Academic literature on the topic 'Personalized medicin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Personalized medicin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Personalized medicin"
Pereginya, O. V. ,. "TRANSLATION MEDICINE, BIOMEDICINE AND MEDICAL BIOTECHNOLOGY: THE TRANSITION TO PERSONALIZED MEDICINE." Biotechnologia Acta 13, no. 2 (April 2020): 5–11. http://dx.doi.org/10.15407/biotech13.02.005.
Full textTeixeira, Túlio Weslley Dantas, Maria Carolina Wanderley, and Roberta Luciana do Nascimento Godone. "Medicina personalizada no tratamento do câncer/Personalized medicine in cancer treatment." Brazilian Journal of Health Review 3, no. 6 (2020): 18789–93. http://dx.doi.org/10.34119/bjhrv3n6-266.
Full textTeixeira, Túlio Weslley Dantas, Maria Carolina Wanderley, and Roberta Luciana do Nascimento Godone. "Medicina personalizada no tratamento do câncer/Personalized medicine in cancer treatment." Brazilian Journal of Health Review 3, no. 6 (2020): 18789–93. http://dx.doi.org/10.34119/bjhrv3n6-266.
Full textKutty, Dr AVM. "Personalized Medicine : An Overview." JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 08, no. 2 (June 15, 2018): 36–38. http://dx.doi.org/10.58739/jcbs/v08i2.7.
Full textAwwalu, Jamilu, Ali Garba Garba, Anahita Ghazvini, and Rose Atuah. "Artificial Intelligence in Personalized Medicine Application of AI Algorithms in Solving Personalized Medicine Problems." International Journal of Computer Theory and Engineering 7, no. 6 (December 2015): 439–43. http://dx.doi.org/10.7763/ijcte.2015.v7.999.
Full textP, Ajmal Rasi K., and Puneeth Vishnukeerthy K. "Personalized Medicine Revolution Medicine based on Genomics Makeup." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 433–39. http://dx.doi.org/10.31142/ijtsrd12982.
Full textSinghal, Dr Udita. "Personalized Medicine: Evolving paradigm in Pathology." Recent Advances in Pathology & Laboratory Medicine 3, no. 2 (August 21, 2017): 17–22. http://dx.doi.org/10.24321/2454.8642.201703.
Full textMovafagh, Abolfazl. "Personalised Medicine in Modern Era." Asian Pacific Journal of Cancer Biology 1, no. 2 (June 25, 2016): 31–32. http://dx.doi.org/10.31557/apjcb.2016.1.2.31-32.
Full textSuhonen, Riitta, Minna Stolt, and David Edvardsson. "Personalized Nursing and Health Care: Advancing Positive Patient Outcomes in Complex and Multilevel Care Environments." Journal of Personalized Medicine 12, no. 11 (November 1, 2022): 1801. http://dx.doi.org/10.3390/jpm12111801.
Full textNardini, Christine, Venet Osmani, Paola G. Cormio, Andrea Frosini, Mauro Turrini, Christos Lionis, Thomas Neumuth, Wolfgang Ballensiefen, Elio Borgonovi, and Gianni D’Errico. "The evolution of personalized healthcare and the pivotal role of European regions in its implementation." Personalized Medicine 18, no. 3 (May 2021): 283–94. http://dx.doi.org/10.2217/pme-2020-0115.
Full textDissertations / Theses on the topic "Personalized medicin"
BHARAT, ROHIT. "Targeting cancer cell metabolism: Gateway towards personalized medicine." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241161.
Full textIn the recent decade, one of the important keynote message derived through the summation of our global efforts against cancer is the need to better understand cancer cell metabolism for the development of better and efficacious personalized therapy. Cancer cells undertake a multifaceted rewiring of metabolic pathways in order to support their proliferative and invasive nature, which requires a systems level investigation to fully comprehend the scale of metabolic deregulation. In this study, we systematically investigated the metabolic differences using untargeted metabolomics and 13C flux omics approach in oncogenic K-Ras driven tumours. We tested the effects of drug inhibitors targeting glucose and glutamine metabolism to unravel the alternative metabolic pathways required for cancer cell survival. We further expanded our research towards understanding the role of cellular metabolism in driving resistance to endocrine therapeutic drugs in ERα positive breast cancer. We identified specific metabolic mechanisms of utilization of glutamine in resistant cells while also providing further basis for the use of metformin as an adjuvant in the treatment of endocrine therapyresistant cancers. Finally, we contributed to current understanding about cancer cell metabolism by exploring the role of glutamine beyond its role as a carbon and nitrogen source in driving growth and proliferation of cancer cells. Upon substitution of glutamine with appropriateiv nitrogen and carbon sources, cancer cells exhibited reverse Warburg phenotype. The findings from this thesis open up new avenues of research through the identification of new putative targets and bring us one step closer towards designing much better and efficacious therapeutic strategy for the treatment of cancer patients.
Götze, Sarah, Daniella Ekström, Forssén Tore Larsson, Eric Sjöö, Frisinger Emma Svanberg, and Linnea Wikström. "Personalized Medicine." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444200.
Full textMarín, Falco Matías. "Estudio de la heterogeneidad regulatoria en cáncer y sus implicaciones en la medicina personalizada." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165413.
Full text[CA] El càncer és la segona causa de mort al món i es caracteritza principalment per la proliferació descontrolada de les cèl·lules que formen el tumor. Encara que el desenvolupament d'un tumor és possible a causa de certs processos comuns desencadenats per la desregulació de l'equilibri existent entre els components moleculars d'una cèl·lula i els seus elements de control, hi ha una gran heterogeneïtat en els mecanismes a través dels quals s'aconseguix aquesta desregulació. Gràcies a el desenvolupament de noves tecnologies de seqüenciació ha sigut possible observar com aquesta heterogeneïtat no només s'observa entre els diferents tipus de tumors sinó entre les pròpies cèl·lules d'un mateix tumor. La caracterització de l'heterogeneïtat tumoral ha tingut un gran impacte en la comprensió de la malaltia i el desenvolupament de noves teràpies dirigides. Per aquest motiu, per tal de millorar la caracterització d'alteracions en els diferents mecanismes reguladors, en aquesta tesi s'han desenvolupat dues metodologies amb gran potencial per a la seua aplicació en la medicina personalitzada i que permeten estudiar l'heterogeneïtat inter i intratumoral dels estats de activació d'elements reguladors. En primer lloc es va desenvolupar una metodologia que permet determinar en una mostra l'estat d'activació dels factors de transcripció (FTs) a partir de l'expressió dels gens als que regula. Es va aplicar la metodologia per a realitzar una anàlisi de pan-cancer en el qual es va caracteritzar per primera vegada l'escenari regulatori de 52 FTs a 11 tipus de càncer diferents. A més, al poder obtenir valors d'activació individuals per a cada mostra, va ser possible observar correlacions entre l'activació d'alguns FTs amb la supervivència, suggerint així el seu ús com a marcadors pronòstics. En segon lloc, es va desenvolupar una altra metodologia en la qual s'empra un model mecanístic per determinar l'estat d'activació d'al voltant de 1000 circuits de senyalització a partir d'experiments transcriptòmics de cèl·lules úniques (scRNAseq). L'ús d'aquest model mecanístic en dades de scRNAseq de 4 pacients de glioblastoma, a més de mostrar l'heterogeneïtat intratumoral present en les mostres, ha permès realitzar intervencions in silico per simular l'efecte de diferents drogues sobre les cèl·lules. D'aquesta manera, ha estat possible descriure possibles mecanismes mitjançant els quals un grup de cèl·lules poden evitar l'efecte d'una teràpia dirigida. Les metodologies desenvolupades en aquesta tesi, així com els resultats obtinguts després de la seva aplicació suposa una valuosa font d'informació per al desenvolupament de marcadors de diagnòstic, pronòstic i resposta que ajudin a entendre millor els diferents nivells d'heterogeneïtat presents en càncer, i així, poder augmentar l'eficàcia de les teràpies dirigides.
[EN] Cancer is the second leading cause of death in the world and is characterized mainly by the uncontrolled proliferation of the cells that make up the tumor. Although the development of a tumor is possible due to certain common processes triggered by the dysregulation of the existing balance between the molecular components of a cell and its control elements, there is great heterogeneity in the mechanisms through which this dysregulation is achieved. Thanks to the development of new sequencing technologies, it has been possible to observe how this heterogeneity is not only observed between the different types of tumors but also between the cells of the same tumor. The characterization of tumor heterogeneity has had a great impact on the understanding of the disease and the development of new targeted therapies. For this reason, in order to improve the characterization of alterations in the different regulatory mechanisms, in this thesis two methodologies have been developed that allow studying the inter- and intratumoral heterogeneity of the activation states of regulatory elements and with great potential for their application in personalized medicine. In the first place, a methodology that allows determining in a sample the activation state of the transcription factors (FTs) from the expression of the genes that it regulates was developed. The methodology was applied to perform a pan-cancer analysis in which the regulatory scenario of 52 FTs was characterized for the first time in 11 different types of cancer. Furthermore, by being able to obtain individual activation values for each sample, it was possible to observe correlations between the activation of some FTs with survival, thus suggesting their use as prognostic markers. Second, another methodology was developed using a mechanistic model to determine the activation state of around 1000 signaling circuits in single cell transcriptomic experiments (scRNAseq). The use of this mechanistic model in scRNAseq data from 4 glioblastoma patients, in addition to showing the intratumoral heterogeneity present in the samples, has allowed in silico interventions to simulate the effect of different drugs on cells. In this way, it has been possible to describe possible mechanisms by which a group of cells can avoid the effect of a targeted therapy. The methodologies developed in this thesis, as well as the results obtained after its application, is a valuable source of information for the development of diagnostic, prognostic and response markers that help to better understand the different levels of heterogeneity present in cancer, and thus, be able increase the effectiveness of targeted therapies.
Marín Falco, M. (2021). Estudio de la heterogeneidad regulatoria en cáncer y sus implicaciones en la medicina personalizada [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165413
TESIS
Frunza, Oana Magdalena. "Personalized Medicine through Automatic Extraction of Information from Medical Texts." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22724.
Full textTrincado, Alonso Juan Luis 1987. "Characterization of clinically relevant RNA alterations for personalized cancer medicine." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/665991.
Full textLa presente tesis intenta arrojar luz sobre la pregunta de si las alteraciones del ARN son informativas para el tratamiento clínico de pacientes con cancer. Para ello, este trabajo se centra en resolver dos cuestiones principales: el desarrollo de metodos computaciones para el estudio de perfiles de ARN en multiples tumores y la identificación de marcadores que puedan ser predictivos de prognosis y terapia. La tesis está dividida en tres capítulos: Primero, el desarollo de un nuevo método para la cuantificación rápida de splicing diferencial: SUPPA2. Segundo, una nueva metodologia para dilucidar el potencial prognóstico de tránscritos alternativos en tumores humanos. Y tercero, un nuevo método para la detección de junctions aberrantes tumorales y su evaluacion antigénica
Bachur, Catherine. "Integrating social context into personalized medicine." Master's thesis, Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/549613.
Full textM.A.
Personalized medicine is the idea that every patient can be treated in a unique manner, tailored specifically to his or her individual needs. Traditionally the field of personalized medicine has focused on using genetic information to determine medical treatment. However, humans are not only the sum of their genetic parts. All people exist within the context of their environment, their experiences, and their relationships. While the connection between this greater context and medical treatment may not be immediately obvious, it exists. If we are to truly tailor medical care, it must occur in a holistic manner, combining both genetics and social context. A thorough understanding of the way that they interact, as well as the individual limitations of both, is the best way to offer individualized care to all patients.
Temple University--Theses
Papke, Todd Alan. "Personalized audio warning alerts in medicine." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1378.
Full textAhmed, Abdul-Kareem H. "SIGN HERE : informed consent in personalized medicine." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83832.
Full textVita. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 27-30).
The next era of medicine will be one of personalization, scientists and physicians promise. Personalized medicine is a refined clinical approach in which clinicians will utilize your genomic information to help you prevent disease, and tailor targeted therapies for you when you fall ill. This is the future science has slowly been approaching. However, the human genome is not enough, not unless we can decipher its language. One ambitious study to this effect is the Personal Genome Project, led by Dr. George Church at Harvard Medical School. This project will eventually recruit 100,000 volunteers to donate their genomes and a full body of information concerning their biological health. With this data, Church hopes others can cross-analyze these profiles and better determine the role in disease of each gene of the human genome. However, the Personal Genome Project is as much a study in the ethical, legal and social aspects of genomic studies as it is an effort toward personalized medicine. Church envisions a future where privacy cannot be guaranteed. Society is becoming more open and technology is more invasive than ever. Considering this, Church has informed his participants that their information will likely not remain anonymous. With their fully informed consent, he has in turn made all this data public, to promote open science. This ethical approach raises several important questions about expansive genomic studies. The scientific community will have to decide on an approach that will eventually deliver personalized medicine. On one end of the spectrum, there is Church's open approach, and the other, more security, more firewalls and more legislation. In order for personalized medicine to become a reality, society will have to prepare itself for our ever-changing ethical, technological and scientific landscape.
by Abdul-Kareem H. Ahmed.
S.M.in Science Writing
Ceccato, Filippo. "Personalized medical treatment for pituitary adenoma." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3421850.
Full textIntroduzione e scopo: Gli adenomi ipofisari sono neoplasie frequenti, con una prevalenza di un caso ogni 1000 soggetti. I pazienti con adenoma ipofisario possono presentare segni e sintomi in correlazione alla secrezione autonoma (o deficitaria) di ormoni ipofisari, oppure possono presentarsi come “effetto massa” dovuto alla lesione occupante spazio in loggia ipofisaria. Sebbene la chirurgia e la radioterapia siano state molto utilizzate in passato, il controllo a lungo termine non è completo, sia in termini di secrezione che di lesione adenomatosa, esponendo comunque il paziente agli effetti collaterali dell’intervento o dell’irradiazione. Pertanto, la terapia medica è sempre più utilizzata, non solo nelle recidive post-chirurgiche, ma anche quando ulteriori interventi sono inefficaci, o in attesa degli effetti della radioterapia. Gli analoghi della somatostatina (SSA) sono stati per anni la principale terapia degli adenoma GH-secernenti, e al giorno d’oggi vengono utilizzati anche in quelli ACTH-secernenti, dato il loro effetto differenziale sui recettori della somatostatina (SSTR), soprattutto il tipo 2 nei GH-secernenti e il tipo 5 negli ACTH-secernenti. Purtroppo, fino al 50% dei pazienti non risponde in maniera soddisfacente alle terapie mediche, pertanto una maggior conoscenza della biologia cellulare ipofisaria è necessaria, per capire quale sia la strategia migliore per il paziente. Inoltre, in alcuni casi gli adenomi non sono sempre benigni (circa il 15-20% delle principali serie descritte in letteratura), caratterizzandosi per la resistenza alle terapie convenzionali, l’invasione dei tessuti locali o la rapida crescita. In tali casi, il termine Tumore Neuroendocrino Ipofisario (PitNET) viene recentemente proposto in letteratura. Lo scopo di questa tesi di dottorato è di studiare gli effetti delle terapie mediche in pazienti con PitNET; per sviluppare nuove strategie terapeutiche, per capire l’efficacia dei farmaci disponibili e per testare la loro combinazione. Materiali e metodi: I pazienti che sono seguiti presso l’ambulatorio ipofisi dell’Unità Operativa di Endocrinologia dell’Azienda Ospedaliero-Universitaria di Padova (120 con PitNET GH-secernenti, 134 ACTH-secernenti, 171 PRL-secernenti, 6 TSH- secernenti e 150 PitNET non funzionanti) sono stati seguiti in uno studio retrospettivo e prospettico. I dati clinici, bioumorali, di terapia, radiologici e patologici sono stati raccolti e analizzati. Tra le varie terapie mediche, maggior risalto è stato dato all’everolimus e alla temozolomide (TMZ) nei PitNET aggressivi e al metirapone (MET) in pazienti con Sindrome di Cushing. In casi selezionati sono state allestite linee cellulari derivanti dall’adenoma del pazienti (primarie). Risultati: in termini di terapia medica abbiamo analizzato 1. In un paziente con sclerosi tuberosa e PitNET silente abbiamo testato l’efficacia dell’everolimus in colture primarie, osservando una generale riduzione della vitalità cellulare. Abbiamo poi riscontrato una nuova variante del gene TSC2, gli studi in silico predicono la ritenzione di un introne con perdita di un sito di splicing, che andrà confermato in ulteriori studi funzionali. 2. Considerando la terapia con TMZ in PitNET aggressivi abbiamo raccolto i dati di 31 pazienti provenienti da uno studio multicentrico italiano. 11 casi hanno presentato una riduzione del PitNET, con una mediana di terapia di 18 mesi. Il 90% e il 60% dei pazienti erano liberi da malattia a 2 e 4 anni dalla terapia con TMZ. Abbiamo poi trattato un paziente con TMZ e cabergolina, ottenendo ottimi risultati. 3. 31 pazienti con Sindrome di Cushing sono stati trattati per 9 mesi con 1000 mg di MET. I parametri ormonali (cortisoluria e cortisolo salivare notturno) si sono ridotti rapidamente già dopo un solo mese di terapia, normalizzando la secrezione di cortisolo fino a 12 e 24 mesi. I pazienti con ipercorticismo severo (>5 volte i valori normali al baseline) hanno raggiunto il controllo biochimico di malattia più lentamente, tuttavia il 70% dei pazienti normalizzava la cortisoluria all’ultima visita, con una riduzione media di peso di 4kg. In generale il MET era ben tollerato, senza importanti effetti collaterali. 4. Nei pazienti con acromegalia, lo sviluppo di insufficienza surrenalica centrale (CAI) non è trascurabile nel follow-up. Mentre la terapia medica non aumenta il rischio di CAI, il 18% dei pazienti (10/57) svilippa iposurrenalismo dopo la chirurgia, mentre il 53% (9/17) lo sviluppa dopo la radioterapia. Analizzando in vitro gli aspetti che potrebbero predire la efficacia della terapia con SSA nei pazienti con acromegalia, abbiamo studiato i pathway molecolari di AIP-AHR e del GIPR. L’asse AIP-AHR, coinvolto nella detossificazione di varie molecole interferenti endocrine e inquinanti chimici, si trova maggiormente mutato in pazienti acromegalici con malattia più severa e con minor risposta agli SSA, soprattutto se vivono in zone molto inquinate. Abbiamo inoltre scoperto un ruolo promuovente del recettore dell’IGF-1 nel recettore del GIP, coinvolto nella tumorogenesi ipofisaria e quindi nuovo aspetto da studiare nei PitNET GH-secernenti. Conclusioni: Comprendere a fondo la fisiopatologia dei PitNET è l’inizio della personalizzazione della terapia medica, sempre più usata oggigiorno. Nella pratica clinica quotidiana, pertanto, un team multidisciplinare è fondamentale per proporre al paziente il corretto piano terapeutico, personalizzato secondo le proprie caratteristiche biologiche.
Ayati, Marzieh. "Algorithms to Integrate Omics Data for Personalized Medicine." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1527679638507616.
Full textBooks on the topic "Personalized medicin"
Bodiroga-Vukobrat, Nada, Daniel Rukavina, Krešimir Pavelić, and Gerald G. Sander, eds. Personalized Medicine. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39349-0.
Full textEl-Khamisy, Sherif, ed. Personalised Medicine. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60733-7.
Full textJain, Kewal K. Textbook of Personalized Medicine. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2553-7.
Full textJain, Kewal K. Textbook of Personalized Medicine. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62080-6.
Full textJain, Kewal K. Textbook of Personalized Medicine. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0769-1.
Full textFreitas, Ana T., and Arcadi Navarro, eds. Bioinformatics for Personalized Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28062-7.
Full textCohen, Nadine, ed. Pharmacogenomics and Personalized Medicine. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-439-1.
Full textKichko, Katharina. Personalized Medicine as Innovation. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-27843-4.
Full textBarh, Debmalya, Dipali Dhawan, and Nirmal Kumar Ganguly, eds. Omics for Personalized Medicine. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1184-6.
Full textservice), ScienceDirect (Online, ed. Genomic and personalized medicine. Amsterdam: Elsevier/Academic Press, 2009.
Find full textBook chapters on the topic "Personalized medicin"
Snenghi, Rossella, and Alessandro Amagliani. "Medicines and Driving Personalized Medicine and Medical Liability." In P5 Medicine and Justice, 486–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67092-8_32.
Full textPavelić, Krešimir, Sandra Kraljević Pavelić, and Mirela Sedić. "Personalized Medicine: The Path to New Medicine." In Personalized Medicine, 1–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39349-0_1.
Full textAyer, Turgay, and Qiushi Chen. "Personalized Medicine." In Handbook of Healthcare Analytics, 109–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119300977.ch6.
Full textOrtega, Victor E. "Personalized Medicine." In Respiratory Medicine, 149–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43447-6_13.
Full textBartnik, Ewa. "Personalized Medicine." In Encyclopedia of Global Bioethics, 2214–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-09483-0_334.
Full textPeissig, Peggy, Anne Nikolai, Ingrid Glurich, and Murray Brilliant. "Personalized Medicine." In Drug Discovery and Evaluation: Pharmacological Assays, 4235–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-05392-9_117.
Full textBartnik, Ewa. "Personalized Medicine." In Encyclopedia of Global Bioethics, 1–5. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_334-1.
Full textGoodsaid, Federico, Felix Frueh, and Michael E. Burczynski. "Personalized Medicine." In Drug Discovery and Evaluation: Methods in Clinical Pharmacology, 1–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56637-5_47-1.
Full textFoster, Simmie L., Samuel R. Petrie, David Mischoulon, and Maurizio Fava. "Personalized Medicine." In The Massachusetts General Hospital Guide to Depression, 109–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97241-1_8.
Full textGoodsaid, Federico, Felix Frueh, and Michael E. Burczynski. "Personalized Medicine." In Drug Discovery and Evaluation: Methods in Clinical Pharmacology, 425–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-68864-0_47.
Full textConference papers on the topic "Personalized medicin"
Tarabrin, R. E., and E. S. Pyatigorec. "BIOETHICAL ISSUES OF VACCINOMICS." In I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-130.
Full textGribova, Valeriya, Dmitriy Okun', and Roman Kovalev. "PRINCIPLES AND ARCHITECTURE OF THE SPECIALIZED SHELL FOR BUILDING INTELLIGENT SYSTEMS FOR TREATMENT PRESCRIBE." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9bd6c696.88986403.
Full textБородин, Евгений, and Evgeniy Borodin. "PERSONALIZED MEDICINE." In XII International Scientific Conference (correspondence, electronic) "System analysis in medicine" (SAM 2018). Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2018. http://dx.doi.org/10.12737/conferencearticle_5bdaace39176e3.14425520.
Full textKim, Jonghyeok, Hosung Kwon, Jonghyeon Kim, Jinsoo Park, Soong-Un Choi, and Sookyung Kim. "PillGood: Automated and Interactive Pill Dispenser Using Facial Recognition for Safe and Personalized Medication." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/854.
Full textMorozova, T. V., and L. V. Pokhodzey. "PROMISING DIRECTIONS OF SCIENTIFIC AND PEDAGOGICAL WORK OF THE DEPARTMENT OF OCCUPATIONAL MEDICINE, AVIATION, SPACE AND DIVING MEDICINE." In The 16th «OCCUPATION and HEALTH» Russian National Congress with International Participation (OHRNC-2021). FSBSI “IRIOH”, 2021. http://dx.doi.org/10.31089/978-5-6042929-2-1-2021-1-355-358.
Full textChen, Huiyuan, and Jing Li. "Learning Data-Driven Drug-Target-Disease Interaction via Neural Tensor Network." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/477.
Full textAyday, Erman, Jean Louis Raisaro, Jean-Pierre Hubaux, and Jacques Rougemont. "Protecting and evaluating genomic privacy in medical tests and personalized medicine." In CCS'13: 2013 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2517840.2517843.
Full textKuhlmann, Joel, and Tom Halvorsen. "Precision Medicine: Integrating Medical Images, Design Tools and 3D Printing to Create Personalized Medical Solutions." In 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2018. http://dx.doi.org/10.1109/memea.2018.8438798.
Full textYeung, Ka Yee. "Signature discovery for personalized medicine." In 2013 IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE, 2013. http://dx.doi.org/10.1109/isi.2013.6578854.
Full textDe Micheli, Giovanni, Cristina Boero, Camilla Baj-Rossi, Irene Taurino, and Sandro Carrara. "Integrated biosensors for personalized medicine." In the 49th Annual Design Automation Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2228360.2228363.
Full textReports on the topic "Personalized medicin"
Howard, David, Jason Hockenberry, and Guy David. Personalized Medicine When Physicians Induce Demand. Cambridge, MA: National Bureau of Economic Research, November 2017. http://dx.doi.org/10.3386/w24054.
Full textEgan, Mark, and Tomas Philipson. Health Care Adherence and Personalized Medicine. Cambridge, MA: National Bureau of Economic Research, July 2014. http://dx.doi.org/10.3386/w20330.
Full textPasinetti, Giulio M. Personalized Medicine in Veterans with Traumatic Brain Injuries. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada505340.
Full textPasinetti, Giulio M. Personalized Medicine in Veterans with Traumatic Brain Injuries. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada573371.
Full textPasinetti, Giulio M. Personalized Medicine in Veterans with Traumatic Brain Injuries. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada584500.
Full textPasinetti, Giulio M. Personalized Medicine in Veterans with Traumatic Brain Injuries. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada555685.
Full textManski, Charles. Credible Ecological Inference for Personalized Medicine: Formalizing Clinical Judgment. Cambridge, MA: National Bureau of Economic Research, September 2016. http://dx.doi.org/10.3386/w22643.
Full textManski, Charles. Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine. Cambridge, MA: National Bureau of Economic Research, October 2021. http://dx.doi.org/10.3386/w29358.
Full textHult, Kristopher. Measuring the Potential Health Impact of Personalized Medicine: Evidence from MS Treatments. Cambridge, MA: National Bureau of Economic Research, October 2017. http://dx.doi.org/10.3386/w23900.
Full textEnstrom, K. G., E. Lee, and C. Ye. Requirements Document for the Design and Implementation of a Personalized Medicine Machine (PMM) Based on Microencapsulation. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557040.
Full text