Academic literature on the topic 'Pharmacokinetic interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pharmacokinetic interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pharmacokinetic interactions"
Taylor, David. "Pharmacokinetic interactions involving clozapine." British Journal of Psychiatry 171, no. 2 (August 1997): 109–12. http://dx.doi.org/10.1192/bjp.171.2.109.
Full textKeirns, J., T. Sawamoto, M. Holum, D. Buell, W. Wisemandle, and A. Alak. "Steady-State Pharmacokinetics of Micafungin and Voriconazole after Separate and Concomitant Dosing in Healthy Adults." Antimicrobial Agents and Chemotherapy 51, no. 2 (November 20, 2006): 787–90. http://dx.doi.org/10.1128/aac.00673-06.
Full textSoyata, Amelia, Aliya Nur Hasanah, and Taofik Rusdiana. "Interaction of Warfarin with Herbs Based on Pharmacokinetic and Pharmacodynamic Parameters." Indonesian Journal of Pharmaceutics 2, no. 2 (June 5, 2020): 69. http://dx.doi.org/10.24198/idjp.v2i2.27289.
Full textCostache, Irina-Iuliana, Anca Miron, Monica Hăncianu, Viviana Aursulesei, Alexandru Dan Costache, and Ana Clara Aprotosoaie. "Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products." Cardiovascular Therapeutics 2019 (September 2, 2019): 1–19. http://dx.doi.org/10.1155/2019/9402781.
Full textERESHEFSKY, LARRY, STEPHEN R. SAKLAD, MARK D. WATANABE, CHESTER M. DAVIS, and MICHAEL W. JANN. "Thiothixene Pharmacokinetic Interactions." Journal of Clinical Psychopharmacology 11, no. 5 (October 1991): 296???301. http://dx.doi.org/10.1097/00004714-199110000-00004.
Full textHartshorn, Edward A. "Pharmacokinetic Drug Interactions." Journal of Pharmacy Technology 1, no. 5 (September 1985): 193–99. http://dx.doi.org/10.1177/875512258500100505.
Full textEichelbaum, Michel. "Pharmacokinetic Drug Interactions." Journal of Clinical Pharmacology 26, no. 6 (July 8, 1986): 469–73. http://dx.doi.org/10.1002/j.1552-4604.1986.tb03560.x.
Full textPukrittayakamee, Sasithon, Joel Tarning, Podjanee Jittamala, Prakaykaew Charunwatthana, Saranath Lawpoolsri, Sue J. Lee, Warunee Hanpithakpong, et al. "Pharmacokinetic Interactions between Primaquine and Chloroquine." Antimicrobial Agents and Chemotherapy 58, no. 6 (March 31, 2014): 3354–59. http://dx.doi.org/10.1128/aac.02794-13.
Full textCohen, Lawrence J., and C. Lindsay DeVane. "Clinical Implications of Antidepressant Pharmacokinetics and Pharmacogenetics." Annals of Pharmacotherapy 30, no. 12 (December 1996): 1471–80. http://dx.doi.org/10.1177/106002809603001216.
Full textMarvanova, Marketa. "Pharmacokinetic characteristics of antiepileptic drugs (AEDs)." Mental Health Clinician 6, no. 1 (January 1, 2016): 8–20. http://dx.doi.org/10.9740/mhc.2015.01.008.
Full textDissertations / Theses on the topic "Pharmacokinetic interactions"
McArdle, Elizabeth Karen. "Pharmacokinetic interactions of constituents of cannabis extracts." Thesis, University of Aberdeen, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415480.
Full textRaaska, Kari. "Pharmacokinetic interactions of clozapine in hospitalized patients." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/raaska/.
Full textLundahl, Anna. "In vivo Pharmacokinetic Interactions of Finasteride and Identification of Novel Metabolites." Doctoral thesis, Uppsala universitet, Institutionen för farmaci, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129362.
Full textAdedoyin, A. P. "Pharmacokinetic drug-drug interactions : inhibition and induction studies in the rat." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376236.
Full textElsherbiny, Doaa. "Pharmacokinetic drug-drug interactions in the management of malaria, HIV and tuberculosis." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8426.
Full textYadav, Jaydeep. "EVALUATING PHARMACOKINETIC DRUG-DRUG INTERACTIONS DUE TO TIME DEPENDENT INHIBITION OF CYTOCHROME P450s." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/524248.
Full textPh.D.
Time-dependent inactivation (TDI) of CYPs is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to over-predict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human liver microsomes. Inhibitors evaluated include troleandomycin (TAO), erythromycin (ERY), verapamil (VER), Paroxetine (PAR), itraconazole (ITZ) and diltiazem (DTZ) along with primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (MA). Complexities incorporated in the models included multiple binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The different factors affecting TDI kinetics were evaluated such as lipid partitioning, inhibitor depletion, presence of transporters. The inactivation parameters obtained from numerical method were incorporated into static in-vitro – in-vivo correlation (IVIVC) models to predict clinical DDIs. For 123 clinically observed DDIs, using a hepatic CYP3A synthesis rate constant of 0.000146 min-1, the average fold difference between observed and predicted DDIs was 2.97 for the standard replot method and 1.66 for the numerical method. Similar results were obtained using a synthesis rate constant of 0.00032 min-1. These results suggest that numerical methods can successfully model complex in-vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach. Chapter one presents the detailed introduction along with the hypothesis and significance of the project. Chapter 2 includes the development of the bioanalytical method for quantitation of various compounds which includes inactivators and their primary metabolites. Chapter 3 entails the discussion on in-vivo studies in rats involving TDI mediated DDI studies. Chapter 4 discusses the in-vitro studies and use of the numerical method for evaluation of TDI kinetics. Chapter 5 and chapter 6 provides discussion on the impact of inhibitor depletion and partitioning of TDI kinetics and how these two could lead to misinterpretation of TDI results. Chapter 6 also provides a discussion on how transporters could affect TDI results mainly from hepatocyte studies. Chapter 7 involves prediction of TDI mediated DDI using static modeling. Chapter 8 is a case study on bosentan involving induction mediated DDI.
Temple University--Theses
Cherkaoui, Rbati Mohammed. "Mathematical and physical systems biology : application to pharmacokinetic drug-drug interactions and tumour growth." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33719/.
Full textNaghmeh, Jabarizadekivi. "A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations." University of Sydney, 2008. http://hdl.handle.net/2123/2471.
Full textClozapine is a drug of choice for treatment of refractory schizophrenia, which is primarily metabolized by Cytochrome P450 1A2 (CYP1A2). Norclozapine is its main metabolite. There are reports of wide ranging gastrointestinal side effects associated with clozapine therapy, that result in concomitant administration of proton pump inhibitors to treat acid-related disorders. Omeprazole is an established CYP1A2 inducer, while an in vitro study has shown that rabeprazole is much less potent in this regard. There is no available information about the impact of rabeprazole on CYP1A2 activity in patients. Firstly, this information is essential when prescriptions are changed from omeprazole to rabeprazole to reduce medication costs. Therefore, the aim of this study was to compare the effects of rabeprazole and omeprazole on CYP1A2-mediated clearance (CL/F) of clozapine. Secondly, the effective dosage of clozapine varies widely among patients, making it necessary to individualize drug therapy with clozapine. The reason for dosage variation could be due to the influence of patient-related variables on clozapine plasma concentrations. Therefore, another aim of this study was to investigate the relationship between patient variables, such as age, gender, cigarette smoke, weight and body mass index and clozapine clearance (CL/F). A cross-over study design was used for this study. Twenty patients from Macquarie hospital who were receiving clozapine and rabeprazole (with no other interacting medications) were recruited in this study. Blood samples were taken at 30 min, 1 hr, 2 hr and 12 hr after a dose of clozapine. Rabeprazole was then replaced with omeprazole. After at least 1 month blood samples were again collected at the above corresponding intervals after clozapine. The plasma concentrations of clozapine and norclozapine were determined by high performance liquid chromatography. Abbottbase Pharmacokinetic Systems Software, which utilizes Bayesian forecasting, was used to estimate pharmacokinetic parameters of clozapine. The ratio of plasma norclozapine/clozapine concentrations at trough level was used to reflect CYP1A2 activity. No difference was observed in clozapine clearance (CL/F) and CYP1A2 activity during concurrent therapy with either rabeprazole or omeprazole. According to some studies CYP1A2 induction by omeprazole is dose dependent. Furthermore, since rabeprazole is a weak CYP1A2 inducer in vitro, we conclude that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40 mg/day). Hence, replacement of omeprazole with rabeprazole at conventional therapeutic dosages (20 or 40 mg daily) offers no advantages in the management of patients with schizophrenia on clozapine and no dose adjustment is required. Consistent with previous studies, clozapine concentrations were found to be significantly lower in cigarette smokers due to CYP1A2 induction. No relationship was found between age, gender, or weight and clozapine clearance (CL/F). However, body mass index showed a significant negative correlation with clozapine clearance (CL/F). Since weight gain and lipid accumulation are common side effects of clozapine they may be associated with a reduction of CYP1A2 activity and clozapine clearance (CL/F). Moreover, high lipoprotein levels may decrease the unbound fraction of clozapine and decrease the availability of clozapine for oxidation by cytochrome P450 enzymes. Therefore, it is concluded that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40mg/day). Hence, replacement of omeprazole with rabeprazole does not require the dose of clozapine to be adjusted. Moreover, the negative correlation between clozapine clearance (CL/F) and BMI is informative. Further studies are now required to clarify the relationship between BMI, lipoprotein levels and clozapine clearance in patients with schizophrenia.
Naghmeh, Jabarizadekivi. "A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations." Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/2471.
Full textSalem, Farzaneh. "Applications of physiologically based pharmacokinetic modelling to prediction of the likelihood of metabolic drug interactions in paediatric population and studying disparities in pharmacokinetics between children and adults." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/applications-of-physiologically-based-pharmacokinetic-modelling-to-prediction-of-the-likelihood-of-metabolic-drug-interactions-in-paediatric-population-and-studying-disparities-in-pharmacokinetics-between-children-and-adults(1fdefe9a-037a-4738-b92a-5904a60960db).html.
Full textBooks on the topic "Pharmacokinetic interactions"
Kiang, Tony K. L., Kyle John Wilby, and Mary H. H. Ensom. Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10527-7.
Full textKiang, Tony K. L., Kyle John Wilby, and Mary H. H. Ensom, eds. Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antiretroviral Drugs. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2113-8.
Full textBartle, W. R., V. Braun, J. M. Dietschy, Y. Emori, M. Hagiwara, H. Hidaka, S. Imajoh, et al. Regulation of Plasma Low Density Lipoprotein Levels Biopharmacological Regulation of Protein Phosphorylation Calcium-Activated Neutral Protease Microbial Iron Transport Pharmacokinetic Drug Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7.
Full textDavid, Rodrigues A., ed. Drug-drug interactions. New York: M. Dekker, 2002.
Find full textDavid, Rodrigues A., ed. Drug-drug interactions. 2nd ed. New York: Informa Healthcare, 2008.
Find full textHuang, L. Evaluation of the potential pharmacokinetic interaction between naproxen and zidovudine. [Ottawa: Ottawa General Hospital, 1991.
Find full textMultiple chemical interactions. Chelsea, Mich: Lewis Publishers, 1991.
Find full textRitschel, W. A. Handbook of basic pharmacokinetics-- including clinical applications. 6th ed. Washington, D.C: American Pharmacists Association, 2004.
Find full textRitschel, W. A. Handbook of basic pharmacokinetics ... including clinical applications. 7th ed. Washington, D.C: American Pharmacists Association, 2009.
Find full textHandbook of basic pharmacokinetics-- including clinical applications. 3rd ed. Hamilton, IL: Drug Intelligence Publications, 1986.
Find full textBook chapters on the topic "Pharmacokinetic interactions"
Bartle, W. R., S. E. Walker, and N. E. Winslade. "Pharmacokinetic Drug Interactions." In Progress in Clinical Biochemistry and Medicine, 101–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7_5.
Full textWittwer, Erica D., and Wayne T. Nicholson. "Pharmacokinetic Interactions: Core Concepts." In A Case Approach to Perioperative Drug-Drug Interactions, 15–22. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7495-1_3.
Full textMukherjee, Biswajit. "Pharmacokinetic Drug–Drug Interactions." In Pharmacokinetics: Basics to Applications, 145–55. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8950-5_7.
Full textRenton, Kenneth W. "Cytokines and Pharmacokinetic Drug Interactions." In Methods in Pharmacology and Toxicology, 275–96. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-350-9_14.
Full textKiang, Tony K. L., Kyle John Wilby, and Mary H. H. Ensom. "Pharmacokinetic Drug Interactions Affecting Antimalarials." In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials, 27–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10527-7_4.
Full textMarkowitz, John S., and Kennerly S. Patrick. "Pharmacokinetic and Pharmacodynamic Drug Interactions." In Attention Deficit Hyperactivity Disorder, 529–50. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-891-9:529.
Full textHuang, Shiew-Mei. "Drug-Drug Interactions." In Applications of Pharmacokinetic Principles in Drug Development, 307–31. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9216-1_10.
Full textLewis, D. F. V. "Modelling Human Cytochrome P450-Substrate Interactions." In Pharmacokinetic Challenges in Drug Discovery, 235–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04383-7_12.
Full textIeuter, Rachel C. "Pharmacokinetic Drug-Drug Interactions with Warfarin." In Oral Anticoagulation Therapy, 221–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54643-8_32.
Full textBack, D. J., and M. L’E Orme. "Pharmacokinetic Drug Interactions with Oral Contraceptives." In Steroid Contraceptives and Women’s Response, 103–23. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2445-8_10.
Full textConference papers on the topic "Pharmacokinetic interactions"
Moitra, Abha, Ravi Palla, Luis Tari, and Mukkai Krishnamoorthy. "Semantic Inference for Pharmacokinetic Drug-Drug Interactions." In 2014 IEEE International Conference on Semantic Computing (ICSC). IEEE, 2014. http://dx.doi.org/10.1109/icsc.2014.36.
Full textEgenlauf, Benjamin, Johanna Ohnesorge, Satenik Harutyunova, Nicola Benjamin, Christine Fischer, Yeliz Enderle, Jürgen Burhenne, et al. "Pharmacokinetic interactions in different combinations of pulmonary arterial hypertension treatment." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa2397.
Full textKulanthaivel, Palaniappan, Daruka Mahadevan, P. Kellie Turner, Jane Royalty, Wee Teck Ng, Ping Yi, Jessica Rehmel, Kenneth Cassidy, and Jill Chappell. "Abstract CT153: Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-ct153.
Full textHunta, Sathien, and Panchit Longpradit. "Pharmacokinetic simulation for prediction of drug-drug interactions based on agent based modeling." In 2018 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 2018. http://dx.doi.org/10.1109/icdamt.2018.8376508.
Full textKOLCHINSKY, A., A. LOURENÇO, L. LI, and L. M. ROCHA. "EVALUATION OF LINEAR CLASSIFIERS ON ARTICLES CONTAINING PHARMACOKINETIC EVIDENCE OF DRUG-DRUG INTERACTIONS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0040.
Full textSchneider, Elena, Patrick Hanafin, and Gauri Rao. "A retrospective observational study: Bidirectional pharmacokinetic interactions between ivacaftor-lumacaftor in cystic fibrosis." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.362.
Full textPawaskar, Dipti K., Robert Straubinger, Gerald Fetterly, Wen Ma, and William Jusko. "Abstract 27: Physiologically based pharmacokinetic model for interactions of sorafenib and everolimus in mice." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-27.
Full textYang, Xiaoxia, Hofmeister C. Craig, Darlene M. Rozewski, Seungsoo Lee, Ping Chen, Amy J. Johnson, Zhongfa Liu, et al. "Abstract 5473: The contribution of P-glycoprotein to clinical pharmacokinetic interactions between lenalidomide and temsirolimus." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5473.
Full textSidharta, P. N., P. L. M. van Giersbergen, Michael Wolzt, and Jasper Dingemanse. "Lack Of Clinically Relevant Pharmacokinetic Interactions Between The Dual Endothelin Receptor Antagonist Macitentan And Sildenafil In Healthy Subjects." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4802.
Full textGeorges, G., A. Lucardie, C. Garofalo, C. Beaudot, and M. Cella. "Pharmacokinetic/Pharmacodynamic Interactions Between Extrafine Beclomethasone Dipropionate and Formoterol Fumarate Components of a Fixed-Dose Combination for Asthma and COPD." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4528.
Full text