Academic literature on the topic 'Pesticides sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pesticides sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pesticides sensing"
Kashem, Md Abul, Kazuki Kimoto, Yasunori Iribe, and Masayasu Suzuki. "Development of Microalgae Biosensor Chip by Incorporating Microarray Oxygen Sensor for Pesticides Sensing." Biosensors 9, no. 4 (November 12, 2019): 133. http://dx.doi.org/10.3390/bios9040133.
Full textNansen, Christian, Rachel Purington, and Machiko Murdock. "Using Advanced Optical Sensing to Quantify Phytotoxicity in Ornamental Plants." HortTechnology 31, no. 4 (August 2021): 532–34. http://dx.doi.org/10.21273/horttech04866-21.
Full textSkotadis, Evangelos, Aris Kanaris, Evangelos Aslanidis, Nikos Kalatzis, Fotis Chatzipapadopoulos, Nikolaos Marianos, and Dimitris Tsoukalas. "Identification of Two Commercial Pesticides by a Nanoparticle Gas-Sensing Array." Sensors 21, no. 17 (August 28, 2021): 5803. http://dx.doi.org/10.3390/s21175803.
Full textZhu, Hengjia, Peng Liu, Lizhang Xu, Xin Li, Panwang Hu, Bangxiang Liu, Jianming Pan, Fu Yang, and Xiangheng Niu. "Nanozyme-Participated Biosensing of Pesticides and Cholinesterases: A Critical Review." Biosensors 11, no. 10 (October 9, 2021): 382. http://dx.doi.org/10.3390/bios11100382.
Full textErbahar, Dilek D., Mika Harbeck, Ilke Gürol, Gülay Gümüş, Emel Musluoǧlu, Zafer Z. Öztürk, and Vefa Ahsen. "Zinc phthalocyanines with fluorinated substituents for direct sensing of carbamate and organophosphate pesticides in water." Journal of Porphyrins and Phthalocyanines 17, no. 10 (September 9, 2013): 989–95. http://dx.doi.org/10.1142/s108842461350065x.
Full textAragay, Gemma, Flavio Pino, and Arben Merkoçi. "Nanomaterials for Sensing and Destroying Pesticides." Chemical Reviews 112, no. 10 (August 16, 2012): 5317–38. http://dx.doi.org/10.1021/cr300020c.
Full textSwain, Nibedita, Isha Soni, Pankaj Kumar, and Gururaj Kudur Jayaprakash. "Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes." Electrochem 3, no. 2 (May 13, 2022): 248–58. http://dx.doi.org/10.3390/electrochem3020017.
Full textPundir, C. S., Ashish Malik, and Preety. "Bio-sensing of organophosphorus pesticides: A review." Biosensors and Bioelectronics 140 (September 2019): 111348. http://dx.doi.org/10.1016/j.bios.2019.111348.
Full textYan, Zihan, Xiaoming Song, Yuhui Wu, Cuiping Gao, Yunlong Wang, and Yuesuo Yang. "Fingerprinting Organochlorine Groundwater Plumes Based on Non-Invasive ERT Technology at a Chemical Plant." Applied Sciences 12, no. 6 (March 9, 2022): 2816. http://dx.doi.org/10.3390/app12062816.
Full textPoudyal, Durgasha, Vikram Narayanan Dhamu, Sriram Muthukumar, and Shalini Prasad. "Electrochemical Sensing Platform for the Detection of Pesticides and GMO Protein in Food Matrices." ECS Meeting Abstracts MA2022-02, no. 61 (October 9, 2022): 2241. http://dx.doi.org/10.1149/ma2022-02612241mtgabs.
Full textDissertations / Theses on the topic "Pesticides sensing"
Gregorio, López Eduard. "Lidar remote sensing of pesticide spray drift." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/96788.
Full textEn esta tesis doctoral se propone utilizar la técnica LIDAR (LIght Detection And Ranging) para monitorizar la deriva de pesticidas. A diferencia de los colectores in situ, esta técnica permite medir los aerosoles de forma remota, con elevada resolución temporal y en distancia. Los objetivos de esta tesis son (1) diseñar un sistema lidar específico para la medida de la deriva y (2) evaluar la capacidad de esta técnica para cuantificar la concentración en las plumas de pesticidas. Para la consecución del objetivo (1) se ha elaborado una metodología de diseño, validada mediante la construcción de un prototipo de ceilómetro lidar biaxial. Partiendo de esta metodología se han establecido los parámetros de diseño del sistema lidar específico para medir la deriva: longitud de onda de 1550 nm, energía por pulso igual a 25 μJ, etc. Respecto al objetivo (2), se propone un modelo teórico que relaciona las medidas lidar de la deriva con las obtenidas utilizando colectores pasivos. La relación entre ambos tipos de sensores también ha sido estudiada experimentalmente. Las medidas mostraron que para cada ensayo existe una elevada correlación lineal (R2≈0.9) entre la señal lidar y los colectores.
This doctoral thesis proposes the use of the LIDAR (LIght Detection And Ranging) technique for spray drift monitoring. Unlike in situ collectors, this technique enables remote measurement of aerosols with high temporal and range resolution. The objectives of this thesis are as follows: (1) the design of a lidar system specifically for the remote sensing of pesticide spray drift and (2) assessment of the capacity of lidar technology to quantify droplet concentration in drift clouds. For the purposes of objective (1), a design methodology was elaborated. This methodology was validated with the construction of a biaxial lidar ceilometer prototype. Taking this methodology as a starting point the design parameters of a lidar system specifically for spray drift measurement were established: 1550 nm wavelength, 25 μJ de pulse energy, etc. As for objective (2), it is proposed a quantitative analytical model which relates the lidar spray drift measurements with those obtained using passive collectors. The relationship between the two sensor types was also studied experimentally. The measurements showed that for each test there is a high linear correlation (R2≈0.9) between the lidar signal and the collectors
RAPINI, RICCARDO. "Improvements of sensing using synthetic bio-mimetic receptors." Doctoral thesis, 2017. http://hdl.handle.net/2158/1086687.
Full textBooks on the topic "Pesticides sensing"
Dhanya, James, and Elias Milja T, eds. Electrochemical sensing of deadly toxin-atrazine: An overview. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textGurr, Geoff M., Steve D. Wratten, and Miguel A. Altieri, eds. Ecological Engineering for Pest Management. CSIRO Publishing, 2004. http://dx.doi.org/10.1071/9780643098411.
Full textHsu, Hsuan L. The Smell of Risk. NYU Press, 2020. http://dx.doi.org/10.18574/nyu/9781479807215.001.0001.
Full textBook chapters on the topic "Pesticides sensing"
Mehta, Jyotsana, Rahul Kumar, Sarita Dhaka, and Akash Deep. "Biofunctionalized Nanostructured Materials for Sensing of Pesticides." In Environmental Chemistry for a Sustainable World, 29–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38101-1_2.
Full textWang, Yong, Qin Xiao, and Qianfen Zhuang. "MOF-based Electrochemical Sensors for Pesticides." In Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 187–98. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003188148-20.
Full textMishra, Archana, Soumya Mukundan, and Jitendra Kumar. "An Overview of Metal-Organic Frameworks for Detection of Pesticides." In Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 199–205. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003188148-21.
Full textChansi, Rashi Bhardwaj, Karan Hadwani, and Tinku Basu. "Role of Metal–Organic Framework (MOF) for Pesticide Sensing." In Nanoscience for Sustainable Agriculture, 75–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97852-9_4.
Full textNastis, Stefanos. "Modelling approach for Data Analysis." In Manuali – Scienze Tecnologiche, 29. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-044-3.29.
Full textMogha, Navin Kumar, and Dhanraj T. Masram. "Metal–Organic Frameworks for Pesticide Sensing: Trend in the Recent Years." In Metal-Organic Frameworks (MOFs) as Catalysts, 411–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7959-9_16.
Full textSikora, Richard A., Jon Padgham, and Johan Desaeger. "The unpredictability of adapting integrated nematode management to climate variability." In Integrated nematode management: state-of-the-art and visions for the future, 463–71. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247541.0064.
Full textHe, Kaiyu, Liu Wang, and Xiahong Xu. "Chemical sensing of pesticides in water." In Advanced Sensor Technology, 647–68. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-90222-9.00008-x.
Full textSahoo, Dibakar, Bikash Ranjan Sahoo, and Smrutirekha Sahoo. "Zinc oxide nanostructures as effective pesticide controllers: Sensing and degradation of pesticides." In Zinc-Based Nanostructures for Environmental and Agricultural Applications, 181–201. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822836-4.00013-6.
Full textRohit, Jigneshkumar V., Vaibhavkumar N. Mehta, Amit B. Patel, Humairah Tabasum, and Gourav Spolia. "Carbon dots-based fluorescence spectrometry for pesticides sensing." In Carbon Dots in Analytical Chemistry, 97–108. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-98350-1.00020-7.
Full textConference papers on the topic "Pesticides sensing"
Nabok, Alexei V., Asim K. Ray, Nickolaj F. Starodub, and Kenneth P. Dowker. "Enzyme/indicator optrodes for detection of heavy metal ions and pesticides." In Environmental and Industrial Sensing, edited by Robert A. Lieberman. SPIE, 2000. http://dx.doi.org/10.1117/12.411720.
Full textLin, Yu-Sheng, and Jingjing Liu. "CD-like centrifugal microfluidic device for organophosphorus pesticides (OPP) sensing." In 2017 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2017. http://dx.doi.org/10.1109/omn.2017.8051476.
Full textGilmo Yang, Nam-hong Cho, and Gi-young Kim. "Sensing of the Insecticide Carbamate Pesticides by Surface Plasmon Resonance." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21051.
Full textWallace, Sonjae, Lou Massa, Andrew Shabaev, and Samuel G. Lambrakos. "IR absorption spectra for pesticides using density functional theory." In Image Sensing Technologies: Materials, Devices, Systems, and Applications IX, edited by Nibir K. Dhar, Achyut K. Dutta, and Sachidananda R. Babu. SPIE, 2022. http://dx.doi.org/10.1117/12.2616230.
Full textKorostynska, O., I. Nakouti, A. Mason, and A. I. Al-Shamma'a. "Planar electromagnetic wave sensor for instantaneous assessment of pesticides in water." In 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013. http://dx.doi.org/10.1109/icsenst.2013.6727788.
Full textZhai, Chen, Yongyu Li, Yankun Peng, Tianfeng Xu, Sagar Dhakal, Kuanglin Chao, and Jianwei Qin. "Research on identification and determination of mixed pesticides in apples using surface enhanced Raman spectroscopy." In SPIE Sensing Technology + Applications, edited by Moon S. Kim, Kuanglin Chao, and Bryan A. Chin. SPIE, 2015. http://dx.doi.org/10.1117/12.2176829.
Full textBrueggemann, Rainer, Gunnar Nuetzmann, and Irena Twardowska. "Model-supported ranking of pesticides with regard to risk assessment exemplified in triazine compounds." In Optical Technologies for Industrial, Environmental, and Biological Sensing, edited by Tuan Vo-Dinh, Guenter Gauglitz, Robert A. Lieberman, Klaus P. Schaefer, and Dennis K. Killinger. SPIE, 2004. http://dx.doi.org/10.1117/12.516215.
Full textZujun Lu, Qiongruan Wei, Luying Chen, Li Cheng, Qunfeng Lu, and Shichun Liang. "Isolation and characterization of tow species of fungus causing diseases on eucalypt seedlings and their susceptibility to pesticides." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964096.
Full textKalabina, Nadezhda A., Tatiana I. Ksenevich, Anatoli A. Beloglazov, and Petr I. Nikitin. "Pesticide sensing by surface-plasmon resonance." In Optical Sensing for Environmental and Process Monitoring, edited by Ishwar D. Aggarwal, Stuart Farquharson, and Eric Koglin. SPIE, 1995. http://dx.doi.org/10.1117/12.199682.
Full textBilitewski, Ursula, Frank F. Bier, Baerbel Beyersdorf-Radeck, Petra Rueger, Frank Zischkale, and Rolf D. Schmid. "Biosensor systems for pesticide determination in water." In Environmental Sensing '92, edited by Tuan Vo-Dinh and Karl Cammann. SPIE, 1993. http://dx.doi.org/10.1117/12.140254.
Full textReports on the topic "Pesticides sensing"
Belkin, Shimshon, Sylvia Daunert, and Mona Wells. Whole-Cell Biosensor Panel for Agricultural Endocrine Disruptors. United States Department of Agriculture, December 2010. http://dx.doi.org/10.32747/2010.7696542.bard.
Full text