Academic literature on the topic 'Phase-change materials, thermal properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase-change materials, thermal properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phase-change materials, thermal properties"

1

Zmeškal, O., and L. Dohnalová. "Thermal Properties of Phase Change Materials." International Journal of Thermophysics 35, no. 9-10 (April 24, 2013): 1900–1911. http://dx.doi.org/10.1007/s10765-013-1436-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Shi Chao, Wei Wu, Yu Feng Chen, Liu Shi Tao, Kai Fang, and Xian Kai Sun. "Preparation and Properties of Phase Change Thermal Insulation Materials." Solid State Phenomena 281 (August 2018): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.131.

Full text
Abstract:
With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Tai Qi, Li Yan Yang, Fu Rui Ma, Rui Xue Liu, Yu Quan Wen, and Xiao Wu. "Preparation and Properties of Microencapsulated Phase Change Materials." Applied Mechanics and Materials 204-208 (October 2012): 4187–92. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4187.

Full text
Abstract:
Microencapsulated phase change materials were prepared by the interfacial polymerization method with polyurethane resin as the shell and disodium hydrogen phosphate dodecahydrate as the core. The factors which affect the diameter distribution, surface morphology and thermal properties of microencapsules were investigated by the means of SEM, DSC and TG. The results show that the diameter distribution is uniform and the microencapsules have high compactness. The particle size is centralize with the stirring rate of 8000r/m and emulsifying time for 30 minutes. The DSC results show that the melting point of the phase change material does not have much change and phase change thermal storage is obvious
APA, Harvard, Vancouver, ISO, and other styles
4

王, 执乾. "Preparation and Properties of Phase Change Microcapsules and Thermal Conductive Phase Change Materials." Journal of Advances in Physical Chemistry 11, no. 03 (2022): 167–71. http://dx.doi.org/10.12677/japc.2022.113019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, G. H., and C. Y. Zhao. "Thermal and rheological properties of microencapsulated phase change materials." Renewable Energy 36, no. 11 (November 2011): 2959–66. http://dx.doi.org/10.1016/j.renene.2011.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feng, Guohui, Tianyu Wang, Na He, and Gang Wang. "A Review of Phase Change Materials." E3S Web of Conferences 356 (2022): 01062. http://dx.doi.org/10.1051/e3sconf/202235601062.

Full text
Abstract:
Phase change materials (PCMs) use latent heat of phase change to store heat, which has the advantages of high energy storage density and low-temperature fluctuation. And it can be applied to many fields such as the building envelope and the Heating Ventilation and Air Conditioning (HVAC) system. The PCM is a kind of energy storage material with great potential, which positively impacts energy conservation and indoor environment improvement. In this paper, the relevant research on PCMs in recent years is reviewed, three common classification methods of PCMs are summarized, and the phase change temperature range is re-divided. The temperature of PCMs is less than 80°C for low-temperature PCMs, between 80°C and 200°C for medium-temperature PCMs, and above 200°C for high-temperature PCMs. Then, the characteristics and thermal properties of some commonly used PCMs are listed, including organic PCMs, inorganic PCMs, and some composite phase change materials (CPCMs). By summarizing the thermal properties of PCMs, it can provide a reference for the selection of PCMs. Finally, the article also introduces several kinds of preparation methods for CPCMs. The solutions to the problems of low thermal conductivity, supercooling, phase separation, and leakage of PCMs are discussed. And the future research topics of PCMs are prospected.
APA, Harvard, Vancouver, ISO, and other styles
7

Káňa, Miroslav, and Peter Oravec. "Phase change materials for energy storage: A review." Advances in Thermal Processes and Energy Transformation 3, no. 1 (2020): 06–13. http://dx.doi.org/10.54570/atpet2020/03/01/0006.

Full text
Abstract:
Phase change materials are one of the most suitable materials to effectively utilize the thermal energy from renewable energy. This review is based on the thermophysical properties of various phase change materials. In particular, the melting point, thermal energy storage density and thermal conductivity of organic, inorganic and eutectic phase change materials are the main selection criteria for various thermal energy storage applications over a wide operating temperature range.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Dian Wu, and Hong Mei Wang. "Phase Change Materials of Microcapsules Containing Paraffin." Advanced Materials Research 482-484 (February 2012): 1596–99. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1596.

Full text
Abstract:
In this study, phase change microcapsules were prepared by in situ polymerization using paraffin as core material, poly(MMA -co- MAA) as shell material, Tween60/span60 as emulsifier. The surface morphology, thermal properties and particle size distribution of the prepared microcapsules were investigated by using SEM, TGA, DSC and ELS. The effects of paraffin core content and amount of emulsifier on the properties of microcapsules were studied.
APA, Harvard, Vancouver, ISO, and other styles
9

Bozorg-Grayeli, Elah, John P. Reifenberg, Matthew A. Panzer, Jeremy A. Rowlette, and Kenneth E. Goodson. "Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials." IEEE Electron Device Letters 32, no. 9 (September 2011): 1281–83. http://dx.doi.org/10.1109/led.2011.2158796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Erkan, Gökhan. "Enhancing The Thermal Properties of Textiles With Phase Change Materials." Research Journal of Textile and Apparel 8, no. 2 (May 2004): 57–64. http://dx.doi.org/10.1108/rjta-08-02-2004-b008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phase-change materials, thermal properties"

1

Hong, Yan. "Encapsulated nanostructured phase change materials for thermal management." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4929.

Full text
Abstract:
A major challenge of developing faster and smaller microelectronic devices is that high flux of heat needs to be removed efficiently to prevent overheating of devices. The conventional way of heat removal using liquid reaches a limit due to low thermal conductivity and limited heat capacity of fluids. Adding solid nanoparticles into fluids has been proposed as a way to enhance thermal conductivity of fluids, but recent results show inconclusive anomalous enhancements in thermal conductivity. A possible way to improve heat transfer is to increase the heat capacity of liquid by adding phase change nanoparticles with large latent heat of fusion into the liquid. Such nanoparticles absorb heat during solid to liquid phase change. However, the colloidal suspension of bare phase change nanoparticles has limited use due to aggregation of molten nanoparticles, irreversible sticking on fluid channels, and dielectric property loss. This dissertation describes a new method to enhance the heat transfer property of a liquid by adding encapsulated phase change nanoparticles (nano-PCMs), which will absorb thermal energy during solid-liquid phase change and release heat during freeze. Specifically, silica encapsulated indium nanoparticles, and polymer encapsulated paraffin (wax) nanoparticles have been prepared using colloidal method, and dispersed into poly-alpha]-olefin (PAO) and water for high temperature and low temperature applications, respectively. The shell, with a higher melting point than the core, can prevent leakage or agglomeration of molten cores, and preserve the dielectric properties of the base fluids. Compared to single phase fluids, heat transfer of nanoparticle-containing fluids have been significantly enhanced due to enhanced heat capacities. The structural integrity of encapsulation allows repeated uses of nanoparticles for many cycles.; By forming porous semi crystalline silica shells obtained from water glass, supercooling has been greatly reduced due to low energy barrier of heterogeneous nucleation. Encapsulated phase change nanoparticles have also been added into exothermic reaction systems such as catalytic and polymerization reactions to effectively quench local hot spots, prevent thermal runaway, and change product distribution. Specifically, silica-encapsulated indium nanoparticles, and silica encapsulated paraffin (wax) nanoparticles have been used to absorb heat released in catalytic reaction, and to mitigate the gel effect during polymerization, respectively. The reaction rates do not raise significantly owing to thermal buffering using phase change nanoparticles at initial stage of thermal runaway. The effect of thermal buffering depends on latent heats of fusion of nanoparticles, and heat releasing kinetics of catalytic reactions and polymerizations. Micro/nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions.
ID: 029809237; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 164-191).
Ph.D.
Doctorate
Mechanical Materials and Aerospace Engineering
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
2

CAMPI, DAVIDE. "Atomistic simulations of thermal transport and vibrational properties in phase-change materials." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/101863.

Full text
Abstract:
Phase change materials are a class of compounds employed for data storage applications such as rewritable optical disks (DVD-RW, Blue-Ray disks) and more recently for non-volatile electronic memories of new generation, named phase change memories (PCM)[1]. These applications rely on a fast (50 ns) and reversible transition between a crystalline and the amorphous phases upon heating. The strong optical and electronic contrast between the crystal and the amorphous allows discriminating between the two phases that correspond to the two states of the memory, i.e. the 0 and 1 bits. In this work I have studied, by means of first principle and classical calculations, the structural, vibrational and thermal properties of some of the most promising and widely used phase-change materials such as GeTe, Ge2Sb2Te5 (GST), GeTe-Sb2Te3 superlattices and InSbTe (IST) alloys. The first part of the thesis is focused on the calculation of bulk thermal conductivity and thermal boundary resistances(TBR) between the active media and the surrounding dielectrics and metallic electrodes. Since in PCMs the phase changes corresponding to the memory writing/erasing processes are induced by Joule heating, heat dissipation and transport are key factors that greatly affect the power consumption and the switching speed of the memory cell. Moreover these quantities also influence the thermal cross-talks among the different bits in a memory array which can rise serious reliability issues, especially in ultrascaled devices. Bulk thermal has been computed on the basis density functional calculations [2] for crystalline GeTe, Sb2Te3 and GST. These calculations allowed to identify the origin of the large variability in experimental measurement for GeTe and the origin of the glass-like thermal conductivity in GST. An estimate of IST thermal conductivity was also obtained based on the minimal thermal conductivity model and ab-initio phonons. Thermal boundary resistance at different interface of crystalline GST, IST and GeTe with dielectrics and metals have been estimated from ab-initio phonons and the Diffuse Mismatch Model. The calculations revealed that an important contribution to the TBR comes from the electron-phonon coupling within GST and GeTe. For the GeTe amorphous/crystalline interface, which is also present in the device, we used an interatomic potential generated with a Neural Network (NN) method [3] and non-equilibrium molecular dynamics simulations. In the second part of the thesis we calculated the vibrational Raman spectra GeTe multilayers and of different GeTe-Sb2Te3 superlattices and intermixed compounds which are proposed to be the basis of the so called interfacial phase-change memories, a new type of device with very low power consumption[4]. The comparison between theoretical and experimental spectra allowed the identification of the growth mechanism of GeTe thin films on silicon and could allow the identification of the structures in the superlattices. In the last part we studied the nanowires of Sb2Te3 and GeTe. In particular we studied the energetic of Sb2Te3 surfaces by mean of ab initio calculations in order to explain the observation of a new Sb2Te3 crystal structure in nanowires that turned out to be stabilized by the low dimensionality. Finally we extended the bulk NN potential for GeTe previously developed in our group, enabling the possibility to study the properties of GeTe surfaces and nanowires. [1] M. Wuttig and N. Yamada, Nature Materials 6, 824 (2007). [2] L. Paulatto et al., Phys. Rev. B 87, 214303 (2013). [3] G.C. Sosso et al., Phys. Rev. B 86, 104301 (2012). [4] R.E.Simpson et al., Nature Nanotechnology 6, 501 (2011).
APA, Harvard, Vancouver, ISO, and other styles
3

Campbell, Kevin Ryan. "Phase Change Materials as a Thermal Storage Device for Passive Houses." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/201.

Full text
Abstract:
This study describes a simulation-based approach for informing the incorporation of Phase Change Materials (PCMs) in buildings designed to the "Passive House" standard. PCMs provide a minimally invasive method of adding thermal mass to a building, thus mitigating overheating events. Phase change transition temperature, quantity, and location of PCM were all considered while incrementally adding PCM to Passive House simulation models in multiple climate zones across the United States. Whole building energy simulations were performed using EnergyPlus from the US Department of Energy. A prototypical Passive House with a 1500 Watt electric heater and no mechanical cooling was modeled. The effectiveness of the PCM was determined by comparing the zone-hours and zone-degree-hours outside the ASHRAE defined comfort zone for all PCM cases against a control simulation without PCM. Results show that adding PCM to Passive Houses can significantly increase thermal comfort so long as the house is in a dry or marine climate. The addition of PCM in moist climates will not significantly increase occupant comfort because the majority of discomfort in these climates arises due to latent load. For dry or marine climates, PCM has the most significant impact in climates with lower cooling degree-days, reducing by 93% the number of zone-hours outside of thermal comfort and by 98% the number of zone-degree-hours uncomfortable in Portland, Oregon. However, the application of PCM is not as well suited for very hot climates because the PCM becomes overcharged. Only single digit reductions in discomfort were realized when modeling PCM in a Passive House in Phoenix, Arizona. It was found that regardless of the climate PCM should be placed in the top floor, focusing on zones with large southern glazing areas. Also, selecting PCM with a melt temperature of 25°C resulted in the most significant increases in thermal comfort for the majority of climates studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Chuan. "Thermal energy storage using carbonate-salt-based composite phase change materials : linking materials properties to device performance." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7242/.

Full text
Abstract:
Thermal energy storage (TES) has a crucial role to play in conserving and efficiently utilising energy, dealing with mismatch between demand and supply, and enhancing the performance and reliability of our current energy systems. This thesis concerns TES materials and devices with an aim to establish a relationship between TES device level performance to materials properties. This is a multiscale problem. The work focuses on the use of carbonate-salt-based composite phase change materials (CPCMs) for medium and high temperature applications. A CPCM consists of a carbonate salt based phase change material (PCM), a thermal conductivity enhancement material (TCEM, graphite flake in this work) and a ceramic skeleton material (CSM, MgO in this work). Both mathematical modelling and experiments were carried out to address the multiscale problem. The wettability of carbonate salt and MgO system is first studied, followed by exploring the CPCMs microstructure characteristics and formation mechanism, and then the effective thermal conductivity of the CPCMs is carried out based on the developed microstructures. At the last part, heat transfer behaviour of CPCMs based TES at component and device levels is investigated.
APA, Harvard, Vancouver, ISO, and other styles
5

Min, Kyung-Eun. "A Study of Thermal Energy Storage of Phase Change Materials: Thermophysical Properties and Numerical Simulations." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4835.

Full text
Abstract:
A Thermal Energy Storage (TES) system is meant for holding thermal energy in the form of hot or cold materials for later utilization. A TES system is an important technological system in providing energy savings as well as efficient and optimum energy use. The main types of a TES system are sensible heat and latent heat. A latent heat storage is a very efficient method for storing or releasing thermal energy due to its high energy storage density at constant temperatures, and a latent heat storage material can store 5-14 times more heat per unit volume than a sensible heat storage material can. Phase Change Materials (PCMs) are called latent heat storage materials. PCMs can save thermal energy, and use energy efficiently because PCMs can absorb thermal energy in the solid state, and the thermal energy can be released in the liquid state. Therefore, PCMs as new materials for saving energy can be applied into building applications. PCMs have been widely researched, but the current issues are lack of accurate and detailed information about thermophysical properties of PCMs to apply to buildings and inaccurate materials properties measured by existing methodology. The objective of this study is to develop a methodology and procedure to accurately determine the thermophysical properties of PCMs based on salt hydrates. TES systems of PCMs are measured and analyzed by various methods, such as DSC method and heat flow method. In addition, this study demonstrates to design a building roof with PCMs to save energy using Finite Element Analysis (FEA). The developed methodology is designed based on ASTM C1784-14, Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products, for measuring the thermal energy storage properties of PCMs. The thermophysical properties and thermal stabilities are evaluated by using a Differential Scanning Calorimetry (DSC), which is made with DSC Q 200 equipment from TA Instruments and DSC STA 8000 equipment from Perkin Elmer Company. The thermal conductivities are assessed by heat flow meter, which is FOX 314 equipment from TA Instruments, and the enthalpy changes of the PCMs are determined by DSC method and heat flow method. Numerical FEA to evaluate potential energy savings is conducted using ABAQUS software. Four types of Phase Change Materials (PCMs), which have phase changes at 21ºC, 23ºC, 26ºC, and 30ºC, respectively, are used for measuring the thermophysical properties. The onset/peak temperature, the enthalpy, the heat flow, and the heat capacity of the PCMs are measured to assess the thermal energy storage system under the dynamic DSC mode. The results obtained using DSC equipment have a higher melting temperature than their own temperatures, which are known theoretically. The freezing temperatures of the PCMs are decreased by about 30ºC ~ 40ºC compare to their theoretical freezing temperatures. It is speculated that supercooling happens during the solidification. The enthalpy change curves as a function of temperature, which are determined by DSC method and heat flow method, are indicated to assess thermal energy storage system of the PCMs. During the phase change, the energy is increased. This is the reason why the energy is utilized to loosen or break apart the molecular or atomic bond structures of the PCMs by the latent heat. Moreover, the enthalpy change curves determined by heat flow method show more precise results than the curves by DSC method, because various factors lead to a temperature gradient in the PCM and the heat flux signal peak being shifted toward high temperatures. Regarding the thermal conductivities results of the PCMs, the thermal conductivities of the PCMs in the solid state are higher than those of the PCMs in the liquid state. This phenomenon happens due to the effect of the microstructure changing from the orderly solid structure in the solid state to the disorderly liquid structure in the liquid state. The numerical Finite Element Analysis (FEA) is conducted to evaluate potential energy savings of a roof. The results, such as the temperature variations from the outdoor to indoor measured under step 1 (the daytime) condition, show that the outdoor temperatures are higher than the indoor temperatures. This is due to the low thermal conductivity of the PCM in the liquid state. The low thermal conductivity of the PCM reduces the heat transmission to the indoor that in turn increases the outdoor temperature. This study shows the developed methodology and procedure, the accurate material information for the newly developed PCM, and the numerical FEA to analyze the TES systems with much more precision in the area of the PCMs.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Guanhua. "Fabrication, characterization and thermo-physical properties of micro- and nano- scaled phase change materials for thermal energy storage." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57041/.

Full text
Abstract:
Latent heat storage is one of the most efficient ways of storing thermal energy. Organic phase change materials are latent heat storage materials and they have been widely used as suitable materials for thermal energy storage applications due to their high latent heat and small temperature difference between storing and releasing heat. In this thesis, micro- and nano- scaled phase change materials were fabricated for thermal energy storage. A novel microencapsulated phase change material slurry (MPCS) was introduced by dispersing microencapsulated phase change materials (MEPCMs) into water with an amount of surfactants and its thermal and rheological properties were also investigated. The results showed that MPCS fabricated in the current research are suitable for potential application as heat transfer media in the thermal energy storage. A new methodology was proposed to investigate the heat transfer characteristics of MPCSs. Experiments were carried out in laminar, transition and turbulent flow for MPCSs in a circular tube under constant heat flux, respectively. The experimental results demonstrated that in comparison to water as a heat transfer fluid at the same flow rate, the heat transfer of 10 wt. % MPCS could be enhanced by 10 % in transition flow condition while the PCM particles were in solid/liquid state, and the heat transfer of 5 wt. % MPCS could be enhanced by 21.9 % and 19.2 % in turbulent flow condition while the PCMs are in solid and solid/liquid states, respectively. Nevertheless, the heat transfer enhancement depends on the combination factors, including concentration of the slurry and flow rate of the slurry. A novel heat transfer fluid containing microencapsulated phase change material and multi-walled carbon nanotubes was prepared. The results showed that addition of MWCNTs to microencapsulated phase change material slurry can effectively improve the thermal conductivity of suspensions and it is also found that a blend of 10 wt. % MEPCM and 1 wt. % MWCNTs suspension can achieve the best thermal performance and stability among other blends in the experiment. A novel nanocapsule containing n-octadecane with an average 50 nm thick shell of poly (ethyl methacrylate) (PEMA), and with a core/shell weight ratio of 80/20 was synthesized by direct miniemulsion method. The results showed that PEMA/octadecane nanocapsule had good thermo-physical properties and had much higher encapsulation ratio (89.5%) and encapsulation efficiency (88.9%). For the first time, a novel PCM nanoparticle suspension (nano-PCS) was synthesized by direct miniemulsion method for thermal energy system application. It was found that the nano-PCSs had good thermo-physical properties and durability. All nano-PCSs presented narrow size distribution and stable particles. In comparison to the convectional PCM emulsion and MPCS, the nano-PCS tends to be more stable and is much easier and cheaper to fabricate in terms of the method and materials used, however, the heat transfer characteristics of the nano-PCS require further experimental investigation
APA, Harvard, Vancouver, ISO, and other styles
7

Pitié, Frédéric. "High temperature thermal energy storage : encapsulated phase change material particles : determination of thermal and mechanical properties." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/57108/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barhemmati, Rajab Nastaran. "Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752408/.

Full text
Abstract:
In this research thermal properties enhancement of phase change material (PCM) using boron nitride nanomaterials such as nanoparticles and nanotubes is studied through experimental measurements, finite element method (FEM) through COMSOL 5.3 package and molecular dynamics simulations via equilibrium molecular dynamics simulation (EMD) with the Materials and Process Simulations (MAPS 4.3). This study includes two sections: thermal properties enhancement of inorganic salt hydrate (CaCl2∙6H2O) as the phase change material by mixing boron nitride nanoparticles (BNNPs), and thermal properties enhancement of organic phase change material (paraffin wax) as the phase change material via encapsulation into boron nitride nanotubes (BNNTs). The results of the proposed research will contribute to enhance the thermal transport properties of inorganic and organic phase change material applying nanotechnology for increasing energy efficiency of systems including electronic devices, vehicles in cold areas to overcome the cold start problem, thermal interface materials for efficient heat conduction and spacecraft in planetary missions for efficient thermal managements.
APA, Harvard, Vancouver, ISO, and other styles
9

Ferrer, Muñoz Gerard. "Characterization, equation formulation and enhancement of phase change materials (PCM) for thermal energy storage (TES)." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399901.

Full text
Abstract:
L’edificació, la indústria i el transport són els tres principals sectors consumidors d’energia, representant el 96 % de l’energia final consumida a la Unió Europea, i essent responsable de gairebé la totalitat de les emissions de CO2. El programa Horizon 2020 de la Comissió Europea expressa la necessitat de reduir el consum d’energia i les emissions d’efecte hivernacle en un 20 % per l’any 2020. L’emmagatzematge d’energia és un dels principals camps considerats i desenvolupats per reduir les emissions, doncs permet emparellar la demanda i el subministrament d’energia amb sistemes simples i eficients. Els sistemes d’emmagatzematge d’energia tèrmica (TES) permeten emmagatzemar densitats d’energia elevades per poder variar la demanda d’energia i facilitat l’ús d’energia renovables. Aquesta tesi està principalment enfocada en l’emmagatzematge de calor latent, una tecnologia què, tot i que ha estat àmpliament estudiada, encara necessita millores i presenta buits importants.
La edificación, la industria i el transporte son los tres principales sectores consumidores de energía, representando el 96 % de la energía total consumida en la Unión Europea, y siendo responsables de casi la totalidad de las emisiones de CO2. El programa Horizon 2020 de la Comisión Europea expresa la necesidad de reducir el consuma de energía i las emisiones de efecto invernadero en un 20 % para el año 2020. El almacenaje de energía es uno de los principales campos considerados y desarrollados para reducir las emisiones, pues permite emparejar la demanda y el subministro de energía con sistemas simples y eficientes.Los sistemas de almacenaje de energía térmica (TES) permiten almacenar densidades de energía elevadas para poder variar la demanda de energía y facilitar el uso de energías renovables. Esta tesis está principalmente enfocada en el almacenaje de calor latente, una tecnología que, aunque ha sido ampliamente estudiada, aún necesita mejoras y presenta vacíos importantes.
Buildings, industry and transport are the three main energy consuming sectors, representing the 96 % of the final energy consumption in the European Union, and being responsible of almost the totality of the CO2 emissions. The horizon 2020 program of the European Commission expresses the need to reduce by 20 % the energy consumption and greenhouse emissions by the year 2020Energy storage is one of the main fields considered and developed to reduce emissions, allowing to match energy demand and supply with simple and efficient systems.Thermal energy storage (TES) systems allow the storage of high energy densities in order to shift the energy demand and ease the use of renewable energies. This thesis is mainly focused in latent energy storage, a technology that despite having been widely studied, still requires improvements and presents important gaps.
APA, Harvard, Vancouver, ISO, and other styles
10

Siegert, Karl Simon [Verfasser], Matthias [Akademischer Betreuer] Wuttig, and Raphaël P. [Akademischer Betreuer] Hermann. "Thermal Properties of Phase-Change Materials From Lattice Dynamics to Thermoelectricity / Karl Simon Siegert ; Matthias Wuttig, Raphaël P. Hermann." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1129365255/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phase-change materials, thermal properties"

1

1948-, Chvoj Z., Šesták Jaroslav 1938-, and Tříska A, eds. Kinetic phase diagrams: Nonequilibrium phase transitions. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Magee, Joseph W. Thermophysical properties measurements and models for rocket propellant RP-1: Phase I. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Turchi Patrice E., Gonis Antonios 1945-, Shull Robert D, Minerals, Metals and Materials Society. Meeting, and TMS Committee on Alloy Phases., eds. CALPHAD and alloy thermodynamics: Proceedings of a symposium sponsored by the Alloy Phase Committe of the joint Structural Materials Division (SMD) and the Electronic, Magnetic & Photonic Materials Division (EMPMD) of TMS (The Minerals, Metals & Materials Society), held during the 2002 TMS annual meeting in Seattle, Washington, February 17-21, 2002, to honor of the William Hume-Rothery Award Recipient, Dr. Larry Kaufman. Warrendale, PA: TMS (The Minerals, Metals & Materials Society), 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiang bian cai liao yu xiang bian chu neng ji shu. Beijing: Ke xue chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xiang bian cai liao yu xiang bian chu neng ji shu. Beijing: Ke xue chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vali︠a︡shko, V. M. Hydrothermal properties of materials: Experimental data on aqueous phase equilibria and solution properties at elevated temperatures and pressures. Hoboken, N.J: Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yildiz, Bayazitoglu, Sathuvalli Udaya B, and American Society of Mechanical Engineers. Heat Transfer Division., eds. Heat transfer in porous media and two-phase flow: Presented at the Energy and Environmental Expo '95, the Energy-Sources Technology Conference and Exhibition, Houston, Texas, January 29-February 1, 1995. New York, N.Y: American Society of Mechanical Engineers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

K, Liaw P., Nicholas T, Metallurgical Society (U.S.). Mechanical Metallurgy Committee., and Metallurgical Society (U.S.). Phase Transformation Committee., eds. Effects of load and thermal histories on mechanical behavior of materials: Proceedings of a symposium sponsored by the Mechanical Metallurgy and the Phase Transformation Committees of TMS-AIME, held at the 1987 TMS-AIME Annual Meeting in Denver, Colorado, February 22-26, 1987. Warrendale, Pa: Metallurgical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oxlade, Chris. Calentar. Chicago, IL: Heinemann Library, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oxlade, Chris. Heating. Chicago, Ill: Heinemann Library, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phase-change materials, thermal properties"

1

Harikrishnan, S., and A. D. Dhass. "Thermophysical Properties of Nanofluids." In Thermal Transport Characteristics of Phase Change Materials and Nanofluids, 134–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003163633-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beddu, Salmia, Amalina Basri, Daud Mohamad, Nur Liyana Mohd Kamal, Nur Farhana, Zakaria Che Muda, Zarina Itam, Sivakumar Naganathan, Siti Asmahani Saad, and Teh Sabariah. "Thermal Properties of Concrete Containing Cenosphere and Phase Change Materials." In Lecture Notes in Civil Engineering, 143–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5041-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reyes-Cueva, E., Javier Martínez-Gómez, and Mónica Delgado Yánez. "Phase Change Materials. Material Selection Based on Better Thermal Properties: A Literature Review." In Innovation and Research, 450–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60467-7_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ansu, A. K., Pooja Singh, and R. K. Sharma. "Study of Thermal Properties of Eutectic Phase Change Materials for Energy Storage." In Energy Systems and Nanotechnology, 23–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1256-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sevilla, Law Torres, and Jovana Radulovic. "Exploring the Relationship Between Heat Absorption and Material Thermal Parameters for Thermal Energy Storage." In Springer Proceedings in Energy, 27–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_4.

Full text
Abstract:
AbstractUsing thermal energy storage alongside renewables is a way of diminishing the energy lack that exists when renewable energies are unable to run. An in-depth understanding of the specific effect of material properties is needed to enhance the performance of thermal energy storage systems. In this paper, we used fitting models and regression analysis to quantify the effect that latent heat of melting and material density have on the overall heat absorption. A single tank system, with encapsulated phase change materials is analysed with materials properties tested in the range of values commonly found in the literature. These materials are, therefore, hypothetically constructed ones based on materials such as paraffin. The software used for the numerical analysis is COMSOL Mulitphysics. Results show that the relationship between the latent heat and density regarding heat absorbed is a positive linear function for this system.
APA, Harvard, Vancouver, ISO, and other styles
6

Ahmed, Jasim. "Thermal Properties of Polylactides and Stereocomplex." In Glass Transition and Phase Transitions in Food and Biological Materials, 261–79. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mullah, Mehraj Fatema, Linu Joseph, Yasir Ali Arfat, and Jasim Ahmed. "Thermal Properties of Gelatin and Chitosan." In Glass Transition and Phase Transitions in Food and Biological Materials, 281–304. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahanta, Arun Kumar, Dipak Rana, Akhil Kumar Sen, and Pralay Maiti. "Thermal Properties of Food and Biopolymer Using Relaxation Techniques." In Glass Transition and Phase Transitions in Food and Biological Materials, 141–57. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yadav, Apurv, Bidyut Barman, Vivek Kumar, Abhishek Kardam, S. Shankara Narayanan, Abhishek Verma, Devinder Madhwal, Prashant Shukla, and Vinod Kumar Jain. "A Review on Thermophysical Properties of Nanoparticle-Enhanced Phase Change Materials for Thermal Energy Storage." In Springer Proceedings in Physics, 37–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Swenson, Jan, and Helén Jansson. "Thermal and Relaxation Properties of Food and Biopolymers with Emphasis on Water." In Glass Transition and Phase Transitions in Food and Biological Materials, 1–29. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phase-change materials, thermal properties"

1

Cai, Xiaolin, and Jingsong Wei. "Thermal properties of Te-based phase-change materials." In 2012 International Workshop on Information Data Storage and Ninth International Symposium on Optical Storage, edited by Fuxi Gan and Zhitang Song. SPIE, 2013. http://dx.doi.org/10.1117/12.2014908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, S. Mark, Diane Swarthout, Thomas Noll, Susan Gelderbloom, Douglas Houtman, and Kelly Wall. "Silicone Phase Change Thermal Interface Materials: Properties and Applications." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35075.

Full text
Abstract:
Thermal interface materials (TIM) play a very important role in effectively dissipating unwanted heat generated in electronic devices. This requires that the TIM should have a high bulk thermal conductivity, intimate contact with the substrate surfaces, and the capability to form a thin bond line. In designing new TIMs to meet these industry needs, alkyl methyl siloxane (AMS) waxes have been studied as phase change matrices. AMS waxes are synthesized by grafting long chain alpha-olefins on siloxane polymers. The melting point range of the silicone wax is determined by the hydrocarbon chain length and the siloxane structure. When the AMS wax is mixed with thermally conductive fillers such as alumina, a phase change compound is created. The bulk thermal conductivities of the phase change material (PCM) are reduced as they go through the phase change transition from solid to liquid. By coating the PCM onto an aluminum mesh, both the mechanical strength and the thermal conductivity are drastically improved. The thermal conductivity increases from 4.5 W/mK for the PCM without aluminum support to 7.5 W/mK with the supporting mesh. The thermal resistance of the aluminum-supported sheet at a bond line thickness of 115 microns has been found to be ∼0.24 cm2-C/W. Applying pressure at the time of application has a positive effect on the thermal performance of the PCM. Between contact pressures of 5–80 psi, the thermal resistance decreases as the pressure increases. The weak mechanical strength of the phase change material turns out to be a benefit when ease of rework and the effects of shock and vibration during shipping and handling are considered. A stud pull test of the aluminum mesh-supported PCM shows an average of 13 psi stress at the peak of the break.
APA, Harvard, Vancouver, ISO, and other styles
3

Adinberg, R., and D. Zvegilsky. "Thermal Measurement System for Phase Change Materials." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86844.

Full text
Abstract:
A lab scale set-up designed based on reflux heat transfer is used for studying latent heat storage for concentrating solar power systems. Phase change materials (PCM) with temperature of fusion range between 300 and 400°C are being tested using this system, including metal alloys and inorganic salts. In the present configuration, the system provides thermal measurements of PCM specimens of about 1000 g under heating temperature up to 450°C and enables simultaneous studying calorimetric properties of the loaded materials and heat transfer effects developed in the thermal storage process composed of charge and discharge phases. The measurement technique includes a thermal analysis model aimed at evaluating the experimental data. Results of the thermal measurements conducted with a thermal storage medium composed of potassium nitrate KNO3 (m.p. 334°C) as PCM and Diphyl (synthetic thermal oil, max working temperature 400°C) as the heat transfer fluid are presented and discussed in this study.
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, Shile, Shujuan Tan, Guoyue Xu, and Tengchao Guo. "The thermal properties of Erythritol/Adipic acid composite phase change material." In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/msmee-17.2017.231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhelezny, Vitaly, Olga Khliyeva, Artem Nikulin, Nikolay Lapardin, Dmytro Ivchenko, and Elena Palomo Del Barrio. "Paraffin Wax Enhanced with Carbon Nanostructures as Phase Change Materials: Preparation and Thermal Conductivity Measurement." In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Zenghu, Bao Yang, and Yung Y. Liu. "Phase-Change Nanofluids With Enhanced Thermophysical Properties." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18148.

Full text
Abstract:
The colloidal dispersion of solid nanoparticles (1–100nm) has been shown experimentally to be an effective way to enhance the thermal conductivity of heat transfer fluids. Moreover, large particles (micrometers to tens of micrometers) of phase-change materials have long been used to make slurries with improved thermal storage capacity. Here, a hybrid concept that uses nanoparticles made of phase-change materials is proposed to simultaneously enhance the effective thermal conductivity and the effective heat capacity of fluids. Water-in-perfluorohexane nanoemulsion fluids and indium-in-polyalphaolefin nanofluids are examples of fluids that have been successfully synthesized for experimental studies of their thermophysical properties (i.e., thermal conductivity, viscosity, and heat capacity) as functions of particle loading and temperature. The thermal conductivity of perfluorohexane was found to increase by up to 52% for nanoemulsion fluids containing 12 vol. % water nanodroplets with a hydrodynamic radius of ∼10 nm. Also observed in water-in-perfluorohexane nanoemulsion fluids was a remarkable improvement in effective heat capacity, about 126% for 12 vol. % water loading, due to the melting-freezing transitions of water nanodroplets to ice nanoparticles and vice versa. The increases in the thermal conductivity and dynamic viscosity of these nanoemulsion fluids were found to be highly nonlinear against water loading, indicating the important roles of the hydrodynamic interaction and the aggregation of nanodroplets. For indium-in-polyalphaolefin nanofluids, the thermal conductivity enhancement increases slightly with increasing temperature (i.e., about 10.7% at 30°C to 12.9% at 90°C) with a nanoparticle loading of 8 vol. %. The effective volumetric heat capacity can be increased by about 20% for the nanofluids containing 8 vol. % indium nanoparticles with an average diameter of 20 nm. Such types of phase-change nanoemulsions and nanofluids possess long-term stability and can be mass produced without using as-prepared nanoparticles. The observed melting-freezing phase transitions of nanoparticles of phase-change materials (i.e., water nanodroplets and indium nanoparticles) considerably augmented the effective heat capacity of the base fluids. The use of phase-change nanoparticles would thus provide a way to substantially enhance the thermal transport properties of conventional heat transfer fluids. Future development of these phase-change nanofluids is expected to open new opportunities for studies of thermal fluids.
APA, Harvard, Vancouver, ISO, and other styles
7

Nitsas, M. T., I. P. Koronaki, and A. Beliotis. "Thermal Analysis of Phase Change Materials by Utilizing Nanoparticles." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87026.

Full text
Abstract:
Latent TES systems utilize phase change materials (PCMs) which at a suitable temperature range can be melted and thus store thermal energy. The stored energy is removed during the reverse process which solidifies the PCM. Due to the superiority of high latent heat compared to sensible heat, PCMs can contribute to the reduction of the storage systems’ size offering a promising solution especially when coupled with solar collectors. Despite the aforementioned advantages, the relatively low thermal conductivity of PCM hinders their wide utilization. In the present study, a thermal analysis of phase change materials is carried out. Different types of phase change materials (PCMs) are analyzed at various temperature ranges. The energy equation for the PCM is solved by implementing a 1D explicit finite difference scheme in Matlab and the results are compared with corresponding results deriving from Comsol. The properties of the utilized PCMs are altered accordingly so as to take into account their variation during phase change. In this analysis, only the thermal behavior of a PCM is investigated while the gravitational effect is neglected. The results of the analysis regard the temperature variations within the phase change material, the stored energy in the PCM per volume unit, the process speed and the effect of thermal conductivity on phase change, especially on the melting front displacement. Primary results have shown that the stored energy depends on the heat source and on the utilized PCM. In order to tackle the problem of PCM low conductivity, nanoparticles are added so as to enhance the stored energy due to the higher thermal conductivity. Upon the addition of two types of nanoparticles, the enhancement of melting fraction and stored heat are determined.
APA, Harvard, Vancouver, ISO, and other styles
8

Adegbaye, Patrick, Yong Pei, Mehdi Kabir, Herve Cabrel Sandja Tchamba, Bao Yang, and Jiajun Xu. "Development of Phase-Change Materials with Improved Thermal Properties for Space-Related Applications." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94380.

Full text
Abstract:
Abstract For spacecraft thermal management systems, it is crucial to diminish the overall mass of onboard thermal storage system and minimize the temperature fluctuations when the environmental temperature changes drastically. Since there is no atmosphere in outer space, heat can only be rejected to space using radiation (e.g., radiators). The heat sink conditions, and the heating power subjected to be rejected vary continuously at the orbiting stage of the spacecraft. Without thermal storage capability, the radiator is required to be large enough to release the highest power at the hottest of the heat sink. Possessing a large latent heat of fusion, PCMs can store an enormous amount of thermal energy within a small volume, which makes them ideal for spacecraft thermal management systems. The heating power required to be rejected as well as the heat sink conditions vary steadily at the orbiting stage of spacecraft. Without thermal storage capability, the radiator is needed to be large enough to release the highest power at the hottest of the heat sink. By engaging and integrating phase-change materials (PCMs) into a passive two-phase heat exchanger, the radiator can be designed and sized for the average rather than the maximum power. This study aims to develop phase-change materials (PCMs) using nanostructured graphitic foams to enhance thermal conductivity of PCMs for improved thermal response in thermal storage applications. In the present study, the correlation of additive’s mass concentration and particle size on the thermal properties of PCM mixtures are investigated experimentally and numerically. Introduction of conductivity enhancing additives into the base PCMs will negatively affect the latent heat of fusion while improving thermal conductivity. Analytical and experimental results for latent heat of fusion are shown to be in good agreement, indicating that as mass concentration of graphitic foam (i.e., C-Foam) increases, the latent heat of PCM decreases consistently. The simulation results also reveal that a small fraction of porous C-Foam additives can significantly enhance thermal conductivity of the base PCM.
APA, Harvard, Vancouver, ISO, and other styles
9

Sevilla, Law Torres, and Jovana Radulovic. "Exploring the Properties of User-defined Phase Change Materials for Thermal Energy Storage." In 6th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2020. http://dx.doi.org/10.11159/htff20.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ganatra, Yash, and Amy Marconnet. "Passive Thermal Management Using Phase Change Materials: Experimental Evaluation of Thermal Resistances." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48499.

Full text
Abstract:
Limited heat dissipation and increasing power consumption in processors has led to a utilization wall. Specifically due to high transistor density, not all processors can be used continuously without exceeding safe operating temperatures. This is more significant in mobile electronic devices which, despite relatively large chip area, are limited by poor heat dissipation — primarily natural convection from the exposed surfaces. In the past, solid-to-liquid phase change materials (PCMs) have been employed for passive thermal control — absorbing energy during the phase change process while maintaining a relatively fixed temperature. However, the lower thermal conductivity of the liquid phase after melting often limits the heat dissipation from the PCM, and in the liquid state, the material can flow away from the desired location. Here we focus on characterization of thermal performance of PCMs with the goal of evaluating dry (gel-to-solid/amorphous-to-crystalline) phase change materials which are intended to mitigate the pumpout issue. Critical thermophysical properties include the thermal conductivity, heat capacity, and latent heat of the phase/state change. The thermal resistance throughout the phase change process is measured by in-house rig which miniaturizes the reference bar method for use with infrared temperature sensing.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phase-change materials, thermal properties"

1

Min, Kyung-Eun. A Study of Thermal Energy Storage of Phase Change Materials: Thermophysical Properties and Numerical Simulations. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.

Full text
Abstract:
The properties of composite materials are strongly influenced by both the physical and chemical properties of their individual constituents, as well as the interactions between them. For nanocomposites, the incorporation of nano-sized dopants inside a host material matrix can lead to significant improvements in mechanical strength, toughness, thermal or electrical conductivity, etc. In this work, the effect of cellulose nanofibrils on the structure and mechanical properties of cellulose nanofibril poly(vinylidene fluoride) (PVDF) composite films was investigated. Cellulose is one of the most abundant organic polymers with superior mechanical properties and readily functionalized surfaces. Under the current processing conditions, cellulose nanofibrils, as-received and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidized, alter the crystallinity and mechanical properties of the composite films while not inducing a crystalline phase transformation on the 𝛾 phase PVDF composites. Composite films obtained from hydrated cellulose nanofibrils remain in a majority 𝛾 phase, but also exhibit a small, yet detectable fraction of 𝛼 and ß PVDF phases.
APA, Harvard, Vancouver, ISO, and other styles
3

Douglas C. Hittle. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/820428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clausen, Jay, Susan Frankenstein, Jason Dorvee, Austin Workman, Blaine Morriss, Keran Claffey, Terrance Sobecki, et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41780.

Full text
Abstract:
An approach to increasing sensor performance and detection reliability for buried objects is to better understand which physical processes are dominant under certain environmental conditions. The present effort (Phase 2) builds on our previously published prior effort (Phase 1), which examined methods of determining the probability of detection and false alarm rates using thermal infrared for buried-object detection. The study utilized a 3.05 × 3.05 m test plot in Hanover, New Hampshire. Unlike Phase 1, the current effort involved removing the soil from the test plot area, homogenizing the material, then reapplying it into eight discrete layers along with buried sensors and objects representing targets of inter-est. Each layer was compacted to a uniform density consistent with the background undisturbed density. Homogenization greatly reduced the microscale soil temperature variability, simplifying data analysis. The Phase 2 study spanned May–November 2018. Simultaneous measurements of soil temperature and moisture (as well as air temperature and humidity, cloud cover, and incoming solar radiation) were obtained daily and recorded at 15-minute intervals and coupled with thermal infrared and electro-optical image collection at 5-minute intervals.
APA, Harvard, Vancouver, ISO, and other styles
5

Campbell, Kevin. Phase Change Materials as a Thermal Storage Device for Passive Houses. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spanner, G. E., and G. L. Wilfert. Potential industrial applications for composite phase-change materials as thermal energy storage media. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5861369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gomez, J. C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Montoya, Miguel A., Daniela Betancourt-Jiminez, Mohammad Notani, Reyhaneh Rahbar-Rastegar, Jeffrey P. Youngblood, Carlos J. Martinez, and John E. Haddock. Environmentally Tuning Asphalt Pavements Using Phase Change Materials. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317369.

Full text
Abstract:
Environmental conditions are considered an important factor influencing asphalt pavement performance. The addition of modifiers, both to the asphalt binder and the asphalt mixture, has attracted considerable attention in potentially alleviating environmentally induced pavement performance issues. Although many solutions have been developed, and some deployed, many asphalt pavements continue to prematurely fail due to environmental loading. The research reported herein investigates the synthetization and characterization of biobased Phase Change Materials (PCMs) and inclusion of Microencapsulated PCM (μPCM) in asphalt binders and mixtures to help reduce environmental damage to asphalt pavements. In general, PCM substances are formulated to absorb and release thermal energy as the material liquify and solidify, depending on pavement temperature. As a result, PCMs can provide asphalt pavements with thermal energy storage capacities to reduce the impacts of drastic ambient temperature scenarios and minimize the appearance of critical temperatures within the pavement structure. By modifying asphalt pavement materials with PCMs, it may be possible to "tune" the pavement to the environment.
APA, Harvard, Vancouver, ISO, and other styles
9

Childs, K. W., P. W. Childs, J. E. Christian, and T. W. Petrie. Thermal Behavior of Mixtures of Perlite and Phase Change Materials in a Simulated Climate. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/2741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Elizabeth J., Jignesh Patel, Veera M. Boddu, L. D. Stephenson, Debbie Lawrence, and Ashok Kumar. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada621877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography