Academic literature on the topic 'Phase diagram'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase diagram.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phase diagram"

1

Kwang Lee, Seh, and Dong Nyung Lee. "Calculation of phase diagrams using partial phase diagram data." Calphad 10, no. 1 (January 1986): 61–76. http://dx.doi.org/10.1016/0364-5916(86)90010-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sangster, James Malcolm. "Calculation of phase diagrams and thermodynamic properties of 18 binary common-ion systems of Na,K,Ba//F,MoO4,WO4." Canadian Journal of Chemistry 74, no. 3 (March 1, 1996): 402–18. http://dx.doi.org/10.1139/v96-045.

Full text
Abstract:
Phase diagram and thermodynamic data of 18 binary common-ion molten salt systems in Na,K,Ba//F,MoO4,WO4 were optimized by computer algorithm. The phase diagram data as well as single-salt data were retrieved from an extensive critical literature search. Expressions for the excess properties of solution phases and thermodynamic properties of intermediate compounds were thereby obtained. These data were used to generate a "best" phase diagram for each binary system considered. Key words: molten salts, phase diagrams, thermodynamic properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Ramirez, Antonio J., and Sérgio Duarte Brandi. "Weldability Approach to Duplex Stainless Steels Using Multicomponent Phase Diagrams." Materials Science Forum 475-479 (January 2005): 2765–68. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.2765.

Full text
Abstract:
Welding is a non-equilibrium process. However, some weldability issues, as the extension of the heat-affected zone (HAZ) can be addressed using equilibrium phase diagrams. The 70 wt% Fe-Cr-Ni pseudo-binary phase diagram is commonly used to establish the phase transformations during welding of duplex stainless steels. The predicted results are assumed to be reasonably good for most of the duplex stainless steels. Thermodynamic calculations were used to determine multicomponent phase diagrams and volumetric fraction of phases present as a function of temperature several commercial duplex stainless steels. Results showed that simplified pseudobinary phase diagram approach is valid to estimate welded joint microstructures only for the low alloy duplex stainless steels as UNS S32304, but phase transformations and mainly solidification paths of high alloy duplex stainless steels should predicted only using a multi-component phase diagram.
APA, Harvard, Vancouver, ISO, and other styles
4

Roberson, Ed. "Phase Diagram." Callaloo 29, no. 1 (2006): 20. http://dx.doi.org/10.1353/cal.2006.0067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Endo, K., T. Kanomata, A. Kimura, M. Kataoka, H. Nishihara, R. Y. Umetsu, K. Obara, et al. "Magnetic Phase Diagram of the Ferromagnetic Shape Memory Alloys Ni2MnGa1-xCux." Materials Science Forum 684 (May 2011): 165–76. http://dx.doi.org/10.4028/www.scientific.net/msf.684.165.

Full text
Abstract:
X-ray powder diffraction, permeability, magnetization and differential scanning calorimetry measurements were carried out on the magnetic shape memory alloys Ni2MnGa1−xCux (0 ≤ x ≤ 0.25). On the basis of the experimental results, the phase diagram in the temperature– concentration plane was determined for this alloy system. The determined phase diagram is spanned by the paramagnetic austenite phase (Para-A), paramagnetic martensite phase (Para-M), ferromagnetic austenite phase (Ferro-A), ferromagnetic martensite phase (Ferro-M) and the premartensite phase. It was found that the magnetostructural transition between the phases Para-A and Ferro-M can occur in the concentration region 0.12 < x ≤ 0.14 and that Ni2MnGa1−xCux has the characteristics of the phase diagram similar to those of the phase diagrams of Ni2+xMn1−xGa and Ni2Mn1−xCuxGa. In order to understand the phase diagram, the phenomenological free energy as a function of the martensitic distortion and magnetization was constructed and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
6

Pisarski, Robert, Vladimir Skokov, and Alexei Tsvelik. "A Pedagogical Introduction to the Lifshitz Regime." Universe 5, no. 2 (January 29, 2019): 48. http://dx.doi.org/10.3390/universe5020048.

Full text
Abstract:
We give an elementary and pedagogical review of the phase diagrams which are possible in quantum chromodynamics (QCD). Herein, emphasis is upon the appearance of a critical endpoint, where disordered and ordered phases meet. In many models, though, a Lifshitz point also arises. At a Lifshitz point, three phases meet: disordered, ordered, and one in which spatially inhomogeneous phases arise. At the level of mean field theory, the appearance of a Lifshitz point does not dramatically affect the phase diagram. We argue, however, that fluctuations about the Lifshitz point are very strong in the infrared and significantly alter the phase diagram. We discuss at length the analogy to inhomogeneous polymers, where the Lifshitz regime produces a bicontinuous microemulsion. We briefly mention the possible relevance to the phase diagram of QCD.
APA, Harvard, Vancouver, ISO, and other styles
7

Goussev, Valeri. "3D phase diagram in vectorcardiography." Journal of Biomedical Engineering and Informatics 3, no. 1 (September 8, 2016): 1. http://dx.doi.org/10.5430/jbei.v3n1p1.

Full text
Abstract:
The article is intended to propose the new technique for analysis and visualization of vectorcardiograms based on the 3D phase diagrams. The regular Frank 3D lead system was considered as the signal source to construct 3D vector space. The three cardio signals from the lead system, representing the currents in the body, and the three integrated in time signals, representing the corresponding charge flows, were used to form 3D phase diagram. This diagram is considered as a new compact description of the dipole object properties in the 3D space, combining simultaneously information about the charge movements and the changes in values and orientation of the current. The regular properties, like the angular momentum of the charge flow and the dipole strength vectors and their covariance can be evaluated from the real vectorcardiogram. Based on the set of vectorcardiograms for 8 healthy controls and 7 myocardial infarction patients the 3D phase diagrams and their statistical parameters are evaluated and discussed. An example is given of the technique implementation for the comparison of the 3D phase diagrams in a control and a myocardial infarction patient.
APA, Harvard, Vancouver, ISO, and other styles
8

Mehdiyeva, I. F. "PHASE DIAGRAM OF THE TlTe–Tl9TmTe6 SYSTEM." Azerbaijan Chemical Journal, no. 1 (April 9, 2021): 18–22. http://dx.doi.org/10.32737/0005-2531-2021-1-18-22.

Full text
Abstract:
Phase equilibria in the TlTe–Tl9TmTe6 system were experimentally studied by methods of differential thermal and powder X-ray diffraction analyses. The system was found to be non-quasibinary due to the incongruent nature of both initial components melting, but it is stable below solidus and is characterized by formation limited solid solutions (2 mol%) based on Tl9TmTe6 are revealed in the system
APA, Harvard, Vancouver, ISO, and other styles
9

Mammadov, F. M. "PHASE DIAGRAM OF THE FeSe–In2Se3 SYSTEM." Azerbaijan Chemical Journal, no. 3 (October 10, 2019): 62–67. http://dx.doi.org/10.32737/0005-2531-2019-3-62-67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chandelier, F., Y. Georgelin, T. Masson, and J. C. Wallet. "Global quantum Hall phase diagram from visibility diagrams." Physics Letters A 301, no. 5-6 (September 2002): 451–61. http://dx.doi.org/10.1016/s0375-9601(02)01051-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phase diagram"

1

Fallas, Chinchilla Juan Carlos. "Pressure-temperature phase diagram of LiA1H₄." abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Azevedo, Cesar R. de Farias. "Phase diagram and phase transformations in Ti-Al-Si system." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/1278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prins, Sara Natalia. "The AI-Pt-Ru ternary phase diagram." Diss., Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-09192005-163724/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Attwood, Brian Christopher. "Global phase diagram for monomer/dimer mixtures." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011012-113555.

Full text
Abstract:

The objective of this thesis is to calculate the global phase diagram predicted by the Generalized Flory Dimer equation of state for mixtures of square-well monomers and dimers. Towards that goal, we first extend the Generalized Flory Dimer (GFD) theory for hard sphere monomer/dimer mixtures to square-well monomer/dimer mixtures. Theoretical predictions for the compressibility factor as a function of volume fraction are compared to discontinuous molecular dynamic simulation results on monomer/dimer mixtures at well depth ratios 0.5 - 1.5 and dimer mole fractions 0.111 - 0.667 and on monomers/8-mer mixtures at well depth ratios 0.5 - 1.5. Agreement is found generally to be good and consistent with the agreement obtained when the GFD theory is applied to other square-well systems. Next we calculate the GFD predicted global phase diagram for square-well monomer/dimer mixtures using a brute force method. The locus of critical points in the direction implies that monomer/dimer systems have a greater tendency towards liquid-liquid immiscibility in our system than in monomer/monomer systems.

APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Gang 1971. "Phase diagram for liquid crystalline polymerpolycarbonate blends." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33973.

Full text
Abstract:
Blends containing a thermotropic liquid crystalline polymer and an engineering thermoplastic polymer have recently received considerable attention, because liquid crystalline polymers display low melt viscosity, excellent chemical resistance, thermal stability and mechanical performance. A novel mechanism to form binary polymer blends is through phase separation by spinodal decomposition in the unstable region of the phase diagram. The overall objective of this work is to investigate the effects of thermally induced phase separation by spinodal decomposition on the morphology development of liquid crystalline polymer/polycarbonate blends and to obtain a thermodynamic binary phase diagram. The blends were obtained using a twin-screw extruder at various processing melt temperatures. To study miscibility of the blends and the resulting morphology, techniques such as differential scanning calorimetry and scanning electron microscopy were used. The liquid crystalline polymer/polycarbonate blend undergoes phase separation during thermally induced spinodal decomposition exhibiting a miscibility window reminiscent of a lower critical solution temperature. The blend is found to be miscible, when blend Tg slightly decreases. On the other hand, the blend is found to be immiscible as blend Tg increases. A thermodynamic two-phase transition curve phase diagram was obtained using an innovative practical experimental technique in conjunction with twin screw extrusion and scanning electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
6

Duncan, Graham Kirk. "Phase diagram studies of the beta-aluminas." Thesis, University of Aberdeen, 1985. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Fwu-Ranq. "Optimal Growth and Impatience: A Phase Diagram Analysis." 名古屋大学大学院経済学研究科附属国際経済政策研究センター, 2004. http://hdl.handle.net/2237/11954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Assawasunthonnet, Wathid. "Second order critical point in QCD phase diagram." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51611.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.
Includes bibliographical references (p. 57).
In this thesis I explore the theoretical model based on Asakawa and Nonaka's idea[l]. I start by arguing that the critical point of the QCD phase diagram is second order and belongs to the three dimensional Ising model universality class. Then the singular part of the equation of state is derived. The singular part and non-singular part equation of state are glued together to find the general form of the equation of state. This equation of state includes the critical point. With this equation of state, we construct the isentropic trajectories. The pathology of these trajectories is discussed. Moreover the validation of the signature of the critical point suggested by Asakawa and Nonaka is also discussed.
by Wathid Assawasunthonnet.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
9

Mikula, Hynek. "Fázový diagram chladiva LiF-NaF-KF." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-374735.

Full text
Abstract:
In introduction this graduation theses discource about phase diagrams and thein fission. Next part is about concrete phase diagrams NaF – KF, NaF – LiF, KF – LiF. Their determination trough use of cooling surves and their specification trough use of numerical method. Conclusion contains proposal of method for concrete phase diagram of NaF – KF – LiF.
APA, Harvard, Vancouver, ISO, and other styles
10

Sevelev, Maxime. "Phase diagram, jamming and glass transitions in the non-convex perceptron." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS331.

Full text
Abstract:
Cette thèse de doctorat traite du « modèle de perceptron sphérique », un modèle simple et exactement soluble qui présente un comportement visqueux et d'encombrement qui a été généralisé aux valeurs négatives du paramètre de produit scalaire κ. Le problème classique d'apprentissage par machine qui consiste en la classification des motifs aléatoires par le perceptron fait partie des problèmes de satisfaction des contraintes (PSC) convexes. Même quand le « paramètre de stabilité » du modèle κ devient négatif, le problème reste toujours correctement posé et peut être interprété comme le problème de placement des particules sur une sphère N-dimensionnelle en évitant les obstacles placés au hasard. Dans ce cas, le PSC correspondant n'est pas convexe. Cette thèse étudie le problème en détail dans le domaine non convexe. Une étude systématique est rendue possible en faisant correspondre à un problème de satisfaction de contraintes un problème d'optimisation sur le même support, mais doté d'un Hamiltonien (fonction de coût) qui mesure les violations des contraintes en fonction de la configuration du système. Le lien entre le PSC aléatoire et la phénoménologie vitreuse en physique est bien connue et a été explorée en détail pour les modèles à variables discrètes. La présence de variables continues dans le modèle de perceptron (sphérique) nous permet de dévoiler, en PSC aléatoire, la transition caractéristique SAT/UNSAT où le système subit une transition du régime satisfaisable (dans lequel l'état fondamental possède une énergie nulle) à celui insatisfaisable (dans lequel l'état fondamental possède une énergie positive). Cette transition de phase peut également être interprétée comme une transition d'encombrement similaire à celles démontrées par les modèles des sphères sans friction. La simplicité du modèle étudié permet de trouver exactement son diagramme de phase à température zéro en fonction des deux paramètres de contrôle: la densité des obstacles et leur taille. Ainsi identifiée, la transition d'encombrement est complètement caractérisée dans le présent document. Sont également étudiées en détail de diverses phases vitreuses de caractère stable et marginal
This thesis treats the «spherical perceptron model», a simple exactly solvable model for glassy behavior and jamming suitably generalized to negative values of scalar product parameter κ. The classical machine-learning problem of random pattern classification by the perceptron is a convex constraint satisfaction problem (CSP). Even when the «stability parameter» κ of the model becomes negative, the problem still make sense and can be interpreted as the problem of particles on an N-dimensional sphere trying to avoid randomly placed obstacles. In this case, the corresponding CSP is non-convex. This thesis studies the problem in detail in the non-convex domain. Systematic study is made possible by assigning to a constraint satisfaction problem its corresponding optimization version endowed with a Hamiltonian function (cost function) quantifying the violations of the constraints, as a function of the system's configuration. The connection between random CSP and glassy phenomenology in physics is well known and has been explored in detail for models with discrete variables. The presence of continuous variables in the (spherical) perceptron model enables us to unveil, in random CSP, the characteristic SAT/UNSAT transition where the system transits from the satisfiable regime (where the ground state has zero energy) to the unsatisfiable one (where the ground state energy is positive). This phase transition can also be interpreted as a jamming transition similar to the one that exhibit models with frictionless spheres. The simplicity of the considered model allows the exact determination of the zero temperature phase diagram as a function of the control parameters: the density of obstacles and their size. In the present thesis, the jamming transition thus identified is completely characterized and several glass phases of stable and marginal character are studied in detail
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phase diagram"

1

-C, Zhao J., ed. Methods for phase diagram determination. Amsterdam: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Knabe, and United States. National Aeronautics and Space Administration., eds. Electrical conductivity and phase diagram of binary alloys. Washington DC: National Aeronautics and Space Administration, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mitaku, Shigeki, and Ryusuke Sawada. Evolution Seen from the Phase Diagram of Life. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0060-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

S, Pierce Brenda, and Johnson M. F. 1949-, eds. TRIANGL: A ternary diagram program on the PRIME computer. [Reston, VA]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

E, Morral J., Schiffman R. S, Merchant S. M, and ASM International. Thermodynamics and Phase Equilibria Committee., eds. Experimental methods of phase diagram determination: Proceedings of a symposium. Warrendale, PA: Minerals, Metals & Materials Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Xingye. Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4998-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Chanul. Predicting the temperature-strain phase diagram of VO$_2$ from first principles. [New York, N.Y.?]: [publisher not identified], 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Gillies D., Lehoczky Sandor L, and United States. National Aeronautics and Space Administration., eds. Numerical modeling of HgCdTe solidification: Effects of phase diagram, double-diffusion convection and microgravity level. Bellingham, Wash: Society of Photo-Optical Instrumentation Engineers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C, Gillies D., Lehoczky Sandor L, and United States. National Aeronautics and Space Administration., eds. Numerical modeling of HgCdTe solidification: Effects of phase diagram, double-diffusion convection and microgravity level. Bellingham, Wash: Society of Photo-Optical Instrumentation Engineers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

C, Gillies D., Lehoczky Sandor L, and United States. National Aeronautics and Space Administration., eds. Numerical modeling of HgCdTe solidification: Effects of phase diagram, double-diffusion convection and microgravity level. Bellingham, Wash: Society of Photo-Optical Instrumentation Engineers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phase diagram"

1

Weik, Martin H. "phase diagram." In Computer Science and Communications Dictionary, 1258. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peeters, Francois M. "The Phase Diagram." In Physics and Chemistry of Materials with Low-Dimensional Structures, 17–32. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-1286-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suryanarayana, C., and M. Grant Norton. "Phase Diagram Determination." In X-Ray Diffraction, 167–92. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zuyao, Xu, Liu Guoquan, and Xu Kuangdi. "Alloy Phase Diagram." In The ECPH Encyclopedia of Mining and Metallurgy, 1–14. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_416-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Strauch, D. "Si: phase diagram, phase transition." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 638–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tatami, Junichi. "Phase Equilibrium and Phase Diagram." In Materials Chemistry of Ceramics, 23–43. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9935-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaidi, Sheza. "Experiment on Phase Diagram." In Phase Rule and its applications, 145–49. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003297949-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Satz, Helmut. "The QCD Phase Diagram." In Extreme States of Matter in Strong Interaction Physics, 111–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23908-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Link, Albert N., and John T. Scott. "Ceramic Phase Diagram Program." In Public Accountability, 81–90. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5639-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dietl, T. "Mg1-xMnxTe: phase diagram." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 547. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_300.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phase diagram"

1

Philipsen, Owe. "Exploring the QCD phase diagram." In Critical Point and Onset of Deconfinement - 4th International Workshop. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.047.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fukushima, Kenji. "Phase diagram from PNJL models." In 5th International Workshop on Critical Point and Onset of Deconfinement. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.071.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivlev, A. V., P. Brandt, G. E. Morfill, H. M. Thomas, G. Joyce, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, and O. F. Petrov. "Anisotropic plasma cyrstals: Phase diagram." In 2009 IEEE 36th International Conference on Plasma Science (ICOPS). IEEE, 2009. http://dx.doi.org/10.1109/plasma.2009.5227679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ono, N., R. Kainuma, H. Ohtani, K. Ishida, and M. Kato. "Ontology for phase diagram databases." In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296). IEEE, 1999. http://dx.doi.org/10.1109/ipmm.1999.792509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Forcrand, Philippe. "Towards the QCD phase diagram." In XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stephanov, Mikhail. "QCD phase diagram: an overview." In XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koch, Volker. "Exploring the QCD Phase Diagram." In 9th International Workshop on Critical Point and Onset of Deconfinement. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.217.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Couvrat, N., Y. Cartigny, S. Tisse, M.-N. Petit, and G. Coquerel. "Binary phase diagram between phenanthrene and its main impurity: dibenzothiophene." In XXXVII JEEP – 37th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/jeep/201100006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Antoniou, Nikos G. "The Phase Diagram of QCD Matter." In Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.292.0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xiaobo, and Ping Zhang. "Calculation of Phase Diagram with MATLAB." In 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2010. http://dx.doi.org/10.1109/wicom.2010.5600701.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phase diagram"

1

Edgar, Alexander Steven, Justine H. Yang, and Dali Yang. Nitroplasticizer-water phase diagram. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flint, Rebecca. Exotic Kondo Phases: the non-Kramers Doniach phase diagram. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, J. M., W. W. Chen, B. Dunn, and A. J. Ardell. Phase Diagram Studies of ZnS Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada198983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burakovsky, Leonid, Samuel Baty, and Dean Preston. Ab Initio Phase Diagram of Tungsten. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1739915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anagnostopoulos, K. N., M. J. Bowick, and S. M. Catterall. The phase diagram of crystalline surfaces. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/176799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ross, M. Phase diagram of Mo at high pressure and temperature. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/945864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tarko, Andrew P., Jose Thomaz, and Mario Romero. Developing the Collision Diagram Builder: Phase II Corridor Edition. Purdue University, 2019. http://dx.doi.org/10.5703/1288284317107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burakovsky, Leonid, Shao-Ping Chen, Dean L. Preston, and Daniel G. Sheppard. IC W13_auptphase Highlight: Phase Diagram of Pt from Z Methodology. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1127486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burakovsky, Leonid, and Dean Laverne Preston. IC W_molybdenum Highlight: Ab Initio Studies on the Phase Diagram of Mo. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1337065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Westfall, Gary. Study of the QCD Phase Diagram using STAR at RHIC - Final Report. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1339943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography