Academic literature on the topic 'PGM-free'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PGM-free.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "PGM-free"

1

Li, Chenzhao, Shengwen Liu, Yachao Zeng, Yadong Liu, David A. Cullen, Gang Wu, and Jian Xie. "Rationally Designed PGM-Free Catalyst MEA with Extraordinary Performance." ECS Meeting Abstracts MA2022-02, no. 40 (October 9, 2022): 1487. http://dx.doi.org/10.1149/ma2022-02401487mtgabs.

Full text
Abstract:
Platinum group metal (PGM) catalysts are the major electrocatalysts for oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cells (PEMFCs). However, the high cost of PGM catalysts is the major huddler for the widespread applications of fuel cell electric vehicles. To remove this cost obstacle of fuel cell commercialization, PGM-free catalysts have been considered as the replacement of PGM catalysts for ORR because of the low cost and relatively comparable performance with PGM catalyst. Fe-C-N complex is the one of the most active centers in PGM-Free catalyst groups. This type of catalyst shows excellent activity characterized using the rotation disk electrode (RDE), i.e., the half wave potential (E1/2 ) could reach 0.91 V versus standard hydrogen electrode (SHE). However, in a membrane electrode assembly (MEA), the performance of PGM-Free catalysts cannot achieve the comparable performance to PGM catalyst. Since there are so many differences between PGM-free, and PGM catalysts e.g., activity, stability, surface conditions, particle size etc. The fabrication of PGM-Free catalyst MEA cannot simply borrow the methods from that of making PGM MEA. In addition, the thicknesses of catalyst layers of PFM-free are significantly thicker than that of PGM, i.e., 10 times. Hereby, we proposed a novel method of fabricating PGM-Free catalyst MEA, so that the intrinsic catalyst activity from RDE can be translated into MEA performance. The method is based on the catalyst coated membrane (CCM) method using optimized ionomer to carbon (I/C) ratio and solvent mixture of catalyst ink. Such method pushes PGM-free MEA first ever achieved the current density of 50.8 mA cm-2 at 0.9 V iR-free in H2/O2 and over 150 mA cm-2 at 0.8 V in H2/air, which surpassed the 2025 performance targets of US Department of Energy (DOE) for PGM-Free catalyst MEA. Further, the property (solvent composition, dispersion of catalyst and ionomer in an ink), structure (pore structure) and the MEA performance have been characterized using mercury intrusion porosimetry (MIP), MEA testing. A property-structure-performance relationship has been established.
APA, Harvard, Vancouver, ISO, and other styles
2

Jang, Kil Nam, Kwang Seon Han, Ji Sook Hong, Young-Woo You, and Taek Sung Hwang. "Basic Research to Develop PGM-free DeNOx Catalyst for LNT." Clean Technology 21, no. 2 (June 30, 2015): 117–23. http://dx.doi.org/10.7464/ksct.2015.21.2.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ul Hassan, Noor, Abolfazl Shakouri, Horie Adabi Firouzjaie, Surachet Duanghathaipornsuk, Barr Zulevi, Paul Kohl, and William Earl Mustain. "High Performance AEM Water Electrolysis with PGM-Free Electrocatalysts." ECS Meeting Abstracts MA2022-02, no. 43 (October 9, 2022): 1620. http://dx.doi.org/10.1149/ma2022-02431620mtgabs.

Full text
Abstract:
Water electrolysis technologies for hydrogen production are getting much attention due to drastic cost reduction in renewable energy sources, like solar, wind, tidal etc. Traditional alkaline water electrolysis has limitations of low current density operation, slow system response and low hydrogen discharge pressure. Proton exchange membrane (PEM) water electrolysis offers compact design, high current density operation, fast system response and pressurized discharge hydrogen. However, PEM electrolyzers require the use of Platinum Group Metal (PGM) based electrocatalysts, expensive perfluorinated membranes and specialized component materials due to its acidic environment. These are all hurdles to its widespread commercial adoption. A relatively new technology, the anion exchange membrane (AEM) electrolyzer can potentially combine benefits from PEM and traditional alkaline electrolyzers, offering high current density operation, pressurized discharge gas and low cost – by utilizing PGM-free electrocatalysts and inexpensive component materials due to the less corrosive alkaline operating environment. However, modern AEM electrolyzers have continued to use high loadings of PGM catalysts in both the cathode and anode. Given the magnitude and recent volatility in the market price of many PGM-group metal catalysts (e.g. Ru, Ir, etc.), it is now even more important for AEM electrolyzers to be realized with significantly lower PGM content – and eventually approaching the complete elimination of PGMs. In this study, we evaluate the performance of several low-PGM and PGM-free electrocatalysts for the oxygen evolution (OER) and hydrogen evolution (HER) reactions for high performance and durability. Here, PGM-free Lanthanum Strontium Cobalt (LSC), Nickel Ferrite (NiFeOx) and low PGM Lead Ruthenate (PbRuOx) were used at the anode for the OER. For the HER cathode, PGM-free Nickel Molybdenum (NiMo) and low-PGM PtNi electrocatalysts were evaluated for their in-situ activity and durability. It will be shown that LSC and NiFeOx show comparable performance to IrOx, with a typical steady-state operating voltage at 60oC and 1.0 A/cm2 (with 0.3 M KOH fed to the anode only) below 1.80 V. Cells with PGM-free anode catalysts were operated stably for over 100 hours. At the cathode, NiMo showed relatively higher overpotentials compared to Pt black, PtNi or Pt/C for the HER. Because of this, various strategies were adopted to reduce the PGM loading while achieving high performance and durable AEM electrolyzer operation. The achieved experimental results provide important insights for the development of AEM based water electrolyzer systems and represent an active step towards its commercial viability.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Hanguang, Hoon T. Chung, David A. Cullen, Stephan Wagner, Ulrike I. Kramm, Karren L. More, Piotr Zelenay, and Gang Wu. "High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites." Energy & Environmental Science 12, no. 8 (2019): 2548–58. http://dx.doi.org/10.1039/c9ee00877b.

Full text
Abstract:
Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs).
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Lei, Gaixia Zhang, and Shuhui Sun. "Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode." Automotive Innovation 4, no. 2 (April 28, 2021): 131–43. http://dx.doi.org/10.1007/s42154-021-00146-0.

Full text
Abstract:
AbstractProton exchange membrane (PEM) fuel cells have gained increasing interest from academia and industry, due to its remarkable advantages including high efficiency, high energy density, high power density, and fast refueling, also because of the urgent demand for clean and renewable energy. One of the biggest challenges for PEM fuel cell technology is the high cost, attributed to the use of precious platinum group metals (PGM), e.g., Pt, particularly at cathodes where sluggish oxygen reduction reaction takes place. Two primary ways have been paved to address this cost challenge: one named low-loading PGM-based catalysts and another one is non-precious metal-based or PGM-free catalysts. Particularly for the PGM-free catalysts, tremendous efforts have been made to improve the performance and durability—milestones have been achieved in the corresponding PEM fuel cells. Even though the current status is still far from meeting the expectations. More efforts are thus required to further research and develop the desired PGM-free catalysts for cathodes in PEM fuel cells. Herein, this paper discusses the most recent progress of PGM-free catalysts and their applications in the practical membrane electrolyte assembly and PEM fuel cells. The most promising directions for future research and development are pointed out in terms of enhancing the intrinsic activity, reducing the degradation, as well as the study at the level of fuel cell stacks.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Hanguang, and Piotr Zelenay. "Platinum Group Metal-Free ORR Catalysts for Anion Exchange Membrane Fuel Cells." ECS Meeting Abstracts MA2022-02, no. 40 (October 9, 2022): 1486. http://dx.doi.org/10.1149/ma2022-02401486mtgabs.

Full text
Abstract:
Platinum group metal (PGM)-free catalysts for oxygen reduction reaction (ORR) have attracted significant attention in the last two decades. These catalysts typically perform better in alkaline aqueous electrolytes than in their acidic counterparts.1, 2 However, the performance of PGM-free ORR catalysts in anion exchange membrane fuels cells (AEMFCs) have been consistently lower than in the acidic polymer electrolyte fuel cells (PEFCs). The most likely reasons for the sub-par behavior of PGM-free catalysts in AEMFCs has been often linked to difficulties in preparing electrodes with anion exchange ionomers and assuring efficient water management. These challenges have been amplified by the high-loading requirement for PGM-free ORR catalysts, resulting in electrodes by as much as an order of magnitude thicker than the PGM-based ones. In this presentation, we will demonstrate AEMFCs with much improved performance of the PGM-free cathode (Fe-N-C catalyst-based). The performance improvement has been achieved by optimizing the electrode fabrication process, including changes to the electrode configuration and catalyst ink preparation. These changes have allowed us to elevate the AEMFC performance, including the peak power density of > 0.8 W cm-2 in H2-O2 cells, to the level comparable to that of the corresponding PEFC, operating with a PGM-free cathode under the same operating conditions. References: 1. Li, X.; Liu, G.; Popov, B. N., Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes. Journal of Power Sources 2010, 195 (19), 6373-6378. 2. Choi, C. H.; Lim, H.-K.; Chung, M. W.; Chon, G.; Ranjbar Sahraie, N.; Altin, A.; Sougrati, M.-T.; Stievano, L.; Oh, H. S.; Park, E. S.; Luo, F.; Strasser, P.; Dražić, G.; Mayrhofer, K. J. J.; Kim, H.; Jaouen, F., The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy & Environmental Science 2018, 11 (11), 3176-3182.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhong, Sichen, Judith Lattimer, Derek James Strasser, James McKone, Manjodh Kaur, Keda Hu, and Yushan Yan. "PGM-Free AEM Electrolyzer Cell Development for Solar Power Integration." ECS Meeting Abstracts MA2022-02, no. 44 (October 9, 2022): 1688. http://dx.doi.org/10.1149/ma2022-02441688mtgabs.

Full text
Abstract:
The increasing availability of renewable energy sources, especially solar power, coupled with the desire to reduce greenhouse gas emissions, has led to an increased interest in using renewables to satisfy global energy demand. Hydrogen is an attractive alternative to fossil fuels due to its potential for emissions reductions and advantages in storage and transportation. Direct solar-to-hydrogen generation would enable the conversion of renewable energy and water into a storable fuel, thereby drastically reducing carbon emissions. However, current hydrogen production from commercial PEM electrolysis systems requires acidic environment which necessitates the use of expensive platinum group metal (PGM) catalysts and corrosion resistant cell stack components. Thus, a stable, robust, and inexpensive anion exchange membrane and PGM-free catalysts are needed to make alkaline solar water splitting commercially viable as a replacement for the expensive PEM system. We have developed a fully PGM-free electrolyzer using anion exchange membrane (AEM) in an alkaline environment that operates at 80 °C. Using carbon supported NiMo as hydrogen evolution reaction (HER) catalyst and NiFe as oxygen evolution reaction (OER) catalyst, in combination with commercially available AEM from Versogen, we were able to achieve a stable performance of 1.504 V at 100 mA/cm2, compared with baseline PGM cell at 1.508 V, in alkaline environment. At 2 A/cm2, the fully PGM-free cell demonstrated 200 mV higher potential compared to the PGM baseline cell at 2.009 V. Furthermore, we were able to run more than 200-hour at constant current density 2 A/cm2, with 85 mV performance loss. Further developments in catalyst performance and membrane stability, as well as integration with photovoltaics to enable hydrogen production from water, are underway. Acknowledgement: The project is financially supported by the Department of Energy’s Office of Science under the Grant DE-SC0020576
APA, Harvard, Vancouver, ISO, and other styles
8

Shigapov, A., A. Dubkov, R. Ukropec, B. Carberry, G. Graham, W. Chun, and R. McCabe. "Development of PGM-free catalysts for automotive applications." Kinetics and Catalysis 49, no. 5 (September 2008): 756–64. http://dx.doi.org/10.1134/s0023158408050224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Men Truong, Van, Julian Richard Tolchard, Jørgen Svendby, Maidhily Manikandan, Hamish A. Miller, Svein Sunde, Hsiharng Yang, Dario R. Dekel, and Alejandro Oyarce Barnett. "Platinum and Platinum Group Metal-Free Catalysts for Anion Exchange Membrane Fuel Cells." Energies 13, no. 3 (January 27, 2020): 582. http://dx.doi.org/10.3390/en13030582.

Full text
Abstract:
The development of active hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) catalysts for use in anion exchange membrane fuel cells (AEMFCs), which are free from platinum group metals (PGMs), is expected to bring this technology one step closer to commercial applications. This paper reports our recent progress developing HOR Pt-free and PGM-free catalysts (Pd/CeO2 and NiCo/C, respectively), and ORR PGM-free Co3O4 for AEMFCs. The catalysts were prepared by different synthesis techniques and characterized by both physical-chemical and electrochemical methods. A hydrothermally synthesized Co3O4 + C composite ORR catalyst used in combination with Pt/C as HOR catalyst shows good H2/O2 AEMFC performance (peak power density of ~388 mW cm−2), while the same catalyst coupled with our flame spray pyrolysis synthesised Pd/CeO2 anode catalysts reaches peak power densities of ~309 mW cm−2. Changing the anode to nanostructured NiCo/C catalyst, the performance is significantly reduced. This study confirms previous conclusions, that is indeed possible to develop high performing AEMFCs free from Pt; however, the challenge to achieve completely PGM-free AEMFCs still remains.
APA, Harvard, Vancouver, ISO, and other styles
10

Adabi Firouzjaie, Horie, Abolfazl Shakouri, Christopher Williams, John R. Regalbuto, Alexey Serov, William Earl Mustain, Andrea Zitolo, Tristan Asset, Frederic Jaouen, and Horie Adabi Firouzjaie. "Multi-Atom PGM Based Catalyst for Highly Efficient Oxygen Reduction Reaction(ORR) and Hydrogen Oxidation Reaction (HOR) in Alkaline Environment." ECS Meeting Abstracts MA2022-02, no. 39 (October 9, 2022): 1439. http://dx.doi.org/10.1149/ma2022-02391439mtgabs.

Full text
Abstract:
Anion exchange membrane fuel cells (AEMFCs) have recently seen significant growth in interest as their achievable current density, peak power density, and longevity have been improved dramatically. Though these advances in performance have been important for demonstrating the feasibility of the technology, nearly all AEMFCs reported in the literature have required a relatively high loading of platinum group metal (PGM)-based catalysts at both the anode and cathode electrodes [1]. However, to take command of the low-temperature fuel cell market, AEMFCs cannot simply reach the same performance as incumbent proton exchange membrane fuel cells (PEMFCs), which have had decades of development and investment. AEMFCs must realize their most widely quoted advantage over PEMFCs and be produced at a much lower cost than PEMFCs. The most likely pathway to acceptably low cost will involve reducing the PGM loading in both electrodes. At the cathode, reasonable PGM-free catalysts exist, as will be shown in this work. At the anode; however, there are no practical contenders that exist to replace PGM-based catalysts. Hence, the most practical approach is to create transitional catalysts with ultra-low PGM content until future PGM-free catalysts can be realized. To reduce the platinum group metal (PGM) loading in anion exchange membrane fuel cell (AEMFC) electrodes, it is important to transition to catalysts with very low PGM content, and eventually to create catalysts that are completely PGM-free. One approach that can be used in both cases is to create atomically dispersed metals on a carbon support. In this work, four catalysts were prepared using a new, simple, scalable Controlled Surface Tension (CST) method: Pt/C, Pt/NC, PtRu/C, and PtRu/NC. CST is unique as it allows for a high density of very small multi-atom clusters, facilitated by altering the surface tension in the synthesis medium. The catalysts were physically characterized using a wide array of techniques, including high-resolution Cs aberration-corrected scanning transmission electron microscopy (STEM), extended X-ray absorption fine structure (EXAFS), and X-ray Absorption Near-Edge Structure (XANES). The catalysts were also tested for their oxygen reduction reaction and hydrogen oxidation reaction activity both ex-situ on a rotating ring-disk electrode and in-situ while integrated into the anode (PtRu) and cathode (Pt) of operating AEMFCs. With this new generation of low-PGM materials, it was possible to reduce the PGM loading by a factor of 14 while achieving comparable performance to commercial catalysts with a peak power density approaching 2 W/cm2. AEMFCs were also assembled with ultralow PGM loading (0.05 mgPGM/cm2), where PtRu/NC anodes were paired with Fe–N–C cathodes [2], which allowed for the demonstration of cells with a specific power of 25 W/mgPGM (40 W/mgPt).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "PGM-free"

1

Koyutürk, Burak [Verfasser], Hubert A. [Akademischer Betreuer] Gasteiger, Klaus [Gutachter] Köhler, and Hubert A. [Gutachter] Gasteiger. "Towards the Scalable Synthesis of PGM-free Catalysts for Oxygen Reduction Reaction / Burak Koyutürk ; Gutachter: Klaus Köhler, Hubert A. Gasteiger ; Betreuer: Hubert A. Gasteiger." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1228536120/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sousa, Jorge António Costa e. "Development and investigation of PGM-free electrodes for anion exchange membrane (AEM) water electrolyzer." Master's thesis, 2021. https://hdl.handle.net/10216/135778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sousa, Jorge António Costa. "Development and investigation of PGM-free electrodes for anion exchange membrane (AEM) water electrolyzer." Dissertação, 2021. https://hdl.handle.net/10216/135778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matos, Miguel Galaz Pimenta de. "Influence of the Solvent in the Preparation of PGM-free Cathode Gas Diffusion Electrode for PEMFC Application." Master's thesis, 2020. https://hdl.handle.net/10216/129710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matos, Miguel Galaz Pimenta de. "Influence of the Solvent in the Preparation of PGM-free Cathode Gas Diffusion Electrode for PEMFC Application." Dissertação, 2020. https://hdl.handle.net/10216/129710.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "PGM-free"

1

The Salt Solution: Compl 9 Step pgm Help Reduce Salt Increase Potassium Dramatically Reduce Risk Sa. Avery, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "PGM-free"

1

Ishizaki, Keita, Naoki Mitsuda, Naoki Ohya, Hiroshi Ohno, Takahiro Naka, Akira Abe, Hiromitsu Takagi, and Akiko Sugimoto. "A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment." In SAE 2012 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-01-0365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sung, Jae Sook, Jong Won Lee, Boyeon Kim, Saet Byeol Lee, Nak-Jung Kwon, Won-Chul Lee, Hae Mi Kim, et al. "Abstract 3614: Comparison and evaluation of somatic mutation using PGM and proton platform in cell free DNA of non-small cell lung cancer patients." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3614.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "PGM-free"

1

Litster, Shawn, Gang Wu, and Hui Xu. Advanced PGM-free Cathode Engineering for High Power Density and Durability. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1832890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serov, Alexey, and Plamen Atanassov. Development of PGM-free Catalysts for Hydrogen Oxidation Reaction in Alkaline Media. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1456241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Hui, Natalia Macauley, Gang Wu, Guofeng Wang, and Anusorn Kongkanand. Durable Mn-Based PGM-Free Catalysts for Polymer Electrolyte Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1839624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography