Academic literature on the topic 'Personnal exposure to atmospheric air pollution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Personnal exposure to atmospheric air pollution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Personnal exposure to atmospheric air pollution"
Ashmore, M. R., and C. Dimitroulopoulou. "Personal exposure of children to air pollution." Atmospheric Environment 43, no. 1 (January 2009): 128–41. http://dx.doi.org/10.1016/j.atmosenv.2008.09.024.
Full textGulliver, J., and D. J. Briggs. "Personal exposure to particulate air pollution in transport microenvironments." Atmospheric Environment 38, no. 1 (January 2004): 1–8. http://dx.doi.org/10.1016/j.atmosenv.2003.09.036.
Full textJohnston, James D., Scott C. Collingwood, James D. LeCheminant, Neil E. Peterson, Paul R. Reynolds, Juan A. Arroyo, Andrew J. South, et al. "Personal Exposure to Fine Particulate Air Pollution among Brick Workers in Nepal." Atmosphere 14, no. 12 (December 2, 2023): 1783. http://dx.doi.org/10.3390/atmos14121783.
Full textChatzidiakou, Lia, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, et al. "Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments." Atmospheric Measurement Techniques 12, no. 8 (August 30, 2019): 4643–57. http://dx.doi.org/10.5194/amt-12-4643-2019.
Full textGerding, Thomas, Jun Wang, and Nicholas Newman. "Examining Work Stress and Air Pollutants Exposure of Home Healthcare Workers." Atmosphere 14, no. 9 (September 3, 2023): 1393. http://dx.doi.org/10.3390/atmos14091393.
Full textHan, Yiqun, Wu Chen, Lia Chatzidiakou, Anika Krause, Li Yan, Hanbin Zhang, Queenie Chan, et al. "Effects of AIR pollution on cardiopuLmonary disEaSe in urban and peri-urban reSidents in Beijing: protocol for the AIRLESS study." Atmospheric Chemistry and Physics 20, no. 24 (December 18, 2020): 15775–92. http://dx.doi.org/10.5194/acp-20-15775-2020.
Full textKim, Kyung Hwan, Kyung-Hwan Kwak, Jae Young Lee, Sung Ho Woo, Jong Bum Kim, Seung-Bok Lee, Sung Hee Ryu, Chang Hyeok Kim, Gwi-Nam Bae, and Inbo Oh. "Spatial Mapping of a Highly Non-Uniform Distribution of Particle-Bound PAH in a Densely Populated Urban Area." Atmosphere 11, no. 5 (May 12, 2020): 496. http://dx.doi.org/10.3390/atmos11050496.
Full textLyon-Caen, Sarah, Valérie Siroux, Johanna Lepeule, Philippe Lorimier, Pierre Hainaut, Pascal Mossuz, Joane Quentin, et al. "Deciphering the Impact of Early-Life Exposures to Highly Variable Environmental Factors on Foetal and Child Health: Design of SEPAGES Couple-Child Cohort." International Journal of Environmental Research and Public Health 16, no. 20 (October 14, 2019): 3888. http://dx.doi.org/10.3390/ijerph16203888.
Full textAljofi, Halah E., Thomas J. Bannan, Michael Flynn, James Evans, David Topping, Emily Matthews, Sebastian Diez, et al. "Study of the Suitability of a Personal Exposure Monitor to Assess Air Quality." Atmosphere 15, no. 3 (March 2, 2024): 315. http://dx.doi.org/10.3390/atmos15030315.
Full textPiedrahita, Ricardo, Evan R. Coffey, Yolanda Hagar, Ernest Kanyomse, Christine Wiedinmyer, Katherine L. Dickinson, Abraham Oduro, and Michael P. Hannigan. "Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana." Atmosphere 10, no. 7 (July 16, 2019): 402. http://dx.doi.org/10.3390/atmos10070402.
Full textDissertations / Theses on the topic "Personnal exposure to atmospheric air pollution"
Dessimond, Boris. "Exposition individuelle à la pollution de l’air : mesure par capteurs miniatures, modélisation et évaluation des risques sanitaires associés." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS297.
Full textAir pollution contributes to the degradation of the quality of life and the reduction of life expectancy of the populations. The World Health Organization estimates that air pollution is responsible for 7 million deaths per year worldwide. It contributes to the aggravation of respiratory diseases, causes lung cancer and heart attacks. Air pollution has therefore significant health consequences on human life and biodiversity. Over the last few years, considerable progress has been made in the field of microcontrollers and telecommunications modules. These are more energy efficient, powerful, affordable, accessible, and are responsible for the growth of connected objects. In the meantime, the recent development of microelectromechanical systems and electrochemical sensors has allowed the miniaturization of technologies measuring many environmental parameters including air quality. These technological breakthroughs have enabled the design and production in an academic environment, of portable, connected, autonomous air quality sensors capable of performing acquisitions at a high temporal frequency. Until recently, one of the major obstacles to understanding the impact of air pollution on human health was the inability to track the real exposure of individuals during their daily lives; air pollution is complex, and varies according to the habits, activities and environments in which individuals spend their lives. Portable air quality sensors completely remove this obstacle as well as a number of other important constraints. These are designed to be used in mobility, over long periods of time, and produce immediately available granular data, which describes the exposure to air pollution of the person wearing it. Although the measurement modules embedded in these sensors are not currently as reliable as reference tools or remote sensing, when it comes to assessing individual exposure to air pollution, because they are as close as possible to the wearer, they provide the most accurate information, and are therefore an indispensable tool for the future of epidemiological research. In this context, we have been involved in the development and improvement of two air quality sensors; the CANARIN II and the CANARIN nano. The CANARIN II is a connected sensor communicating via Wi-Fi, which reports the concentration of 10, 2.5 and 1 micrometer diameter particles, as well as the environmental parameters of temperature, humidity, and pressure, every minute, making them available in real time. The CANARIN nano is a smaller sensor with the same capabilities of the CANARIN II, while additionally sensing volatile organic compounds levels. The CANARIN nano is able to operate autonomously, as it communicates through the cellular network. Two types of results have been obtained with the CANARIN sensors; on one hand, results produced from their use in real life conditions, and on the other hand, results related to the interpretation and understanding of the measurements produced by the particle sensors. These two sensors were both used in two research projects, in which we have helped deploy several heterogeneous sensor fleets and analyzed the acquired data. Firstly, in the POLLUSCOPE project funded by the French National Research Agency, where 86 volunteers from the general population wore a set of air pollution sensors for a total of 101 weeks, 35 of which the volunteers were also equipped with health sensors. Secondly, in the POLLAR project, where 43 subjects underwent polysomnography and then wore one CANARIN sensor for 10 days, thus allowing for the first time to explore the link between sleep apnea and particulate matter exposure. [...]
VERA, PHUNG LING HUI. "New perspectives in epidemiological studies on health effects of atmospheric particles : Time lag, duration and intensity of exposure." Kyoto University, 2019. http://hdl.handle.net/2433/244541.
Full textYu, Haofei. "A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4795.
Full textHe, Mike Zhongyu. "Air pollution and adverse health effects: Assessing exposure windows and sensitivity to modeling choices." Thesis, 2020. https://doi.org/10.7916/d8-dc4c-z009.
Full textMeyers, Andrea. "Association of the Exposure to Residential Levels of NO2 and Asthma among New York City Head Start Children." Thesis, 2015. https://doi.org/10.7916/D8X06HQ9.
Full textBooks on the topic "Personnal exposure to atmospheric air pollution"
United States. Environmental Protection Agency. Risk and Benefits Group. Welfare risk and exposure assessment for ozone: Second external review draft. Research Triangle Park, North Carolina: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Risk and Benefits Group, 2014.
Find full textUnited States. Environmental Protection Agency. Risk and Benefits Group. Welfare risk and exposure assessment for ozone: Second external review draft, executive summary. Research Triangle Park, North Carolina: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Risk and Benefits Group, 2014.
Find full textAustralia. National Occupational Health and Safety Commission. Exposure standards for atmospheric contaminants in the occupational environment. 3rd ed. Canberra: Australian Govt. Pub. Service, 1995.
Find full textUnited States. Environmental Protection Agency. Risk and Benefits Group. Health risk and exposure assessment for ozone: Second external review draft. Research Triangle Park, North Carolina: U.S. Environmental Protection Agency, Office of Air And Radiation, Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Risk and Benefits Group, 2014.
Find full textUnited States. Environmental Protection Agency. Office of Health and Environmental Assessment. Exposure Assessment Group, ed. Selection criteria for mathematical models used in exposure assessments: Atmospheric dispersion models. Washington, DC: Exposure Assessment Group, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency, 1993.
Find full textMohnen, Volker A. An assessment of atmospheric exposure and deposition to high elevation forests in the eastern United States. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, 1990.
Find full textMohnen, Volker A. An assessment of atmospheric exposure and deposition to high elevation forests in the eastern United States. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, 1990.
Find full textWorld Health Organization. Regional Office for Europe, ed. Health risks of ozone from long-range transboundary air pollution. Copenhagen: World Health Organization, Regional Office for Europe, 2008.
Find full textInaba, Jirō. Indoor radon exposure and its [i.e. it's] health consequences: Quest for the true story of environmental radon and lung cancer. Tokyo: Kodansha Scientific, 1999.
Find full textUnited States. Environmental Protection Agency. Emissions, Monitoring, and Analysis Division., ed. User's guide for the Assessment System for Population Exposure Nationwide (ASPEN, Version 1.1) model. Research Triangle Park, N.C: U.S. Environmental Protection Agency, Office of Air Quality Planning [and Standards], Emissions, Monitoring and Analysis Division, 2000.
Find full textBook chapters on the topic "Personnal exposure to atmospheric air pollution"
Demerjian, Kenneth L. "Atmospheric Science of Air Pollution Phenomena—Current Directions Toward Exposure Characterization." In Technical Challenges of Multipollutant Air Quality Management, 231–59. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0304-9_7.
Full textSterk, H. A. M., A. N. Swart, J. P. G. van Leuken, J. F. Schijven, A. J. A. Aarnink, I. M. Wouters, I. Janse, R. J. Wichink Kruit, and W. A. J. van Pul. "Airborne Emissions from Livestock Farms and Exposure of Nearby Residents using an Atmospheric Dispersion Model." In Air Pollution Modeling and its Application XXV, 487–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57645-9_77.
Full textChen, Zhao-Yue, Jie-Qi Jin, and Chun-Quan Ou. "Comparison of Different Modeling Strategies for Estimating Long-Term PM2.5 Exposure Using MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in China." In Air Pollution Modeling and its Application XXVIII, 27–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12786-1_4.
Full textWalter, H., R. Martens, H. Thielen, T. Sperling, and K. Maßmeyer. "Concept of a Model System for the Computation of Atmospheric Dispersion Close to Real Situations and the Immediate Assessment of the Radiation Exposure." In Air Pollution Modeling and Its Application XIII, 759–60. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_93.
Full textMiller, Mark R., Anoop S. V. Shah, Nicholas L. Mills, and David E. Newby. "Atmospheric pollution and cardiovascular risk." In ESC CardioMed, 1075–78. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0260.
Full textCroze, Marine L., and Luc Zimmer. "Ozone Atmospheric Pollution and Alzheimer’s Disease: From Epidemiological Facts to Molecular Mechanisms." In Advances in Alzheimer’s Disease. IOS Press, 2021. http://dx.doi.org/10.3233/aiad210031.
Full textGalán Madruga, David. "Importance of Air Quality Networks in Controlling Exposure to Air Pollution." In Environmental Emissions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.92335.
Full textIkram Bin A Wahab, Muhammad. "Health Impacts of Air Pollution." In Environmental Sustainability - Preparing for Tomorrow. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98833.
Full textLelieveld, Jos. "Air Pollution and Climate." In The Physical Geography of the Mediterranean. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780199268030.003.0038.
Full textRuss, Tom C., Mark P. C. Cherrie, Chris Dibben, Sam Tomlinson, Stefan Reis, Ulrike Dragosits, Massimo Vieno, et al. "Life Course Air Pollution Exposure and Cognitive Decline: Modelled Historical Air Pollution Data and the Lothian Birth Cohort 1936." In Advances in Alzheimer’s Disease. IOS Press, 2021. http://dx.doi.org/10.3233/aiad210024.
Full text