Academic literature on the topic 'Phase-change materials, thermal properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase-change materials, thermal properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phase-change materials, thermal properties"
Zmeškal, O., and L. Dohnalová. "Thermal Properties of Phase Change Materials." International Journal of Thermophysics 35, no. 9-10 (April 24, 2013): 1900–1911. http://dx.doi.org/10.1007/s10765-013-1436-9.
Full textZhang, Shi Chao, Wei Wu, Yu Feng Chen, Liu Shi Tao, Kai Fang, and Xian Kai Sun. "Preparation and Properties of Phase Change Thermal Insulation Materials." Solid State Phenomena 281 (August 2018): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.131.
Full textLiu, Tai Qi, Li Yan Yang, Fu Rui Ma, Rui Xue Liu, Yu Quan Wen, and Xiao Wu. "Preparation and Properties of Microencapsulated Phase Change Materials." Applied Mechanics and Materials 204-208 (October 2012): 4187–92. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4187.
Full text王, 执乾. "Preparation and Properties of Phase Change Microcapsules and Thermal Conductive Phase Change Materials." Journal of Advances in Physical Chemistry 11, no. 03 (2022): 167–71. http://dx.doi.org/10.12677/japc.2022.113019.
Full textZhang, G. H., and C. Y. Zhao. "Thermal and rheological properties of microencapsulated phase change materials." Renewable Energy 36, no. 11 (November 2011): 2959–66. http://dx.doi.org/10.1016/j.renene.2011.04.002.
Full textFeng, Guohui, Tianyu Wang, Na He, and Gang Wang. "A Review of Phase Change Materials." E3S Web of Conferences 356 (2022): 01062. http://dx.doi.org/10.1051/e3sconf/202235601062.
Full textKáňa, Miroslav, and Peter Oravec. "Phase change materials for energy storage: A review." Advances in Thermal Processes and Energy Transformation 3, no. 1 (2020): 06–13. http://dx.doi.org/10.54570/atpet2020/03/01/0006.
Full textHuang, Dian Wu, and Hong Mei Wang. "Phase Change Materials of Microcapsules Containing Paraffin." Advanced Materials Research 482-484 (February 2012): 1596–99. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1596.
Full textBozorg-Grayeli, Elah, John P. Reifenberg, Matthew A. Panzer, Jeremy A. Rowlette, and Kenneth E. Goodson. "Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials." IEEE Electron Device Letters 32, no. 9 (September 2011): 1281–83. http://dx.doi.org/10.1109/led.2011.2158796.
Full textErkan, Gökhan. "Enhancing The Thermal Properties of Textiles With Phase Change Materials." Research Journal of Textile and Apparel 8, no. 2 (May 2004): 57–64. http://dx.doi.org/10.1108/rjta-08-02-2004-b008.
Full textDissertations / Theses on the topic "Phase-change materials, thermal properties"
Hong, Yan. "Encapsulated nanostructured phase change materials for thermal management." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4929.
Full textID: 029809237; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 164-191).
Ph.D.
Doctorate
Mechanical Materials and Aerospace Engineering
Engineering and Computer Science
CAMPI, DAVIDE. "Atomistic simulations of thermal transport and vibrational properties in phase-change materials." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/101863.
Full textCampbell, Kevin Ryan. "Phase Change Materials as a Thermal Storage Device for Passive Houses." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/201.
Full textLi, Chuan. "Thermal energy storage using carbonate-salt-based composite phase change materials : linking materials properties to device performance." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7242/.
Full textMin, Kyung-Eun. "A Study of Thermal Energy Storage of Phase Change Materials: Thermophysical Properties and Numerical Simulations." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4835.
Full textZhang, Guanhua. "Fabrication, characterization and thermo-physical properties of micro- and nano- scaled phase change materials for thermal energy storage." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57041/.
Full textPitié, Frédéric. "High temperature thermal energy storage : encapsulated phase change material particles : determination of thermal and mechanical properties." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/57108/.
Full textBarhemmati, Rajab Nastaran. "Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752408/.
Full textFerrer, Muñoz Gerard. "Characterization, equation formulation and enhancement of phase change materials (PCM) for thermal energy storage (TES)." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399901.
Full textLa edificación, la industria i el transporte son los tres principales sectores consumidores de energía, representando el 96 % de la energía total consumida en la Unión Europea, y siendo responsables de casi la totalidad de las emisiones de CO2. El programa Horizon 2020 de la Comisión Europea expresa la necesidad de reducir el consuma de energía i las emisiones de efecto invernadero en un 20 % para el año 2020. El almacenaje de energía es uno de los principales campos considerados y desarrollados para reducir las emisiones, pues permite emparejar la demanda y el subministro de energía con sistemas simples y eficientes.Los sistemas de almacenaje de energía térmica (TES) permiten almacenar densidades de energía elevadas para poder variar la demanda de energía y facilitar el uso de energías renovables. Esta tesis está principalmente enfocada en el almacenaje de calor latente, una tecnología que, aunque ha sido ampliamente estudiada, aún necesita mejoras y presenta vacíos importantes.
Buildings, industry and transport are the three main energy consuming sectors, representing the 96 % of the final energy consumption in the European Union, and being responsible of almost the totality of the CO2 emissions. The horizon 2020 program of the European Commission expresses the need to reduce by 20 % the energy consumption and greenhouse emissions by the year 2020Energy storage is one of the main fields considered and developed to reduce emissions, allowing to match energy demand and supply with simple and efficient systems.Thermal energy storage (TES) systems allow the storage of high energy densities in order to shift the energy demand and ease the use of renewable energies. This thesis is mainly focused in latent energy storage, a technology that despite having been widely studied, still requires improvements and presents important gaps.
Siegert, Karl Simon [Verfasser], Matthias [Akademischer Betreuer] Wuttig, and Raphaël P. [Akademischer Betreuer] Hermann. "Thermal Properties of Phase-Change Materials From Lattice Dynamics to Thermoelectricity / Karl Simon Siegert ; Matthias Wuttig, Raphaël P. Hermann." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1129365255/34.
Full textBooks on the topic "Phase-change materials, thermal properties"
1948-, Chvoj Z., Šesták Jaroslav 1938-, and Tříska A, eds. Kinetic phase diagrams: Nonequilibrium phase transitions. Amsterdam: Elsevier, 1991.
Find full textMagee, Joseph W. Thermophysical properties measurements and models for rocket propellant RP-1: Phase I. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2007.
Find full textA, Turchi Patrice E., Gonis Antonios 1945-, Shull Robert D, Minerals, Metals and Materials Society. Meeting, and TMS Committee on Alloy Phases., eds. CALPHAD and alloy thermodynamics: Proceedings of a symposium sponsored by the Alloy Phase Committe of the joint Structural Materials Division (SMD) and the Electronic, Magnetic & Photonic Materials Division (EMPMD) of TMS (The Minerals, Metals & Materials Society), held during the 2002 TMS annual meeting in Seattle, Washington, February 17-21, 2002, to honor of the William Hume-Rothery Award Recipient, Dr. Larry Kaufman. Warrendale, PA: TMS (The Minerals, Metals & Materials Society), 2002.
Find full textXiang bian cai liao yu xiang bian chu neng ji shu. Beijing: Ke xue chu ban she, 2009.
Find full textXiang bian cai liao yu xiang bian chu neng ji shu. Beijing: Ke xue chu ban she, 2009.
Find full textVali︠a︡shko, V. M. Hydrothermal properties of materials: Experimental data on aqueous phase equilibria and solution properties at elevated temperatures and pressures. Hoboken, N.J: Wiley, 2008.
Find full textYildiz, Bayazitoglu, Sathuvalli Udaya B, and American Society of Mechanical Engineers. Heat Transfer Division., eds. Heat transfer in porous media and two-phase flow: Presented at the Energy and Environmental Expo '95, the Energy-Sources Technology Conference and Exhibition, Houston, Texas, January 29-February 1, 1995. New York, N.Y: American Society of Mechanical Engineers, 1995.
Find full textK, Liaw P., Nicholas T, Metallurgical Society (U.S.). Mechanical Metallurgy Committee., and Metallurgical Society (U.S.). Phase Transformation Committee., eds. Effects of load and thermal histories on mechanical behavior of materials: Proceedings of a symposium sponsored by the Mechanical Metallurgy and the Phase Transformation Committees of TMS-AIME, held at the 1987 TMS-AIME Annual Meeting in Denver, Colorado, February 22-26, 1987. Warrendale, Pa: Metallurgical Society, 1987.
Find full textOxlade, Chris. Calentar. Chicago, IL: Heinemann Library, 2011.
Find full textOxlade, Chris. Heating. Chicago, Ill: Heinemann Library, 2009.
Find full textBook chapters on the topic "Phase-change materials, thermal properties"
Harikrishnan, S., and A. D. Dhass. "Thermophysical Properties of Nanofluids." In Thermal Transport Characteristics of Phase Change Materials and Nanofluids, 134–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003163633-10.
Full textBeddu, Salmia, Amalina Basri, Daud Mohamad, Nur Liyana Mohd Kamal, Nur Farhana, Zakaria Che Muda, Zarina Itam, Sivakumar Naganathan, Siti Asmahani Saad, and Teh Sabariah. "Thermal Properties of Concrete Containing Cenosphere and Phase Change Materials." In Lecture Notes in Civil Engineering, 143–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5041-3_10.
Full textReyes-Cueva, E., Javier Martínez-Gómez, and Mónica Delgado Yánez. "Phase Change Materials. Material Selection Based on Better Thermal Properties: A Literature Review." In Innovation and Research, 450–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60467-7_37.
Full textAnsu, A. K., Pooja Singh, and R. K. Sharma. "Study of Thermal Properties of Eutectic Phase Change Materials for Energy Storage." In Energy Systems and Nanotechnology, 23–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_2.
Full textSevilla, Law Torres, and Jovana Radulovic. "Exploring the Relationship Between Heat Absorption and Material Thermal Parameters for Thermal Energy Storage." In Springer Proceedings in Energy, 27–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_4.
Full textAhmed, Jasim. "Thermal Properties of Polylactides and Stereocomplex." In Glass Transition and Phase Transitions in Food and Biological Materials, 261–79. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch12.
Full textMullah, Mehraj Fatema, Linu Joseph, Yasir Ali Arfat, and Jasim Ahmed. "Thermal Properties of Gelatin and Chitosan." In Glass Transition and Phase Transitions in Food and Biological Materials, 281–304. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch13.
Full textMahanta, Arun Kumar, Dipak Rana, Akhil Kumar Sen, and Pralay Maiti. "Thermal Properties of Food and Biopolymer Using Relaxation Techniques." In Glass Transition and Phase Transitions in Food and Biological Materials, 141–57. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch5.
Full textYadav, Apurv, Bidyut Barman, Vivek Kumar, Abhishek Kardam, S. Shankara Narayanan, Abhishek Verma, Devinder Madhwal, Prashant Shukla, and Vinod Kumar Jain. "A Review on Thermophysical Properties of Nanoparticle-Enhanced Phase Change Materials for Thermal Energy Storage." In Springer Proceedings in Physics, 37–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_5.
Full textSwenson, Jan, and Helén Jansson. "Thermal and Relaxation Properties of Food and Biopolymers with Emphasis on Water." In Glass Transition and Phase Transitions in Food and Biological Materials, 1–29. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch1.
Full textConference papers on the topic "Phase-change materials, thermal properties"
Cai, Xiaolin, and Jingsong Wei. "Thermal properties of Te-based phase-change materials." In 2012 International Workshop on Information Data Storage and Ninth International Symposium on Optical Storage, edited by Fuxi Gan and Zhitang Song. SPIE, 2013. http://dx.doi.org/10.1117/12.2014908.
Full textZhang, S. Mark, Diane Swarthout, Thomas Noll, Susan Gelderbloom, Douglas Houtman, and Kelly Wall. "Silicone Phase Change Thermal Interface Materials: Properties and Applications." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35075.
Full textAdinberg, R., and D. Zvegilsky. "Thermal Measurement System for Phase Change Materials." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86844.
Full textShen, Shile, Shujuan Tan, Guoyue Xu, and Tengchao Guo. "The thermal properties of Erythritol/Adipic acid composite phase change material." In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/msmee-17.2017.231.
Full textZhelezny, Vitaly, Olga Khliyeva, Artem Nikulin, Nikolay Lapardin, Dmytro Ivchenko, and Elena Palomo Del Barrio. "Paraffin Wax Enhanced with Carbon Nanostructures as Phase Change Materials: Preparation and Thermal Conductivity Measurement." In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568522.
Full textHan, Zenghu, Bao Yang, and Yung Y. Liu. "Phase-Change Nanofluids With Enhanced Thermophysical Properties." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18148.
Full textNitsas, M. T., I. P. Koronaki, and A. Beliotis. "Thermal Analysis of Phase Change Materials by Utilizing Nanoparticles." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87026.
Full textAdegbaye, Patrick, Yong Pei, Mehdi Kabir, Herve Cabrel Sandja Tchamba, Bao Yang, and Jiajun Xu. "Development of Phase-Change Materials with Improved Thermal Properties for Space-Related Applications." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94380.
Full textSevilla, Law Torres, and Jovana Radulovic. "Exploring the Properties of User-defined Phase Change Materials for Thermal Energy Storage." In 6th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2020. http://dx.doi.org/10.11159/htff20.143.
Full textGanatra, Yash, and Amy Marconnet. "Passive Thermal Management Using Phase Change Materials: Experimental Evaluation of Thermal Resistances." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48499.
Full textReports on the topic "Phase-change materials, thermal properties"
Min, Kyung-Eun. A Study of Thermal Energy Storage of Phase Change Materials: Thermophysical Properties and Numerical Simulations. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6711.
Full textBarnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.
Full textDouglas C. Hittle. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/820428.
Full textClausen, Jay, Susan Frankenstein, Jason Dorvee, Austin Workman, Blaine Morriss, Keran Claffey, Terrance Sobecki, et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41780.
Full textCampbell, Kevin. Phase Change Materials as a Thermal Storage Device for Passive Houses. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.201.
Full textSpanner, G. E., and G. L. Wilfert. Potential industrial applications for composite phase-change materials as thermal energy storage media. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5861369.
Full textGomez, J. C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024524.
Full textMontoya, Miguel A., Daniela Betancourt-Jiminez, Mohammad Notani, Reyhaneh Rahbar-Rastegar, Jeffrey P. Youngblood, Carlos J. Martinez, and John E. Haddock. Environmentally Tuning Asphalt Pavements Using Phase Change Materials. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317369.
Full textChilds, K. W., P. W. Childs, J. E. Christian, and T. W. Petrie. Thermal Behavior of Mixtures of Perlite and Phase Change Materials in a Simulated Climate. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/2741.
Full textGao, Elizabeth J., Jignesh Patel, Veera M. Boddu, L. D. Stephenson, Debbie Lawrence, and Ashok Kumar. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada621877.
Full text