Methods in Solid Mechanics, 217–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92672-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casasnovas, David, and Ángel Rivero. "Fracture Propagation Using a Phase Field Approach." In SxI - Springer for Innovation / SxI - Springer per l'Innovazione, 107–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59223-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hehl, Andreas, Masoumeh Mohammadi, Ira Neitzel, and Winnifried Wollner. "Optimizing Fracture Propagation Using a Phase-Field Approach." In International Series of Numerical Mathematics, 329–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuhn, Charlotte, Timo Noll, Darius Olesch, and Ralf Müller. "Phase Field Modeling of Brittle and Ductile Fracture." In Non-standard Discretisation Methods in Solid Mechanics, 283–325. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92672-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Lorenzis, Laura, and Tymofiy Gerasimov. "Numerical Implementation of Phase-Field Models of Brittle Fracture." In Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, 75–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37518-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Borst, René, Stefan May, and Julien Vignollet. "A Numerical Assessment of Phase-Field Models for Fracture." In Materials with Internal Structure, 17–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21494-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alessi, R., M. Ambati, T. Gerasimov, S. Vidoli, and L. De Lorenzis. "Comparison of Phase-Field Models of Fracture Coupled with Plasticity." In Computational Methods in Applied Sciences, 1–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60885-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phase Field Fracture"

1

Newell, Pania, Louis Schuler, and Anastasia Ilgen. "Geochemically-Assisted Fracture: A phase-field study." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vodička, Roman. "A computational model of interface and phase-field fracture." In FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, S., and R. Müller. "An Efficient Phase Field Model for Fatigue Fracture." In 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII). CIMNE, 2022. http://dx.doi.org/10.23967/wccm-apcom.2022.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Talamini, Brandon, Andrew Stershic, and Michael Tupek. "A variational phase-field model of ductile fracture." In Proposed for presentation at the 16th U.S. National Congress on Computational Mechanics held July 25-29, 2021 in virtual,. US DOE, 2021. http://dx.doi.org/10.2172/1884174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sondershaus, R., and R. Müller. "Phase field model for simulating fracture of ice." In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Wei. "Phase-Field Fracture Simulation of Dual-Cooled Annular Fuel Pellet." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92230.

Full text
Abstract:
Abstract The dual-cooled annular nuclear fuel is an advanced design that is expected to greatly lower fuel temperature even under high linear power density, as compared to traditional cylindrical fuel pin. Although fuel temperature can be much lower, the annular pellet also receives much higher neutron fluence, which may induce severe cracking during normal operation. This work deals with quasi-static cracking of dual-cooled annular UO2 pellet under neutron radiation. The analysis is based on the phase-field fracture model coupled with an oxygen diffusion model, heat conduction model and mechanical equilibrium model. The considered thermo-mechanical properties and irradiation behaviors of the nuclear fuel are both temperature and irradiation dependent. Especially, the acceleration of fuel creep due to oxygen redistribution is included. The fracture is represented by a scalar phase-field variable governed by a cohesive phase-field fracture method. These models are numerically implemented in the multi-physics coupling simulation framework MOOSE. For the first time, the diffusion-thermo-mechanical coupled fracture model is applied to the dual-cooled annular UO2 fuel pellet cracking during reactor startup, power ramp and reactor shutdown. Preliminarily, UO2 irradiation creep is found to play an important role on the fuel pellet fragmentation. The developed capability supports interpretation of experimental data and can guide material design of advanced ceramic nuclear fuel.
APA, Harvard, Vancouver, ISO, and other styles
7

Turbino, Diego, Thiago Barreto de Aguiar, Gabriel Mario Guerra Bernadá, and Fernando Pereira Duda. "Phase-field modeling for brittle fracture due to residual stress." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wheeler, Mary F., Sanjay Srinivasan, Sanghyun Lee, and Manik Singh. "Unconventional Reservoir Management Modeling Coupling Diffusive Zone/Phase Field Fracture Modeling and Fracture Probability Maps." In SPE Reservoir Simulation Conference. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/193830-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jammoul, Mohamad, and Mary Wheeler. "A Phase-Field Based Approach for Modeling the Cementation and Shear Slip of Fracture Networks." In SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203906-ms.

Full text
Abstract:
Abstract Modeling the geomechanical deformations of fracture networks has become an integral part of designing enhanced geothermal systems and recovery mechanisms for unconventional reservoirs. Stress changes in the reservoir can cause large variations in the apertures of fractures resulting in drastic changes in their transmissivities. At the same time, sustained high injection pressures can induce shear slipping along existing fractures and faults and trigger seismic activity. In this work, a novel approach is introduced for the simulation of cementation and shear slip of fractures on very general semi-structured grids. Natural fracture networks are represented in large scale reservoirs using the phase-field approach. The fluid flow through fractures is simulated on spatially non-conforming grids using the enhanced velocity mixed finite element method. The geomechanics equations are discretized using the continuous Galerkin finite element method. The single-phase flow and mechanics equations are decoupled using the fixed stress iterative scheme. The model can predict shear slipping and opening/closure of fractures due to induced stresses and poromechanical effects. Two synthetic examples are presented to model the effects of injection/production processes on the cementation and shear slip of fractures. The impact of the fractures' orientation and their connectivity on the hydromechanical response of the reservoir is also considered. The examples illustrate the strong impact of the dynamic behavior of fractures and the accompanying poroelastic deformations on the safety and productivity of subsurface projects.
APA, Harvard, Vancouver, ISO, and other styles
10

He, Xupeng, Zhen Zhang, Marwah AlSinan, Yiteng Li, Hyung Kwak, and Hussein Hoteit. "Uncertainty and Sensitivity Analysis of Multi-Phase Flow in Fractured Rocks: A Pore-To-Field Scale Investigation." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210131-ms.

Full text
Abstract:
Abstract Despite recent advancements in computational methods, it is still challenging to properly model fracture properties, such as relative permeability and hydraulic aperture, at the field scale. The challenge is in determining the most representative fracture properties, concluded from multi-scale data. In this study, we demonstrate how to capture fracture properties at the field scale from core-scale and pore-scale data through multi-scale uncertainty quantification, and assess how pore-scale processes can significantly impact the recovery factor. There are three components within our workflow: 1) performing high-resolution Navier-Stokes (NS) simulation at pore-scale to obtain hydraulic aperture of discrete single fractures, 2) embedding pore-scale parameters into core-scale for predicting field-scale objective, such as recovery factor, and 3) performing Monte Carlo simulations to determine the relationship effect of the pore-scale parameters to the field scale responding. At pore-scale, we start with four parameters that characterize the fractures: mean aperture, relative roughness, tortuosity, and the ratio of minimum to mean apertures. We then construct hydraulic aperture surrogates using an Artificial Neural Network (ANN). At the field scale, we deploy Long Short-Term Memory (LSTM) to capture the recovery factor at field-scale. The final results are the time-varying recovery factor and its sensitivity analysis. Monte Carlo simulation is performed on the final surrogate to produce the recovery factor value for various time-step. The result is beneficial for risk assessment and decision-making during the development of fractured reservoirs. Our method is the first to quantitatively estimate multi-scale parameters’ effect on recovery factors in two-phase flow in fractured media. This method also shows how we accommodate and deal with multi-scale parameters.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phase Field Fracture"

1

Robertson, Brett Anthony. Phase Field Fracture Mechanics. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1227184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tupek, Michael R. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1409369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Author, Not Given. Brittle fracture phase-field modeling of a short-rod specimen. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Landis, Chad M., and Thomas J. Hughes. Phase-Field Modeling and Computation of Crack Propagation and Fracture. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Culp, David, Nathan Miller, and Laura Schweizer. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1378175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fried, Eliot, and Morton E. Gurtin. Continuum mechanical and computational aspects of phase field elasticity as applied to phase transitions and fracture. Final report: DE-FG02-97ER25318, June 1, 1997 - May 31, 2000. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/808066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peter, J. M., and M. G. Gadd. Introduction to the volcanic- and sediment-hosted base-metal ore systems synthesis volume, with a summary of findings. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328015.

Full text
Abstract:
This volume presents results of research conducted during phase 5 of the Volcanic- and Sedimentary-hosted Base Metals Ore Systems project of the Geological Survey of Canada's Targeted Geoscience Initiative (TGI) program. The papers in this volume include syntheses and primary scientific reports. We present here a synopsis of the findings during this TGI project. Research activities have addressed several mineral deposit types hosted in sedimentary rocks: polymetallic hyper-enriched black shale, sedimentary exhalative Pb-Zn, carbonate-hosted Pb-Zn (Mississippi Valley-type; MVT), and fracture-controlled replacement Zn-Pb. Other carbonate-hosted deposits studied include a magnesite deposit at Mount Brussilof and a rare-earth element-F-Ba deposit at Rock Canyon Creek, both of which lack base metals but are spatially associated with the MVT deposits in the southern Rocky Mountains. Volcanogenic massive-sulfide deposits hosted in volcanic and mixed volcanic-sedimentary host rock settings were also examined. Through field geology, geochemical (lithogeochemistry, stable and radiogenic isotopes, fluid inclusions, and mineral chemistry), and geophysical (rock properties, magnetotelluric, and seismic) tools, the TGI research contributions have advanced genetic and exploration models for volcanic- and sedimentary-hosted base-metal deposits and developed new laboratory, geophysical, and field techniques to support exploration.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography