Journal articles on the topic 'PERTURBED PROBLEM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PERTURBED PROBLEM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vrábeľ, Róbert. "Quasilinear and quadratic singularly perturbed Neumann's problem." Mathematica Bohemica 123, no. 4 (1998): 405–10. http://dx.doi.org/10.21136/mb.1998.125970.
Full textYarka, Ulyana, Solomiia Fedushko, and Peter Veselý. "The Dirichlet Problem for the Perturbed Elliptic Equation." Mathematics 8, no. 12 (November 25, 2020): 2108. http://dx.doi.org/10.3390/math8122108.
Full textNurgabyl, D. N., and S. S. Nazhim. "Recovery problem for a singularly perturbed differential equation with an initial jump." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 100, no. 4 (December 30, 2020): 125–35. http://dx.doi.org/10.31489/2020m4/125-135.
Full textVrbik, Jan. "Two-body perturbed problem revisited." Canadian Journal of Physics 73, no. 3-4 (March 1, 1995): 193–98. http://dx.doi.org/10.1139/p95-027.
Full textGekeler, E. W. "On the Perturbed Eigenvalue Problem." Journal of Mathematical Analysis and Applications 191, no. 3 (May 1995): 540–46. http://dx.doi.org/10.1006/jmaa.1995.1147.
Full textVrábeľ, Róbert. "Upper and lower solutions for singularly perturbed semilinear Neumann's problem." Mathematica Bohemica 122, no. 2 (1997): 175–80. http://dx.doi.org/10.21136/mb.1997.125912.
Full textAkmatov, A. "The Regularization Method of Solutions a Bisingularly Perturbed Problem in the Generalized Functions Space." Bulletin of Science and Practice 8, no. 2 (February 15, 2022): 10–17. http://dx.doi.org/10.33619/2414-2948/75/01.
Full textHan, Xinli, and Lijun Pan. "The Perturbed Riemann Problem with Delta Shock for a Hyperbolic System." Advances in Mathematical Physics 2018 (September 5, 2018): 1–11. http://dx.doi.org/10.1155/2018/4925957.
Full textPERJAN, ANDREI, and GALINA RUSU. "Two parameter singular perturbation problems for sine-Gordon type equations." Carpathian Journal of Mathematics 38, no. 1 (November 15, 2021): 201–15. http://dx.doi.org/10.37193/cjm.2022.01.16.
Full textPERJAN, ANDREI, and GALINA RUSU. "Abstract linear second order differential equations with two small parameters and depending on time operators." Carpathian Journal of Mathematics 33, no. 2 (2017): 233–46. http://dx.doi.org/10.37193/cjm.2017.02.10.
Full textZhumanazarova, Assiya, and Young Im Cho. "Asymptotic Convergence of the Solution of a Singularly Perturbed Integro-Differential Boundary Value Problem." Mathematics 8, no. 2 (February 7, 2020): 213. http://dx.doi.org/10.3390/math8020213.
Full textGiani, Stefano, Luka Grubišić, Luca Heltai, and Ornela Mulita. "Smoothed-Adaptive Perturbed Inverse Iteration for Elliptic Eigenvalue Problems." Computational Methods in Applied Mathematics 21, no. 2 (March 12, 2021): 385–405. http://dx.doi.org/10.1515/cmam-2020-0027.
Full textAbouelmagd, Elbaz I., Juan Luis García Guirao, and Jaume Llibre. "On the Periodic Orbits of the Perturbed Two- and Three-Body Problems." Galaxies 11, no. 2 (April 18, 2023): 58. http://dx.doi.org/10.3390/galaxies11020058.
Full textDaniyarova, Zh K. "Ingularly perturbed equations in critical cases." Bulletin of the Innovative University of Eurasia 84, no. 4 (December 23, 2021): 69–75. http://dx.doi.org/10.37788/2021-4/69-75.
Full textBouaziz, Ferdaous, and Abdullah A. Ansari. "Perturbed Hill's problem with variable mass." Astronomische Nachrichten 342, no. 4 (April 29, 2021): 666–74. http://dx.doi.org/10.1002/asna.202113870.
Full textZholtikov, Vitaliy P., and Vladislav V. Efendiev. "Singularly Perturbed Control with Delay Problem." Journal of Automation and Information Sciences 29, no. 1 (1997): 40–43. http://dx.doi.org/10.1615/jautomatinfscien.v29.i1.50.
Full textArmellin, Roberto, David Gondelach, and Juan Felix San Juan. "Multiple Revolution Perturbed Lambert Problem Solvers." Journal of Guidance, Control, and Dynamics 41, no. 9 (September 2018): 2019–32. http://dx.doi.org/10.2514/1.g003531.
Full textGol’dberg, V. N. "Stability of a singularly perturbed problem." Differential Equations 48, no. 4 (April 2012): 524–37. http://dx.doi.org/10.1134/s0012266112040076.
Full textStahlhofen, A. A. "Once more the perturbed Kepler problem." American Journal of Physics 62, no. 12 (December 1994): 1145–47. http://dx.doi.org/10.1119/1.17676.
Full textWaldvogel, Jörg. "Quaternions and the perturbed Kepler problem." Celestial Mechanics and Dynamical Astronomy 95, no. 1-4 (August 17, 2006): 201–12. http://dx.doi.org/10.1007/s10569-005-5663-7.
Full textVrbik, J. "Perturbed Kepler problem in quaternionic form." Journal of Physics A: Mathematical and General 28, no. 21 (November 7, 1995): 6245–52. http://dx.doi.org/10.1088/0305-4470/28/21/027.
Full textLi, Gongbao, Peng Luo, Shuangjie Peng, Chunhua Wang, and Chang-Lin Xiang. "A singularly perturbed Kirchhoff problem revisited." Journal of Differential Equations 268, no. 2 (January 2020): 541–89. http://dx.doi.org/10.1016/j.jde.2019.08.016.
Full textSharip, B., and А. Т. Yessimova. "ESTIMATION OF A BOUNDARY VALUE PROBLEM SOLUTION WITH INITIAL JUMP FOR LINEAR DIFFERENTIAL EQUATION." BULLETIN Series of Physics & Mathematical Sciences 69, no. 1 (March 10, 2020): 168–73. http://dx.doi.org/10.51889/2020-1.1728-7901.28.
Full textLittig, Samuel, and Friedemann Schuricht. "Perturbation results involving the 1-Laplace operator." Advances in Calculus of Variations 12, no. 3 (July 1, 2019): 277–302. http://dx.doi.org/10.1515/acv-2017-0006.
Full textAsadi, S., and H. Mansouri. "A Full-Newton step infeasible-interior-point algorithm for P*(k)-horizontal linear complementarity problems." Yugoslav Journal of Operations Research 25, no. 1 (2015): 57–72. http://dx.doi.org/10.2298/yjor130515034a.
Full textSobolev, Vladimir. "Efficient decomposition of singularly perturbed systems." Mathematical Modelling of Natural Phenomena 14, no. 4 (2019): 410. http://dx.doi.org/10.1051/mmnp/2019023.
Full textVrabel, Robert. "Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem." Axioms 11, no. 8 (August 11, 2022): 394. http://dx.doi.org/10.3390/axioms11080394.
Full textAbouelmagd, Elbaz I., Juan Luis García Guirao, and Jaume Llibre. "Periodic Orbits of Quantised Restricted Three-Body Problem." Universe 9, no. 3 (March 15, 2023): 149. http://dx.doi.org/10.3390/universe9030149.
Full textMo, Jia-qi. "Quasilinear singularly perturbed problem with boundary perturbation." Journal of Zhejiang University-SCIENCE A 5, no. 9 (September 2004): 1144–47. http://dx.doi.org/10.1631/jzus.2004.1144.
Full textCordaro, Giuseppe. "Multiple solutions to a perturbed Neumann problem." Studia Mathematica 178, no. 2 (2007): 167–75. http://dx.doi.org/10.4064/sm178-2-3.
Full textGrecu, Andrei. "A perturbed eigenvalue problem in exterior domain." Mathematica Slovaca 72, no. 4 (August 1, 2022): 945–58. http://dx.doi.org/10.1515/ms-2022-0065.
Full textTursunov, Dilmurat Abdillazhanovich, Gulbayra Abdimalikovna Omaralieva, Makhfuzakhon Ibrakhimzhanovna Mamatbuvaeva, and Shahzadakhan Adylzhanovna Ramankulova. "SINGULARLY PERTURBED PROBLEM WITH DOUBLE BOUNDARY LAYER." Bulletin of Osh State University 1, no. 1 (2021): 102–9. http://dx.doi.org/10.52754/16947452_2021_1_1_102.
Full textMelenk, J. M., and C. Schwab. "Analytic Regularity for a Singularly Perturbed Problem." SIAM Journal on Mathematical Analysis 30, no. 2 (January 1999): 379–400. http://dx.doi.org/10.1137/s0036141097317542.
Full textAbouelmagd, Elbaz I., and Juan L. G. Guirao. "On the perturbed restricted three-body problem." Applied Mathematics and Nonlinear Sciences 1, no. 1 (January 28, 2016): 123–44. http://dx.doi.org/10.21042/amns.2016.1.00010.
Full textZorica, Uzelac, and Surla Katarina. "Discretization of the semilinear singularly perturbed problem." Nonlinear Analysis: Theory, Methods & Applications 30, no. 8 (December 1997): 4741–47. http://dx.doi.org/10.1016/s0362-546x(97)00411-2.
Full textCordaro, Giuseppe, and Giuseppe Rao. "Three solutions for a perturbed Dirichlet problem." Nonlinear Analysis: Theory, Methods & Applications 68, no. 12 (June 2008): 3879–83. http://dx.doi.org/10.1016/j.na.2007.04.027.
Full textMihăilescu, Mihai, and Denisa Stancu-Dumitru. "A perturbed eigenvalue problem on general domains." Annals of Functional Analysis 7, no. 4 (November 2016): 529–42. http://dx.doi.org/10.1215/20088752-3660738.
Full textStruckmeier, J., and A. Unterreiter. "A singular-perturbed two-phase Stefan problem." Applied Mathematics Letters 14, no. 2 (February 2001): 217–22. http://dx.doi.org/10.1016/s0893-9659(00)00139-7.
Full textPrashanth, S., Sanjiban Santra, and Abhishek Sarkar. "On the perturbed Q -curvature problem onS4." Journal of Differential Equations 255, no. 8 (October 2013): 2363–91. http://dx.doi.org/10.1016/j.jde.2013.06.015.
Full textKuz'mina, L. K. "Solution of the singularly perturbed stability problem." Journal of Applied Mathematics and Mechanics 55, no. 4 (January 1991): 475–80. http://dx.doi.org/10.1016/0021-8928(91)90009-j.
Full textVrábel’, Róbert. "Singularly perturbed anharmonic quartic potential oscillator problem." Zeitschrift für angewandte Mathematik und Physik 55, no. 4 (July 2004): 720–24. http://dx.doi.org/10.1007/s00033-004-1082-y.
Full textLi, Lin. "Three solutions for a perturbed Navier problem." Ricerche di Matematica 61, no. 1 (August 26, 2011): 117–23. http://dx.doi.org/10.1007/s11587-011-0118-9.
Full textBates, Larry M. "Geometric quantization of a perturbed Kepler problem." Reports on Mathematical Physics 28, no. 2 (October 1989): 289–97. http://dx.doi.org/10.1016/0034-4877(89)90049-9.
Full textMo, J. Q. "A Singularly Perturbed Nonlinear Boundary Value Problem." Journal of Mathematical Analysis and Applications 178, no. 1 (September 1993): 289–93. http://dx.doi.org/10.1006/jmaa.1993.1307.
Full textMelesse, Wondwosen Gebeyaw, Awoke Andargie Tiruneh, and Getachew Adamu Derese. "Solving Linear Second-Order Singularly Perturbed Differential Difference Equations via Initial Value Method." International Journal of Differential Equations 2019 (November 22, 2019): 1–10. http://dx.doi.org/10.1155/2019/5259130.
Full textCraven, B. D. "Convergence of discrete approximations for constrained minimization." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 36, no. 1 (July 1994): 50–59. http://dx.doi.org/10.1017/s0334270000010237.
Full textGeng, Fazhan, Suping Qian, and Shuai Li. "Numerical solutions of singularly perturbed convection-diffusion problems." International Journal of Numerical Methods for Heat & Fluid Flow 24, no. 6 (July 29, 2014): 1268–74. http://dx.doi.org/10.1108/hff-01-2013-0033.
Full textLi, Ye. "An Adaptive Finite Element Method with Hybrid Basis for Singularly Perturbed Nonlinear Eigenvalue Problems." Communications in Computational Physics 19, no. 2 (February 2016): 442–72. http://dx.doi.org/10.4208/cicp.021114.140715a.
Full textNhan, Tran, Kien Nguyen, Nguyen Hung, and Nguyen Toan. "The inverse k-max combinatorial optimization problem." Yugoslav Journal of Operations Research, no. 00 (2022): 37. http://dx.doi.org/10.2298/yjor220516037n.
Full textYonchev, A. "Perturbation Analysis of the Continuous-time Regional Pole Assignment and H2 Performance Control Problems: an LMI Approach." Information Technologies and Control 12, no. 3-4 (December 1, 2014): 28–35. http://dx.doi.org/10.1515/itc-2016-0004.
Full text