Dissertations / Theses on the topic 'PERTURBED PROBLEM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'PERTURBED PROBLEM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nguyen, Thi Phong. "Direct and inverse solvers for scattering problems from locally perturbed infinite periodic layers." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX004/document.
Full textWe are interested in this thesis by the analysis of scattering and inverse scattering problems for locally perturbed periodic infinite layers at a fixed frequency. This problem has connexions with non destructive testings of periodic media like photonics structures, optical fibers, gratings, etc. We first analyze the forward scattering problem and establish some conditions under which there exist no guided modes. This type of conditions is important as it shows that measurements can be done on a layer above the structure without loosing substantial informations in the propagative part of the wave. We then propose a numerical method that solves the direct scattering problem based on Floquet-Bloch transform in the periodicity directions of the background media. We discretize the problem uniformly in the Floquet-Bloch variable and use a spectral method in the space variable. The discretization in space exploits a volumetric reformulation of the problem in a cell (Lippmann-Schwinger integral equation) and a periodization of the kernel in the direction orthogonal to the periodicity. The latter allows the use of FFT techniques to speed up Matrix-Vector product in an iterative to solve the linear system. One ends up with a system of coupled integral equations that can be solved using a Jacobi decomposition. The convergence analysis is done for the case with absorption and numerical validating results are conducted in 2D. For the inverse problem we extend the use of three sampling methods to solve the problem of retrieving the defect from the knowledge of mutistatic data associated with incident near field plane waves. We analyze these methods for the semi-discretized problem in the Floquet-Bloch variable. We then propose a new method capable of retrieving directly the defect without knowing either the background material properties nor the defect properties. This so-called differential-imaging functional that we propose is based on the analysis of sampling methods for a single Floquet-Bloch mode and the relation with solutions toso-called interior transmission problems. The theoretical investigations are corroborated with numerical experiments on synthetic data. Our analysis is done first for the scalar wave equation where the contrast is the lower order term of the Helmholtz operator. We then sketch the extension to the cases where the contrast is also present in the main operator. We complement our thesis with two results on the analysis of the scattering problem for periodic materials with negative indices. Weestablish the well posedness of the problem in 2D in the case of a contrast equals -1. We also show the Fredholm properties of the volume potential formulation of the problem using the T-coercivity approach in the case of a contrast different from -1
Kunert, Gerd. "Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes." Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100011.
Full textKunert, Gerd. "A note on the energy norm for a singularly perturbed model problem." Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100062.
Full textRobert, Kieran Jean-Baptiste. "New approach to solving a spectral problem in a perturbed periodic waveguide." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54692/.
Full textAdkins, Jacob. "A Robust Numerical Method for a Singularly Perturbed Nonlinear Initial Value Problem." Kent State University Honors College / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1513331499579714.
Full textGrosman, Serguei. "Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600475.
Full textKunert, Gerd. "A posteriori H^1 error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes." Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100730.
Full textFUSE', ALESSANDRA. "ON THE STABILITY OF THE PERTURBED CENTRAL MOTION PROBLEM: A QUASICONVEXITY AND A NEKHOROSHEV TYPE RESULT." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/565234.
Full textDalla, Riva Matteo. "Potential theoretic methods for the analysis of singularly perturbed problems in linearized elasticity." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426270.
Full textZhang, Ningyi. "Inverse problem for wave propagation in a perturbed layered half-space and orthogonality relations in poroelastic materials." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 120 p, 2007. http://proquest.umi.com/pqdweb?did=1342733281&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textKunert, Gerd. "Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes." Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867.
Full textKunert, Gerd. "A posteriori error estimation for convection dominated problems on anisotropic meshes." Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200200255.
Full textPulst, Ludwig [Verfasser], and Hans-Christoph [Akademischer Betreuer] Grunau. "Dominance of positivity of the Green's function associated to a perturbed polyharmonic dirichlet boundary value problem by pointwise estimates / Ludwig Pulst. Betreuer: Hans-Christoph Grunau." Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1070276936/34.
Full textPomponio, Alessio. "Singularity perturbed elliptic problems." Doctoral thesis, SISSA, 2004. http://hdl.handle.net/20.500.11767/4172.
Full textMeng, Jianzhong. "Some singular singularly perturbed problems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24686.pdf.
Full textJung, Chang-Yeol. "Numerical approximation of two dimensional singularly perturbed problems." [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3215193.
Full textSource: Dissertation Abstracts International, Volume: 67-04, Section: B, page: 2029. Adviser: Roger Temam. "Title from dissertation home page (viewed June 20, 2007)."
Mbroh, Nana Adjoah. "On the method of lines for singularly perturbed partial differential equations." University of the Western Cape, 2017. http://hdl.handle.net/11394/5679.
Full textMany chemical and physical problems are mathematically described by partial differential equations (PDEs). These PDEs are often highly nonlinear and therefore have no closed form solutions. Thus, it is necessary to recourse to numerical approaches to determine suitable approximations to the solution of such equations. For solutions possessing sharp spatial transitions (such as boundary or interior layers), standard numerical methods have shown limitations as they fail to capture large gradients. The method of lines (MOL) is one of the numerical methods used to solve PDEs. It proceeds by the discretization of all but one dimension leading to systems of ordinary di erential equations. In the case of time-dependent PDEs, the MOL consists of discretizing the spatial derivatives only leaving the time variable continuous. The process results in a system to which a numerical method for initial value problems can be applied. In this project we consider various types of singularly perturbed time-dependent PDEs. For each type, using the MOL, the spatial dimensions will be discretized in many different ways following fitted numerical approaches. Each discretisation will be analysed for stability and convergence. Extensive experiments will be conducted to confirm the analyses.
Franz, Sebastian. "Singularly perturbed problems with characteristic layers : Supercloseness and postprocessing." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1218629566251-73654.
Full textApel, Th, and G. Lube. "Anisotropic mesh refinement for singularly perturbed reaction diffusion problems." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801080.
Full textHeinrich, Bernd, and Kornelia Pönitz. "Nitsche type mortaring for singularly perturbed reaction-diffusion problems." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601364.
Full textJacobs, Simon. "Implementation methods for singularly perturbed two-point boundary value problems." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/25898.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Risser, Hilary Smith. "Computational methods for singularly perturbed two point boundary value problems." Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3196540.
Full textTitle from PDF title page (viewed July 13, 2007). Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6015. Adviser: Ian Gladwell. Includes bibliographical references.
Dunning, Tania Clare. "Perturbed conformal field theory, nonlinear integral equations and spectral problems." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4329/.
Full textChan, Kwok Cheung. "Shooting method for singularly perturbed two-point boundary value problems." HKBU Institutional Repository, 1998. http://repository.hkbu.edu.hk/etd_ra/274.
Full textDipierro, Serena. "Concentration phenomena for singularly perturbed elliptic problems and related topics." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4637.
Full textAhmed, Istiaque, and s3119889@student rmit edu au. "Canonical and Perturbed Quantum Potential-Well Problems: A Universal Function Approach." RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080108.124715.
Full textChapman, John Robert. "On discontinuous Galerkin methods for singularly perturbed and incompressible miscible displacement problems." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/5886/.
Full textHowe, Sei. "Upper and lower bounds for singularly perturbed linear quadratic optimal control problems." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/54758.
Full textSeydaoglu, Muaz. "Splitting methods for autonomous and non-autonomous perturbed equations." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/71358.
Full text[ES] Esta tesis aborda el tratamiento de problemas perturbados con métodos de escisión (splitting). Tras motivar el origen de este tipo de problemas en el capítulo 1, introducimos los objetivos, varias técnicas básicas y métodos existentes en capítulo 2. En el capítulo 3 consideramos la integración numérica de ecuaciones no autónomas separables y parabólicas usando métodos de splitting de orden mayor que dos usando coeficientes complejos (métodos con coeficientes reales de orden mayor de dos necesariamente tienen coeficientes negativos). Proponemos una clase de métodos que permite evaluar todos los operadores con dependencia temporal en valores reales del tiempo lo cual genera esquemas estables y fáciles de implementar. Si el sistema se puede considerar como una perturbación de un problema resoluble de forma exacta y si el flujo de la parte dominante se avanza usando coeficientes reales, es posible construir métodos altamente eficientes para este tipo de problemas. Demostramos la eficiencia de estos métodos en varios ejemplos numéricos. En el capítulo 4 proponemos métodos de splitting para el cálculo de la exponencial de matrices perturbadas que se pueden escribir como suma A = D + epsilon*B de una matriz dispersa y eficientemente exponenciable con exponencial dispersa exp(D) y una matriz densa epsilon*B de noma pequeña. El algoritmo predominante se basa en escalar la matriz grande con un número pequeño 2^(-s) para poder exponenciar el resultado con métodos eficientes de Padé o Taylor y finalmente obtener la aproximación a la exponencial elevando al cuadrado repetidamente. En este contexto, el coste computacional proviene de las multiplicaciones de matrices densas y presentamos una cuadratura modificada aprovechando la estructura perturbada para reducir el número de productos. Resultados teóricos sobre errores locales y propagación de error para métodos de splitting son complementados con experimentos numéricos y muestran una clara mejora sobre métodos existentes a precisión media. En el capítulo 5, consideramos la integración numérica de la ecuación de Hill perturbada. Resonancias paramétricas pueden aparecer y esta propiedad es de gran interés en muchas aplicaciones físicas. Habitualmente, las ecuaciones de Hill provienen de una función hamiltoniana y la solución fundamental es una matriz simpléctica, una propiedad muy importante que preservar con los integradores numéricos. Presentamos nuevos integradores simplécticos exponenciales de orden seis y ocho tallados a la ecuación de Hills. Estos métodos se basan en una aproximación simpléctica eficiente a la exponencial de osciladores armónicos acoplados de dimensión alta y dan lugar a resultados precisos para problemas oscilatorios a un coste computacional bajo y varios ejemplos numéricos ilustran su rendimiento. Conclusiones e indicadores para futuros estudios se detallan en el capítulo 6.
[CAT] La present tesi està enfocada al tractament de problemes perturbats utilitzant, entre altres, mètodes d'escisió (splitting). Comencem motivant l'oritge d'aquest tipus de problems al capítol 1, i a continuació introduïm el objectius, diferents tècniques bàsiques i alguns mètodes existents al capítol 2. Al capítol 3, consideram la integració numèrica d'equacions no autònomes separables i parabòliques utilitzant mètodes d'splitting d'ordre major que dos utilitzant coeficients complexos (mètodes amb coeficients reials d'ordre major que dos necesariament tenen coeficients negatius). Proposem una clase de mètodes que permeten evaluar tots els operadors amb dependència temporal explícita amb valors reials del temps. Esta forma de procedir genera esquemes estables i fàcils d'implementar. Si el sistema es pot considerar com una perturbació d'un problema exactament resoluble, i la part dominant s'avança utilitzant coeficients reials, es posible construir mètodes altament eficients per aquest tipus de problemes Demostrem la eficiència d'estos mètodes per a diferents exemples numèrics. Al capítol 4, proposem mètodes d'splitting per al càcul de la exponencial de matrius pertorbades que es poden escriure com suma A = D + epsilon*B (una matriu que es pot exponenciar fàcilment i eficientemente, com es el cas d'algunes matrius disperses exp(D), i una matriu densa epsilon*B de norma menuda). L'algorisme predominant es basa en escalar la matriu gran amb un nombre menut 2^(-s) per a poder exponenciar el resultat amb mètodes eficients de Padé o Taylor i finalment obtindre la aproximació a la exponencial elevant al quadrat repetidament. En este context, el cost computacional prové de les multiplicacions de matrius denses i presentem una quadratura modificada aprofitant la estructura de matriu pertorbada per reduir el nombre de productes. Resultats teòrics sobre errors locals i propagació d'error per a mètodes d'splitting son analitzats i corroborats amb experiments numèrics, mostrant una clara millora respecte a mètodes existens quan es busca una precisió moderada. Al capítol 5, considerem la integració numèrica de l'ecuació de Hill pertorbada. En este tipus d'equacions poden apareixer resonàncies paramètriques i esta propietat es de gran interés en moltes aplicacions físiques. Habitualment, les equacions de Hill provenen d'una función hamiltoniana i la solució fonamental es una matriu simplèctica, siguent esta una propietat molt important a preservar pels integradors numèrics. Presentams nous integradors simplèctics exponencials d'orden sis i huit construits especialmente per resoldre l'ecuació de Hill. Estos mètodes es basen en una aproxmiació simplèctica eficient a la exponencial d'osciladors harmònics acoplats de dimensió alta i donen lloc a resultats precisos per a problemas oscilatoris a un cost computacional baix. La eficiencia dels mètodes s'il.lustra en diferents exemples numèrics. Conclusions i indicadors per a futurs estudis es detallen al capítol 6.
Seydaoglu, M. (2016). Splitting methods for autonomous and non-autonomous perturbed equations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/71358
TESIS
Negron, Luis G. "Initial-value technique for singularly perturbed two point boundary value problems via cubic spline." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4597.
Full textID: 029051011; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.)--University of Central Florida, 2010.; Includes bibliographical references (p. 48-50).
M.S.
Masters
Department of Mathematics
Sciences
Reibiger, Christian. "Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162862.
Full textIragi, Bakulikira. "On the numerical integration of singularly perturbed Volterra integro-differential equations." University of the Western Cape, 2017. http://hdl.handle.net/11394/5669.
Full textEfficient numerical approaches for parameter dependent problems have been an inter- esting subject to numerical analysts and engineers over the past decades. This is due to the prominent role that these problems play in modeling many real life situations in applied sciences. Often, the choice and the e ciency of the approaches depend on the nature of the problem to solve. In this work, we consider the general linear first-order singularly perturbed Volterra integro-differential equations (SPVIDEs). These singularly perturbed problems (SPPs) are governed by integro-differential equations in which the derivative term is multiplied by a small parameter, known as "perturbation parameter". It is known that when this perturbation parameter approaches zero, the solution undergoes fast transitions across narrow regions of the domain (termed boundary or interior layer) thus affecting the convergence of the standard numerical methods. Therefore one often seeks for numerical approaches which preserve stability for all the values of the perturbation parameter, that is "numerical methods. This work seeks to investigate some "numerical methods that have been used to solve SPVIDEs. It also proposes alternative ones. The various numerical methods are composed of a fitted finite difference scheme used along with suitably chosen interpolating quadrature rules. For each method investigated or designed, we analyse its stability and convergence. Finally, numerical computations are carried out on some test examples to con rm the robustness and competitiveness of the proposed methods.
Abate, Domenico. "Modelling and control of RFX-mod tokamak equilibria." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421955.
Full textLa presente tesi tratta la modellazione e il controllo di plasmi in equilibrio, a sezione non circolare e relativi all’esperimento RFX-mod operante come tokamak. L’obiettivo è di sviluppare un modello complessivo di RFX-mod (includendo plasmaconduttori- controllore) con finalità di controllo elettromagnetico del plasma. L’esperimento RFX-mod è stato descritto con modelli caratterizzati da un crescente livello di complessità, coinvolgendo sia dati teorici che sperimentali. Il codice CREATE-L è stato usato per lo sviluppo di modelli linearizzati di risposta di plasma, con ipotesi semplificative sulla rappresentazione delle strutture conduttrici (approssimazione assialsimmetrica). Questi modelli, grazie alla loro semplicità, sono stati utilizzati per la progettazione del sistema di controllo. Il codice CarMa0 è stato usato per sviluppare modelli analoghi ma con una rappresentazione tridimensionale delle strutture conduttrici; questi permettono di verificare l’accuratezza dei modelli semplificati e indagare l’importanza delle strutture tridimensionali sulla dinamica del sistema. Il codice CarMa0NL ha permesso la trattazione di fenomeni evolutivi nel tempo e nonlineari (e.g. disruzioni, transizioni limiter-divertor, transizioni L-H etc.). L’attività può essere suddivisa in due parti: la prima riguarda la modellizzazione di plasmi a basso β teorici, non ottenuti sperimentalmente, usati come riferimento per la progettazione e l’implementazione del sistema di controllo della forma e della posizione verticale del plasma; la seconda parte, è legata ai risultati delle campagne sperimentali sui plasmi a sezione non circolari in diversi regimi, dal basso β al modo H, con particolare attenzione allo sviluppo di un nuovo modello linearizzato di risposta di plasma per i nuovi regimi di equilibrio raggiunti. L’attività di ricerca è caratterizzata da molteplici problematiche e peculiarità sia in termini di modellazione che di controllo. La pronunciata non circolarità della forma di plasma e i diversi regimi coinvolti hanno influenzato fortemente l’attività di modellazione che ha richiesto, infatti, lo sviluppo di molteplici strumenti computazionali e di analisi dati. Per quanto concerne il controllo, la non completa osservabilità della dinamica del sistema e la necessità di ridurre l’ordine del modello sono solo alcuni degli aspetti che hanno determinato la progettazione del sistema di controllo di forma e di posizione verticale. La prima parte è basata su dati teorici generati dal codice di equilibrio MAXFEA e poi utilizzati per derivare il modello linearizzato attraverso il codice CREATE-L. In questo contesto, sono stati prodotti due modelli di riferimento per le configurazioni magnetiche relative a plasmi non circolari: il singolo nullo inferiore (LSN) e il singolo nullo superiore (USN). I modelli CREATE-L sono i più semplici in termini di complessità di modellazione, in quanto le strutture conduttive della macchina sono descritte nell’approssimazione assialsimmetrica. D’altro canto, le proprietà semplici ma affidabili del modello CREATE-L hanno portato alla progettazione del sistema di controllo di forma e posizione verticale del plasma di RFX-mod, che è stato in seguito testato e utilizzato con successo per aumentare le prestazioni del plasma. Successivamente, è stata condotta un’analisi sui possibili effetti 3D delle strutture conduttrici sulle due configurazioni di plasma di riferimento, producendo dunque modelli linearizzati caratterizzati da un sempre maggiore livello di complessità. Una dettagliata descrizione volumetrica (3D) delle strutture conduttrici di RFX-mod è stata eseguita e inclusa nei modelli linearizzati di plasma attraverso il codice CarMa0. Successivamente, è stato eseguito un confronto tra l’accuratezza di questo modello e quello precedente 2D. Le diverse ipotesi e approssimazioni dei vari modelli consentono una chiara identificazione dei fenomeni chiave che governano l’evoluzione dell’instabilità verticale n = 0 in scariche RFX-mod tokamak e quindi forniscono informazioni fondamentali nella pianificazione ed esecuzione di esperimenti correlati oltre che nella raffinazione del progetto del sistema di controllo. Infine, il modello di equilibrio evolutivo non lineare CarMa0NL, che comprende le strutture volumetriche 3D, è stato utilizzato per modellare gli effetti non lineari simulando una variazione di corrente lineare "fittizia". La seconda parte è costituita da un’attività di modellazione strettamente correlata ai risultati delle campagne sperimentali. In particolare, sono stati eseguiti nuovi modelli linearizzati per i plasmi sperimentali nella configurazione USN per tutti i regimi di plasma coinvolti, cioè dal basso β fino al modo H. È stata ideata e sviluppata una procedura iterativa per la produzione di modelli linearizzati di risposta di plasma estremamente accurati, al fine di riprodurre al meglio i dati sperimentali. I nuovi modelli hanno consentito ulteriori studi sulla stabilità verticale, inclusi gli effetti della parete 3D, nei tre diversi regimi studiati (basso β, β intermedio, modo H). I modelli linearizzati assialsimmetrici (CREATE-L) sono stati analizzati dal punto di vista della teoria dei controlli, rilevando caratteristiche peculiari in termini di funzione di trasferimento SISO associata al controllo della stabilità verticale e in termini di modello completo MIMO relativo al controllo di forma. Il modello MIMO è stato utilizzato per indagare le oscillazioni nella forma del plasma osservate sperimentalmente in alcune scariche a β intermedio. L’evoluzione temporale non lineare della scarica di plasma, per plasmi sperimentali a regimi a basso β, è stata effettuata usando il codice di equilibrio evolutivo CarMa0NL. Infine, è stata studiata l’instabilità verticale per i plasmi sperimentali in termini di un possibile rapporto tra i parametri del plasma e il suo verificarsi; a tal fine è stata eseguita la soluzione del problema inverso per la produzione di equilibri di plasma teorici di riferimento, prodotti come variazioni sui parametri dei plasmi osservati sperimentalmente, il che comporta una vasta gamma di metodi numerici descritti in dettaglio. Successivamente, è stato adottato un test di ipotesi statistica per confrontare i valori medi dei parametri di plasma, sia sperimentali che teorici, associati a due diversi comportamenti in termini di stabilità verticale.
Mbayi, Charles K. "Efficient Variable Mesh Techniques to solve Interior Layer Problems." University of Western Cape, 2020. http://hdl.handle.net/11394/7324.
Full textSingularly perturbed problems have been studied extensively over the past few years from different perspectives. The recent research has focussed on the problems whose solutions possess interior layers. These interior layers appear in the interior of the domain, location of which is difficult to determine a-priori and hence making it difficult to investigate these problems analytically. This explains the need for approximation methods to gain some insight into the behaviour of the solution of such problems. Keeping this in mind, in this thesis we would like to explore a special class of numerical methods, namely, fitted finite difference methods to determine reliable solutions. As far as the fitted finite difference methods are concerned, they are grouped into two categories: fitted mesh finite difference methods (FMFDMs) and the fitted operator finite difference methods (FOFDMs). The aim of this thesis is to focus on the former. To this end, we note that FMFDMs have extensively been used for singularly perturbed two-point boundary value problems (TPBVPs) whose solutions possess boundary layers. However, they are not fully explored for problems whose solutions have interior layers. Hence, in this thesis, we intend firstly to design robust FMFDMs for singularly perturbed TPBVPs whose solutions possess interior layers and to improve accuracy of these approximation methods via methods like Richardson extrapolation. Then we extend these two ideas to solve such singularly perturbed TPBVPs with variable diffusion coefficients. The overall approach is further extended to parabolic singularly perturbed problems having constant as well as variable diffusion coefficients.
2023-08-31
DER, MATHEOSSIAN JEAN-YVES. "Probleme inverse regularise pour l'holographie acoustique de champ proche : applications en milieu perturbe." Paris 7, 1994. http://www.theses.fr/1994PA077230.
Full textNyamayaro, Takura T. A. "On the design and implementation of a hybrid numerical method for singularly perturbed two-point boundary value problems." University of the Western Cape, 2014. http://hdl.handle.net/11394/4326.
Full textWith the development of technology seen in the last few decades, numerous solvers have been developed to provide adequate solutions to the problems that model different aspects of science and engineering. Quite often, these solvers are tailor-made for specific classes of problems. Therefore, more of such must be developed to accompany the growing need for mathematical models that help in the understanding of the contemporary world. This thesis treats two point boundary value singularly perturbed problems. The solution to this type of problem undergoes steep changes in narrow regions (called boundary or internal layer regions) thus rendering the classical numerical procedures inappropriate. To this end, robust numerical methods such as finite difference methods, in particular fitted mesh and fitted operator methods have extensively been used. While the former consists of transforming the continuous problem into a discrete one on a non-uniform mesh, the latter involves a special discretisation of the problem on a uniform mesh and are known to be more accurate. Both classes of methods are suitably designed to accommodate the rapid change(s) in the solution. Quite often, finite difference methods on piece-wise uniform meshes (of Shishkin-type) are adopted. However, methods based on such non-uniform meshes, though layer-resolving, are not easily extendable to higher dimensions. This work aims at investigating the possibility of capitalising on the advantages of both fitted mesh and fitted operator methods. Theoretical results are confirmed by extensive numerical simulations.
Laurain, Antoine. "Domaines singulierements perturbes en optimisation de formes." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00139595.
Full textcas de domaines à frontière régulière et pour des perturbations régulières de ces domaines.
Par contre, l'étude de domaines non-réguliers, tels que des domaines fissurés par exemple,
et l'étude de perturbations singulières telles que la création d'un trou dans un domaine est
plus récente et plus complexe. Ce nouveau domaine de recherche est motivé par de multiples
applications, car en pratique, les hypothèses de régularité ne sont pas toujours vérifiées. Les
outils tels que la dérivée topologique permettent d'appréhender ces perturbations singulières
de domaines et leur utilisation est maintenant fréquente.
Dans la première partie, nous étudions la structure de la dérivée de forme pour des domaines fissurés. Dans le cas d'un ouvert régulier, de classe C1 ou lipschitzien par exemple,
la dérivée dépend uniquement des perturbations de la frontière du domaine en direction de
la normale. Ce théorème de structure n'est plus valable pour des domaines contenant des
fissures. On généralise ici ce théorème de structure aux domaines fissurés en dimension quelconque pour les dérivées premières et secondes. En dimension deux, on retrouve le résultat
usuel, à savoir qu'en plus du terme classique, deux nouvelles contributions apparaissent dûes
aux extrémités de la fissure. En dimension supérieure, un nouveau terme apparaît en plus du
terme classique, dû à la frontière de la variété à bord représentant la fissure.
Dans la deuxième partie, nous étudions la perturbation singulière d'un domaine et nous
modélisons cette perturbation à l'aide d'extensions auto-adjointes d'opérateurs. Nous décrivons cette modélisation, puis nous montrons comment elle peut être utilisée pour un problème
d'optimisation de forme. En définissant une fonctionnelle d'énergie approchée pour ce problème modèle, on retrouve notamment la formule de la dérivée topologique usuelle.
Dans la troisième partie, on propose une application numérique de la dérivée topologique
et de la dérivée de forme pour un problème non-linéaire. On cherche à maximiser l'énergie
associée à la solution d'un problème de Signorini dans un domaine . L'évolution du domaine
est représentée à l'aide d'une méthode levelset.
Mergia, Woinshet D. "Robust computational methods to simulate slow-fast dynamical systems governed by predator-prey models." University of the Western Cape, 2019. http://hdl.handle.net/11394/7070.
Full textNumerical approximations of multiscale problems of important applications in ecology are investigated. One of the class of models considered in this work are singularly perturbed (slow-fast) predator-prey systems which are characterized by the presence of a very small positive parameter representing the separation of time-scales between the fast and slow dynamics. Solution of such problems involve multiple scale phenomenon characterized by repeated switching of slow and fast motions, referred to as relaxationoscillations, which are typically challenging to approximate numerically. Granted with a priori knowledge, various time-stepping methods are developed within the framework of partitioning the full problem into fast and slow components, and then numerically treating each component differently according to their time-scales. Nonlinearities that arise as a result of the application of the implicit parts of such schemes are treated by using iterative algorithms, which are known for their superlinear convergence, such as the Jacobian-Free Newton-Krylov (JFNK) and the Anderson’s Acceleration (AA) fixed point methods.
Pinel, Xavier. "A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0033/document.
Full textThe topic of this PhD thesis is the development of iterative methods for the solution of large sparse linear systems of equations with possibly multiple right-hand sides given at once. These methods will be used for a specific application in geophysics - seismic migration - related to the simulation of wave propagation in the subsurface of the Earth. Here the three-dimensional Helmholtz equation written in the frequency domain is considered. The finite difference discretization of the Helmholtz equation with the Perfect Matched Layer formulation produces, when high frequencies are considered, a complex linear system which is large, non-symmetric, non-Hermitian, indefinite and sparse. Thus we propose to study preconditioned flexible Krylov subspace methods, especially minimum residual norm methods, to solve this class of problems. As a preconditioner we consider multi-level techniques and especially focus on a two-level method. This twolevel preconditioner has shown efficient for two-dimensional applications and the purpose of this thesis is to extend this to the challenging three-dimensional case. This leads us to propose and analyze a perturbed two-level preconditioner for a flexible Krylov subspace method, where Krylov methods are used both as smoother and as approximate coarse grid solver
Kas-Danouche, Rojas Said Antonio. "Una aplicación de programación matemática en la resolución de leyes de conservación." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96606.
Full textBerglund, Nils. "Equations différentielles stochastiques singulièrement perturbées." Habilitation à diriger des recherches, Université du Sud Toulon Var, 2004. http://tel.archives-ouvertes.fr/tel-00004304.
Full textLudwig, Lars. "Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-137301.
Full textCharnoz, Sébastien. "Contribution à l'étude des disques planétaires et protoplanétaires perturbés." Paris 7, 2000. http://www.theses.fr/2000PA077039.
Full textROSSI, LUBIANKA F. R. "Acoplamento entre os métodos diferencial e da teoria da perturbação para o cálculo dos coeficientes de sensibilidade em problemas de transmutação nuclear." reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/23594.
Full textMade available in DSpace on 2015-03-17T10:41:16Z (GMT). No. of bitstreams: 0
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Mirjana, Brdar. "Dvoparametarski singularno perturbovani konturni problemi na mrežama različitog tipa." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=100302&source=NDLTD&language=en.
Full textThe thesis explores the uniform convergence for Galerkin nite elementmethod on various meshes for two parameter singularly perturbed problems.Layer-adapted meshes are introduced for convection-reaction-diusionproblems: Bakhvalov, Duran-Shishkin and Duran meshes for a one dimensionaland Duran-Shishkin and Duran meshes for a two dimensional problem.We analyze the errors of interpolation, discretization and error in the energynorm and prove the parameter uniform convergence for Galerkin nite elementmethod on mentioned meshes. Numerical experiments support theoreticalndings.
Musolino, Paolo. "Singular perturbation and homogenization problems in a periodically perforated domain. A functional analytic approach." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422452.
Full textQuesta Tesi è dedicata all'analisi di problemi di perturbazione singolare e omogeneizzazione nello spazio Euclideo periodicamente perforato. Studiamo il comportamento delle soluzioni di problemi al contorno per le equazioni di Laplace, di Poisson e di Helmholtz al tendere a 0 di parametri legati al diametro dei buchi o alla dimensione delle celle di periodicità. La Tesi è organizzata come segue. Nel Capitolo 1, presentiamo due costruzioni note di un analogo periodico della soluzione fondamentale dell'equazione di Laplace, e introduciamo potenziali di strato e di volume periodici per l'equazione di Laplace e alcuni risultati basilari di teoria del potenziale periodica. Il Capitolo 2 è dedicato a problemi di perturbazione singolare e omogeneizzazione per le equazioni di Laplace e Poisson con condizioni al bordo di Dirichlet e Neumann. Nel Capitolo 3 consideriamo il caso di problemi al contorno di Robin (lineari e nonlineari) per l'equazione di Laplace, mentre nel Capitolo 4 analizziamo problemi di trasmissione (lineari e nonlineari). Nel Capitolo 5 applichiamo i risultati del Capitolo 4 al fine di provare l'analiticità della conduttività effettiva di un composto periodico. Il Capitolo 6 è dedicato alla costruzione di un analogo periodico della soluzione fondamentale dell'equazione di Helmholtz e dei corrispondenti potenziali di strato. Nel Capitolo 7 raccogliamo alcuni risultati di teoria spettrale per l'operatore di Laplace in domini periodicamente perforati. Nel Capitolo 8 studiamo problemi di perturbazione singolare e di omogeneizzazione per l'equazione di Helmholtz con condizioni al contorno di Neumann. Nel Capitolo 9 consideriamo problemi di perturbazione singolare e di omogeneizzazione con condizioni al contorno di Dirichlet per l'equazione di Helmholtz, mentre nel Capitolo 10 studiamo problemi al contorno di Robin (lineari e nonlineari). Il Capitolo 11 è dedicato allo studio di potenziali di strato periodici per operatori differenziali generali del secondo ordine a coefficienti costanti. Alla fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.
Reibiger, Christian [Verfasser], Hans-Görg [Akademischer Betreuer] Roos, and Gert [Akademischer Betreuer] Lube. "Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics / Christian Reibiger. Gutachter: Hans-Görg Roos ; Gert Lube. Betreuer: Hans-Görg Roos." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/106909658X/34.
Full textDimier, Alain. "Problème hyperbolique non linéaire perturbé par un terme de convolution méthodes pseudo-spectrales et carture de choc pour des équations hyperboliques /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37613218x.
Full textLudwig, Lars [Verfasser], Hans-Görg [Akademischer Betreuer] Roos, and Gunar [Akademischer Betreuer] Matthies. "Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software / Lars Ludwig. Gutachter: Hans-Görg Roos ; Gunar Matthies. Betreuer: Hans-Görg Roos." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068445858/34.
Full textBonzom, Florian. "Problèmes elliptiques en domaines non bornés: une approche dans des espaces de Sobolev avec poids." Phd thesis, Université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/tel-00345851.
Full text