Academic literature on the topic 'Petroleum and Biomass'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Petroleum and Biomass.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Petroleum and Biomass"
Nie, Ming, Qiang Yang, Li-Fen Jiang, Chang-Ming Fang, Jia-Kuan Chen, and Bo Li. "Do plants modulate biomass allocation in response to petroleum pollution?" Biology Letters 6, no. 6 (May 19, 2010): 811–14. http://dx.doi.org/10.1098/rsbl.2010.0261.
Full textLucia, Lucian A. "Lignocellulosic biomass: A potential feedstock to replace petroleum." BioResources 3, no. 4 (2008): 981–82. http://dx.doi.org/10.15376/biores.3.4.981-982.
Full textNemanova, Vera, Araz Abedini, Truls Liliedahl, and Klas Engvall. "Co-gasification of petroleum coke and biomass." Fuel 117 (January 2014): 870–75. http://dx.doi.org/10.1016/j.fuel.2013.09.050.
Full textGordadze, G. N., A. R. Poshibaeva, M. V. Giruts, A. A. Perevalova, and V. N. Koshelev. "Formation of Petroleum Hydrocarbons from Prokaryote Biomass: 1. Formation of Petroleum Biomarker Hydrocarbons from Thermoplasma sp. Archaea Biomass." Petroleum Chemistry 58, no. 3 (March 2018): 186–89. http://dx.doi.org/10.1134/s096554411803009x.
Full textLai, Shuo-Rong, Shu-Jun Li, Yong-Li Xu, Wen-Yuan Xu, and Xian-Quan Zhang. "Preparation, Characterization, and Performance Evaluation of Petroleum Asphalt Modified with Bio-Asphalt Containing Furfural Residue and Waste Cooking Oil." Polymers 14, no. 9 (April 21, 2022): 1683. http://dx.doi.org/10.3390/polym14091683.
Full textDíaz-Pérez, Manuel Antonio, and Juan Carlos Serrano-Ruiz. "Catalytic Production of Jet Fuels from Biomass." Molecules 25, no. 4 (February 12, 2020): 802. http://dx.doi.org/10.3390/molecules25040802.
Full textOnishi, Toru, Fumi Ninomiya, Masao Kunioka, Masahiro Funabashi, and Keiichi Ohara. "Biomass carbon ratio of polymer composites included biomass or petroleum origin resources." Polymer Degradation and Stability 95, no. 8 (August 2010): 1276–83. http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.011.
Full textWang, Tianshu, Dongxue Song, Shaojun Zhang, Zhen Zhang, and Mingyu Wang. "Adsorption of Petroleum Hydrocarbon by Modified Biomass Carbon." IOP Conference Series: Earth and Environmental Science 598 (November 25, 2020): 012104. http://dx.doi.org/10.1088/1755-1315/598/1/012104.
Full textСофия Денисовна, Емельянова,, Гавриленко, Александра Васильевна, and Степачёва, Антонина Анатольевна. "CATALYTIC CO-PROCESSING OF BIOMASS COMPONENTS AND PETROLEUM." Вестник Тверского государственного университета. Серия: Химия, no. 3(49) (October 28, 2022): 39–46. http://dx.doi.org/10.26456/vtchem2022.3.5.
Full textShekhar, Chandra. "Future Fuel: Could Biomass Be the New Petroleum?" Chemistry & Biology 18, no. 10 (October 2011): 1199–200. http://dx.doi.org/10.1016/j.chembiol.2011.10.010.
Full textDissertations / Theses on the topic "Petroleum and Biomass"
Ben, Haoxi. "Thermal conversion of biomass and biomass components to biofuels and bio-chemicals." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51738.
Full textLewis, Aaron D. "Gasification of Biomass, Coal, and Petroleum Coke at High Heating Rates and Elevated Pressure." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4373.
Full textLewis, Aaron D. "Sawdust Pyrolysis and Petroleum Coke CO2 Gasification at High Heating Rates." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2498.
Full textNonekuone, Jolomi. "Model for marketing liquefied petroleum gas in Nigeria: Warri as a case study / Nonekuone Jolomi." Master's thesis, North-West University, 2008. http://hdl.handle.net/10394/4165.
Full textThesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2009.
Sinuka, Yonwaba. "Performance testing of a diesel engine running on varying blends of jatropha oil, waste cooking oil and diesel fuel." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2436.
Full textThe high cost of fossil fuels and the fact that the world has arguably reached its peak oil production, has driven the need to seek alternative fuel sources. The main objective of the current study is to determine the performance of a laboratory-mounted diesel engine when fuelled with varying laboratory prepared biofuel and biodiesel and whether the advancement of the injection timing parameters will improve the engine power output and improve the smoke effect of these different fuel blends. The laboratory prepared biofuels used in this project range from 100% bio-fuel (BF100) to 50%, 30% and 10% biodiesel blends (BF50, BF30 and BF10, respectively). It should be noted that these blends are not commercially available, since they were blended in the laboratory specifically for these tests. The overall results of the study show that there is a distinct opportunity for using certain bio-fuel blends in specific applications as the power outputs are no more than one quarter less than that of base diesel. Concomitantly, the smoke opacity in all of the blends is lower than that of base diesel, which is a significant benefit in terms of their overall air emissions.
Silva, Italo Guimaraes Medeiros da. "POLYMERIC MATERIALS FOR ENVIRONMENTAL APPLICATIONS IN THE OIL AND GAS INDUSTRY." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case160709776258431.
Full textHussein, Emad Ibraheim. "Investigation into the mechanism(s) which permit the high-rate, degradation of PAHS and related petroleum hydrocarbons in sequencing batch reactors by attached cells in a controlled mixed bacterial community." unrestricted, 2006. http://etd.gsu.edu/theses/available/etd-12012006-073228/.
Full textTitle from title screen. George E. Pierce,committee chair; Eric S. Gilbert, Sidney A. Crow, committee members. Electronic text (135 p. : ill. (some col.)) : digital, PDF file. Description based on contents viewed Aug. 20, 2007. Includes bibliographical references (p. 120-124).
Moret, Artur de Souza. "Biomassa florestal, petroleo e processo de eletrificação em Rondonia : analise das possibilidades de geração descentralizada de eletricidade." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263910.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-27T12:21:55Z (GMT). No. of bitstreams: 1 Moret_ArturdeSouza_D.pdf: 11223215 bytes, checksum: 34faf2361b3d569d50d72f5f2964b7f2 (MD5) Previous issue date: 2000
Resumo: Neste trabalho, procurou-se desenvolver uma análise que pemútisse avaliar as possibilidades locais da implantação de geração de eletricidade descentralizada com fontes energéticas renováveis no estado de Rondônia, para contribuir na diminuição e na substituição do Diesel e em uma proposta de planejamento diferenciado. Entende-se que o consumo do Diesel é um fator estruturante da colonização e da eletrificação na região Amazônica e em Rondônia. Historicamente, a eletrificação em Rondônia é Diesel-dependente. Mesmo com o início da operação da UGH Samuel, em 1989, e com operacionalização de PCH' s, a geração continuou utilizando esse combustível como uma fonte importante de energia tanto no atendimento isolado quanto no sistema estadual de transmissão. O sistema estadual de transmissão é hidrotémúco, com uma UHE, motores Diesel e quatro turbinas a gás também operando com Diesel. A UHE está operacionalmente comprometida por problemas de assoreamento do lago e do regime hidrológico da região Amazônica. Os atendimentos isolados são témúcos com motores Diesel e hidrelétricos com mais sete PCH' s. O Planejamento para atendimento da demanda futura no sistema interligado é dependente do gás natural, que num curto espaço de tempo não será disponibilizado. Para o atendimento isolado existem três propostas, i- interligação de algumas localidades ao linhão, ii- formação de interligações locais e iii- continuação de atendimento Diesel- elétrico, principalmente para as cidades mais distantes do linhão e com cargas pequenas. Durante a pesquisa ficou claro que havia limitações e uma necessidade de conscientização da sociedade, quanto ao tratamento devastador dispensado atualmente aos recursos naturais da região, e quanto ao processo de desenvolvimento que pode ser empreendido a partir do aproveitamento sustentado desses recursos. As oportunidades para a geração descentralizada foram analisadas para as localidades de Rondônia consideradas pólos madeireiros, de acordo com os critérios: disponibilidade de resíduos da indústria madeireira e da produção agrícola, disponibilidade de potencial hídrico, disponibilidade de recursos humanos para operação e para a manutenção, possibilidade de interligação ao sistema UHE- linhão, existência de esquemas institucionais e de financiamento para os empreendimentos, ocorrência de complicações no suprimento de Diesel e existência de demandas industriais de energia
Abstract: In this work it was developed an analysis of the local possibilities to set up decentralized power generation by using renewable energy resources in Rondônia in order to contribute towards the reduction of the Diesel use and its substitution and in a proposal of differentiate resources planning. Diesel consumption is a structural factor in the colonization and electrification of the Amazon region and in Rondônia. Historically, the electrification is Diesel dependent in Rondônia. Even with UHE Samuel's starting up in 1989 and the operation ofsome small hydroelectric power stations, Diesel is still the main source of electric generation both in isolated and in the state system of transmission. The state system of transmission is hydrothermal based, consisting of one hydroelectric power station, Diesel engines, and four gas turbines that are also operating with Diesel. The hydroelectric power station is operationally endangered because of the lake silting up and the rainfalllevels in the Amazon region. The isolated systems are based on Diesel engine generators and on seven small hydroelectric power stations. The planning for attending the future requirements of energy in the interconnected system is dependent upon the natural gas that is not available for the short termo For attending the isolated systems there are three proposals, i- connecting some locations to the main regional line, iiorganizing local interconnections, iii- keeping the Diesel-electric system provision, specially to the most distant cities and smallloads. During the research of course there were limitations and a necessity to raise the public awareness of the devastating treatment given to the natural resources in the region and the development process that can be followed to achieve the sustainable exploitation of these resources. Decentralized generation opportunities were analyzed in Rondônia's wood exploitation centers, according to the following criteria: residue availability trom the wood industry and the agriculture production, hydropower potential availability, human resources availability for operating and maintaining the systems, possibility to connect these centers to the main power line, existence of institutional sponsorship and funding to these enterprises, Diesel supply failures and existence of energy demand by local industry
Doutorado
Doutor em Planejamento de Sistemas Energéticos
Boni, Hevelin Tabata. "Aplicação de biomassa na redução do teor de óleos e graxas presentes em efluentes aquosos." Florianópolis, 2012. http://repositorio.ufsc.br/xmlui/handle/123456789/100530.
Full textMade available in DSpace on 2013-06-25T20:03:54Z (GMT). No. of bitstreams: 1 308796.pdf: 1133004 bytes, checksum: a418b88e92f1d3d8bc5ba0c4b022a9a3 (MD5)
Quando correntes oleosas entram em contato com o meio ambiente prejudicam e influenciam tanto a fauna e a flora, quanto à população no entorno dos lugares contaminados. A procura por tratamentos eficientes, de baixo custo, que demandem pouca energia e provenientes de fontes renováveis fazem com que os bioadsorventes ocupem um lugar de destaque na redução dos contaminantes oleosos. Neste trabalho, utilizou-se o bagaço da cana-de-açúcar como bioadsorvente alternativo no tratamento de águas contaminadas com óleos. O efluente sintético foi simulado através de uma dispersão de água destilada e decahidronaftaleno, com concentração inicial de 8900 mg·L-1. O óleo residual, após os experimentos de adsorção, foi quantificado por cromatografia gasosa. A biomassa foi caracterizada pelas análises de umidade, FTIR, MEV, CHNS e análise superficial. Os experimentos foram desenvolvidos em processo batelada, com agitação de 120 rpm, sendo avaliado o tempo de equilíbrio do processo adsortivo, bem como a influência dos parâmetros pH, temperatura e tamanho das partículas do bioadsorvente. O processo de adsorção resultou na remoção de 80% de óleo em apenas 5 min de contato entre a dispersão e a biomassa. Os parâmetros que influenciaram significativamente a remoção do hidrocarboneto pelo bagaço-de-cana foram a temperatura e o tamanho de partícula do material. Para as condições testadas, o maior desempenho foi obtido a 25oC. O melhor ajuste para a Isoterma de Adsorção foi obtido com o modelo de Langmuir-Freundlich, fornecendo uma capacidade máxima de adsorção de 6,65 g de hidrocarboneto/g de biomassa. Os ensaios mostraram grande potencial do bagaço da cana-de-açúcar ser utilizado como bioadsorvente na redução do teor de óleos e graxas em efluentes aquosos, apresentando-se como uma alternativa sustentável a dois grandes problemas ambientais: o resíduo sólido gerado pelo processo de cultivo e industrialização da cana-de-açúcar e a contaminação de fontes aquosas pela indústria do petróleo e petroquímica.
When oily streams come in contact with the environment, they affect and influence the fauna and flora, as the population surrounding the contaminated places. The search for effective treatments that are low cost, require little energy and are from renewable resources, turn the biosorbents a prominent material in the oily contamination reduction. In this work, we have studied the bagasse from sugarcane as an alternative bioadsorbent in the treatment to oils and greases contaminated waters. The synthetic effluent was simulated by a distilled water and decahydronaphthalene dispersion, with initial concentration of 8900 mg o L -1. The residual oil, after adsorption experiments, was determined by gas chromatography. The biomass was characterized by moisture analysis, FTIR, SEM, CHNS and surface analysis. The experiments were carried out in batch process with agitation of 120 rpm, evaluating the equilibrium time of adsorptive process, as well as the influence of some parameters such as pH, temperature and the particle bioadsorbent size. The adsorption process resulted in removal of 80% of oil in only 5 minutes of contact between the dispersion and biomass. The parameters that significantly influenced the removal of hydrocarbon by bagasse were the temperature and particle size of the bioadsorbent. For the conditions tested, the best performance was obtained at 25oC. The best fit for the adsorption isotherm was obtained with Langmuir-Freundlich model, providing a maximum adsorption capacity of 6.65 g hydrocarbon/g biomass. The experiments showed the great potential of the sugarcane bagasse to be used as bioadsorvente in reducing the oil and grease levels in aqueous effluents, presenting itself as a sustainable alternative to two environmental problems: the solid waste deriving from the cultivation and industrialization of sugarcane and the aqueous sources contamination coming from oil and petrochemical industry.
Fontes, L?cio ?ngelo de Oliveira. "Desenvolvimento de uma unidade pirol?tica com reator de cilindro rotativo: obten??o de bio-?leo." Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/13011.
Full textThe demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
A demanda por fontes alternativas de energia impulsiona o desenvolvimento tecnol?gico de tal forma que muitos combust?veis e processos de convers?o energ?tica, antes julgada como inadequados ou mesmo invi?veis, s?o agora concorrentes de combust?veis e processos ditos tradicionais. Assim, a biomassa exerce um papel relevante, sendo considerada uma das fontes de energia renov?vel mais importante de nosso planeta. A biomassa contribui com 29,2 % de todas as fontes renov?veis de energia. A participa??o de energia de biomassa do Brasil na OIE ? de 13,6 %, sendo bem superior a m?dia mundial de participa??o. V?rios tipos de processos de pir?lise v?m sendo estudados nos ?ltimos anos, destacando-se o processo de pir?lise r?pida de biomassa para obten??o de Bio-?leo. Os processos cont?nuos de pir?lise r?pida, mais investigados e aprimorados s?o os de leito fluidizado e leito ablativo, entretanto vem sendo estudados e desenvolvidos outros tipos, visando obter um bio-?leo de melhor qualidade, com maior produtividade, menor consumo de energia, maior estabilidade e confiabilidade de processo e menor custo de produ??o. A estabilidade do produto Bio-?leo ? fundamental para a concep??o de dispositivos consumidores, tais como queimadores, motores de pist?o e turbinas. O presente estudo foi motivado para a produ??o de Bio-?leo, atrav?s da convers?o da biomassa vegetal ou do aproveitamento de seus res?duos industriais e agr?colas, sendo apresentada uma proposta alternativa de processo de pir?lise termoqu?mica, aproveitando a vantagem din?mica das part?culas no leito rotativo o que favorece a raz?o de contato g?s-s?lido e a transfer?ncia de calor e massa. O pirolisador foi projetado para operar em processo cont?nuo, contendo um alimentador de dois est?gios, um sistema desagregador da biomassa integrado com um separador de finos de carv?o e um sistema de condensa??o de vapores pirol?ticos. O Prot?tipo foi submetido a ensaios com serragem de madeira, utilizando um planejamento experimental completo em dois n?veis para investigar a sensibilidade dos fatores: temperatura do processo, fluxo de g?s de arraste e velocidade de centrifuga??o em rela??o ao rendimento m?ssico de Bio-?leo. O melhor resultado foi obtido na condi??o de 570 oC, 25 Hz e 200 cm3/min, sendo a temperatura o par?metro de maior signific?ncia. O balan?o Tese de Doutorado PPGCEP/UFRN L?cio ?ngelo de Oliveira Fontes vi de massa elementar das fases apresentou da ordem de 20 % liquidos pirol?ticos e 37 % de carv?o. Foram determinadas as propriedades dos produtos l?quidos e s?lidos da pir?lise como densidade, viscosidade, pH, PCI, sendo a composi??o caracterizada atrav?s an?lise qu?mica, revelando as propriedades e composi??o de um Bio-?leo.
Books on the topic "Petroleum and Biomass"
Morris, David J. Substituting agricultural materials for petroleum based industrial products. Washington, D.C: Institute for Local Self-Reliance, 1986.
Find full textSentā, Erupī Gasu Shinkō. Baiomasu kongō LP gasu yūkō riyō shisutemu kaihatsu chōsa hōkokusho: Heisei 21-nendo baiomasu kongō LP gasu yūkō riyō shisutemu kaihatsu chōsa. [Tokyo]: Erupī Gasu Shinkō Sentā, 2010.
Find full textInternational IGT Symposium on Gas, Oil, and Coal Biotechnology (4th 1991 Colorado Springs, Colo.). Gas, oil, and coal biotechnology IV. Chicago: Institute of Gas Technology, 1992.
Find full textJohn, Sheehan, and National Renewable Energy Laboratory (U.S.), eds. An overview of biodiesel and petroleum diesel life cycles. Golden, CO: National Renewable Energy Laboratory, 1998.
Find full textUnited States. Congress. House. Committee on Foreign Affairs. Subcommittee on the Western Hemisphere. Energy in the Americas: Hearing before the Subcommittee on the Western Hemisphere of the Committee on Foreign Affairs, House of Representatives, One Hundred Tenth Congress, second session, July 31, 2008. Washington: U.S. G.P.O., 2008.
Find full textEnergy in the Americas: Hearing before the Subcommittee on the Western Hemisphere of the Committee on Foreign Affairs, House of Representatives, One Hundred Tenth Congress, second session, July 31, 2008. Washington: U.S. G.P.O., 2008.
Find full textUnited States. Congress. Senate. Committee on Agriculture, Nutrition, and Forestry. The new petroleum: S. 935, the National Sustainable Fuels and Chemicals Act of 1999 : hearing before the Committee on Agriculture, Nutrition, and Forestry, United States Senate, One Hundred Sixth Congress, second session ... May 27, 1999. Washington: U.S. G.P.O., 1999.
Find full textNational Research Council (U.S.). Board on Agriculture and Natural Resources and National Research Council (U.S.). Board on Energy and Environmental Systems, eds. Renewable fuel standard: Potential economic and environmental effects of U.S. biofuel policy. Washington, D.C: National Academies Press, 2011.
Find full textOffice, General Accounting. Tax policy: Additional petroleum production tax incentives are of questionable merit : report to the Chairman, Subcommittee on Energy and Power, Committee on Energy and Commerce, House of Representatives. Washington, D.C: The Office, 1990.
Find full textOffice, General Accounting. Tax policy: How tax incentives encourage soil and water conservation investments : fact sheet for the Joint Committee on Taxation, Congress of the United States. Washington, D.C: The Office, 1986.
Find full textBook chapters on the topic "Petroleum and Biomass"
Brodeur, Gary, Subramanian Ramakrishnan, and Chang Samuel Hsu. "Biomass to Liquid (BTL) Fuels." In Springer Handbook of Petroleum Technology, 1117–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49347-3_38.
Full textAggarwal, Suresh K., and Xiao Fu. "Using Petroleum and Biomass-Derived Fuels in Duel-fuel Diesel Engines." In Novel Combustion Concepts for Sustainable Energy Development, 243–76. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2211-8_11.
Full textElía, Maria Fé, Olalla de la Torre, Rafael Larraz, and Juana Frontela. "Cepsa: Towards The Integration of Vegetable Oils and Lignocellulosic Biomass into Conventional Petroleum Refinery Processing Units." In Industrial Biorenewables, 141–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118843796.ch6.
Full textAhmed, Rawaz A., and Katherine Huddersman. "Short Review of Biodiesel Production by the Esterification/Transesterification of Wastewater Containing Fats Oils and Grease (FOGs)." In Springer Proceedings in Energy, 285–99. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_27.
Full textEniola, Philip Olanrewaju. "Menace and Mitigation of Health and Environmental Hazards of Charcoal Production in Nigeria." In African Handbook of Climate Change Adaptation, 2293–310. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_238.
Full textEniola, Philip Olanrewaju. "Menace and Mitigation of Health and Environmental Hazards of Charcoal Production in Nigeria." In African Handbook of Climate Change Adaptation, 1–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42091-8_238-1.
Full text"Biomass and Biofuels." In Rules of Thumb for Petroleum Engineers, 79–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119403647.ch37.
Full text"7. Bio-waste and petroleum fractions coprocessing to fuels." In Biomass and Biowaste, 167–78. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110538151-007.
Full textRajvanshi, Meghna, and Richard Sayre. "Recent Advances in Algal Biomass Production." In Biotechnological Applications of Biomass. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94218.
Full textJoyce B. Landoy, Rona, Rex B. Demafelis, Bernadette T. Magadia, and Anna Elaine D. Matanguihan. "Comparative Analysis of Biodiesel Production from Different Potential Feedstocks in the Philippines." In Biomass [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102724.
Full textConference papers on the topic "Petroleum and Biomass"
R. Stoyanov, Stanislav, and Andriy Kovalenko. "Multiscale Computational Modeling: From Heavy Petroleum to Biomass Valorization." In Annual International Conference on Chemistry, Chemical Engineering and Chemical Process. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2301-3761_ccecp15.48.
Full textZhang, Meng, Xiaoxu Song, P. F. Zhang, Z. J. Pei, and T. Deines. "Size Reduction of Cellulosic Biomass in Biofuel Manufacturing: Effects of Biomass Crystallinity and Particle Size." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64059.
Full textHu, Guangji, and Jianbing Li. "Co-pyrolysis of Waste Biomass with Petroleum Sludge for Improved Energy Recovery." In The 3rd World Congress on New Technologies. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icepr17.156.
Full textDavies, Andrew, Rasam Soheilian, Chuanwei Zhuo, and Yiannis Levendis. "Environmentally-Benign Conversion of Biomass Residues to Electricity." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98060.
Full textZhang, Qi, Pengfei Zhang, Z. J. Pei, and Linda Pei. "Effects of Treatments on Cellulosic Biomass Structure in Ethanol Manufacturing: A Literature Review." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64304.
Full textCooper, Nathanial, Anna Panteli, and Nilay Shah. "A Biomass Supply Chain Optimization Framework With Linear Approximation of Biomass Yield Distributions for Improved Land Use." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11399.
Full text"CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 1 Natural Energy and Biomass, Part 1.1 Post-Petroleum Energy and Material." In CIGR Handbook of Agricultural Engineering Volume V Energy & Biomass Engineering. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 1999. http://dx.doi.org/10.13031/2013.36409.
Full textYang, Yang, Timothy Deines, Meng Zhang, Ke Zhang, and Donghai Wang. "Supercritical CO2 Pretreatment of Cellulosic Biomass for Biofuel Production: Effects of Biomass Particle Size." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6656.
Full textZhang, Meng, Xiaoxu Song, Z. J. Pei, and D. H. Wang. "Effects of Mechanical Comminution on Enzymatic Conversion of Cellulosic Biomass in Biofuel Manufacturing: A Review." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34082.
Full textWu, Hera, Pengfei Zhang, Qi Zhang, and Z. J. Pei. "Effects of Water Soaking on Biomass Particle Size in Cellulosic Biofuel Manufacturing." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7227.
Full textReports on the topic "Petroleum and Biomass"
Chum, Helena L. Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context: Cooperative Research and Development Final Report, CRADA Number CRD-12-500. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417135.
Full textSteverson, M., and G. Stormberg. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water]. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/5987123.
Full text