Dissertations / Theses on the topic 'Perovskites form'

To see the other types of publications on this topic, follow the link: Perovskites form.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Perovskites form.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lee, Heejae. "Analysis of Current-Voltage Hysteresis and Ageing Characteristics for CH3NH3PbI3-xClxBased Perovskite Thin Film Solar Cells." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX009/document.

Full text
Abstract:
Les perovskites organiques-inorganiques en halogénures de plomb sont des matériaux très prometteurs pour la prochaine génération de cellules solaires avec des avantages intrinsèques tels que leur faible coût de fabrication (grande disponibilité des matériaux de base et leur mise en œuvre à basse température) et leur bon rendement de conversion photovoltaïque. Cependant, les cellules solaires pérovskites sont encore instables et montrent des effets d'hystérésis courant-tension délétères. Dans cette thèse, des résultats de l’analyse physique de couches minces de pérovskite à base de CH3NH3PbI3-xClx et de cellules solaires ont été présentés. Les caractéristiques de transport électrique et les processus de vieillissement ont été étudiés avec différentes approches.Dans une première étape, la synthèse du matériau pérovskite a été optimisée en contrôlant les conditions de dépôt des films en une seule étape telles que la vitesse de rotation (6000 rpm) de la tournette et la température de recuit des films (80 °C). Dans un second temps, des cellules solaires perovskites à base de CH3NH3PbI3-xClx ont été fabriquées en utilisant la structure planaire inversée et caractérisées optiquement et électriquement.Grace à l’utilisation de la spectroscopie optique à décharge luminescente (GDOES), un déplacement des ions halogénures a été observé expérimentalement et de façon directe sous l’application d’une tension électrique. Une longueur de diffusion ionique de 140 nm et un rapport de 65% d'ions mobiles ont été déduits. Il est montré que l'hystérésis courant-tension dans l'obscurité est fortement affectée par la migration des ions halogénures provoquant un écrantage substantiel du champ électrique appliqué. Nous avons donc trouvé sous obscurité un décalage de la tension à courant nul jusque 0,25 V et un courant de fuite jusque 0,1 mA / cm2 en fonction des conditions de mesure. Grâce aux courbes courant-tension en fonction de la température, nous avons déterminé la température de transition de la conductivité ions/électrons à 260K et analysé les résultats expérimentaux en utilisant l'équation de Nernst- Einstein donnant une énergie d'activation de 0.253 eV pour les ions mobiles.Enfin, le processus de vieillissement de la cellule solaire a été étudié avec des mesures optiques et électriques. Nous avons déduit que le processus de vieillissement apparaît d'abord à la surface des cristaux de pérovskite ainsi qu’aux joints de grains. Les mesures GDOES nous indiquent que les caractéristiques électriques des cellules pérovskites sont perdues par une corrosion progressive de l'électrode supérieure en argent causée par la diffusion des ions iodures
Organic-inorganic lead halide perovskites are very promising materials for the next generation of solar cells with intrinsic advantages such as a low-cost material due to the availability of source materials and low-temperature solution processing as well as a high power conversion efficiency of the sunlight. However, perovskite solar cells are still unstable and show deleterious current-voltage hysteresis effects. Inthis thesis, analyses of CH3NH3PbI3-xClx based perovskite thin films and solar cells are presented. The electrical transport characteristics and the ageing processes are investigated using different approaches.The synthesis of the halide perovskite materials is optimized in a first step by controlling the deposition conditions such as annealing temperature (80°C) and spinning rate (6000 rpm) in the one step-spin-casted process. CH3NH3PbI3-xClx based perovskite solar cells are then fabricated in the inverted planar structure and characterized optically and electrically in a second step.Direct experimental evidence of the motion of the halide ions under an applied voltage has been observed using glow discharge optical emission spectroscopy (GDOES). Ionic diffusion length of 140 nm and ratio of mobile iodide ions of 65 % have been deduced. It is shown that the current-voltage hysteresis in the dark is strongly affected by the halide migration which causes a substantial screening of the applied electric field. Thus we have found a shift of voltage at zero current (< 0.25 V) and a leakage current (< 0.1 mA/cm2) in the dark versus measurement condition. Through the current-voltage curves as a function of temperature we have identified the freezing temperature of the mobile iodides at 260K. Using the Nernst-Einstein equation we have deduced a value of 0.253 eV for the activation energy of the mobile ions.Finally, the ageing process of the solar cell has been investigated with optical and electrical measurements. We deduced that the ageing process appear at first at the perovskite grain surface and boundaries. The electrical characteristics are degraded through a deterioration of the silver top-electrode due to the diffusion of iodides toward the silver as shown by GDOES analysis
APA, Harvard, Vancouver, ISO, and other styles
2

Bouich, Amal. "Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/160621.

Full text
Abstract:
[ES] El objetivo principal de esta tesis es contribuir al avance de nuevas técnicas de elaboración con bajo coste, utilizando materiales tipo de cobre, indio, galio y selenio CIGS y Perovskita para aplicaciones en energía solar fotovoltaica. CIGS parecen ser adecuadas ya que son de bajo costo de producción y se han reportado eficiencias de conversión del 23,35%. Por otro lado, las perovskitas híbridas de haluros de plomo orgánicos-inorgánicos han aparecido como nuevos materiales excepcionales para celdas solares, especialmente porque la eficiencia de las celdas solares basadas en perovskita ha aumentado del 3.8% al 22.7% en menos de un lustro. Este trabajo se ha dedicado a experimentar sobre la elaboración y caracterización de CIGS y los perovskitas de metilamonio de yoduro de plomo de (MAPbI3) y formamidinio de yoduro de plomo (FAPbI3), que se utilizo tanto en la aplicación a las células solares de perovskitas y en las células Tándem CIGS-perovskita. Las películas se caracterizaron por difracción de rayos X, espectroscopía Raman, microscopía electrónica de barrido, análisis de espectroscopía de energía dispersiva, microscopía de fuerza atómica, transmisión electrónica microscopía, fotoluminiscencia y espectroscopia UV-Vis. En las capas de CIGS depositadas por electrodeposición se investigó el efecto de diferentes parámetros, También investigamos en detalle el efecto del contacto posterior en las propiedades estructurales y ópticas de CIGS. Constatamos que el tipo de contacto posterior tiene un efecto significativo en el rendimiento posterior de las películas delgadas CIGS. Además, estudiamos la técnica de espray pirólisis para producir películas CIGS. Se estudió el proceso de recocido, que es el factor clave para mejorar el rendimiento de las células solares. Se elaboraron diferentes películas delgadas constituidas de nuestro dispositivo CdZnS/CdS/CIGS/Mo eso utilizó una capa conductora transparente de CdZnS para minimizar la alineación de la interfaz. Por otro lado, se analizó el proceso de cristalización y la estabilidad de las capas MAPbI3. Las capas de MAPbI3 se trataron añadiendo antisolvente a diferentes velocidades. Durante el tratamiento se producen intercambios complejos que influencian muchas propiedades fisicoquímicas. Se investigaron las propiedades ópticas y eléctricas de las películas de MAPbI3. Para mejorar la estabilidad de MAPbI3, se incorporó tetrabutilamonio (TBA), observando una mejora en la formación de la estructura perovskita que crece en la dirección preferente (110). La fase cristalina de MAPbI3 dopada con TBA presenta mejor cristalinidad, gran tamaño de grano, morfología superficial sin poros lo que es adecuado para la fabricación de dispositivos optoelectrónicas con mayor rendimiento. Además, hemos identificado el impacto de TBA en las propiedades foto físicas de MAPbI3. En las muestras de TBA:MAPbI3 aumenta la intensidad de la fotoluminiscencia al reducir la densidad de los estados de trampa y la absorción óptica muestra un cambio significativo hacia longitudes de onda más largas y la banda prohibida óptica varió de 1.8 a 1.52 eV. Finalmente, las muestras dopadas con 5% TBA mejoraron su estabilidad y se encontró que después de 15 días la estabilidad permanecía excelente en una humedad de ~ 60%. Por otra parte, investigamos el efecto de guanidinio (GA) sobre las propiedades estructurales y ópticas de FAPbI3. La relación entre la fase a de perovskita deseable y la fase indeseable y se ha estudiado en función del contenido de GA. Se comprobó que el dopaje con GA es eficaz en el control de la relación de fases a/y y luego en la estabilización de la fase a. Los resultados muestran que añadiendo una cantidad adecuada del 10% GA conduce a una mejora de película de perovskita que se evidencia en la homogeneidad de la fase a estable, granos de mayor tamaño y capas libres de poros. Además, 10% GA:FaPbI3 demostraron una excelente estabilidad después de ser envejecidas durante 15 días en un ambiente con humedad relativa del 60%.
[EN] The thesis work presented is part of the work in the Laboratory of New Materials for Photovoltaic Energy in the main target to use low cost techniques for elaboration of Perovskite and Copper, indium, gallium, and selenium CIGS materials for photovoltaic application. Organic-inorganic lead halides perovskites have currently and exceptionally appeared as new materials for low cost thin film solar cells specially that the efficiency of perovskite based solar cell have jumped from 3.8% to 22.7% in short time.in other hand, CIGS solar cells record 23.35% efficiency and still can be boosted. Here, we report the elaboration and characterization of CIGS as well as methylammonium lead iodide perovskites MAPbI3 and formamidinuim iodide lead iodide perovskites FAPbI3 absorbers for perovskite-based solar cells and Tandem Perovskites/ CIGS. The thin films prepared were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis, atomic force microscopy (AFM), transmission electron microscopy (TEM), Photoluminescence analysis (PL) and UV-Vis spectroscopy. The first stage was devoted for the effect of different parameters on the growth of CIGS by electrodeposition and we investigate the impact of different back contact in structural and optical proprieties. In a second stage, we report the growth of CIGS films by spray pyrolysis, we studied the effect of experimental parameter also the annealing process which is the key factor for improving the performance of solar cells,subsequently we elaborated different films constituted CdZnS/CdS/CIGS/Mo solar cells, the approach is to change the toxic ZnO by using a transparent, conductive CdZnS layer. In other hand, MAPbI3 film was investigated in order to optimize the chemical composition and to study the crystallization process also to get sight about the stability of perovskite materials to meet the requirement of their application as an active layer in perovskite solar cell. For this purpose. the MAPbI3 film surface was treated by adding diethyl ether antisolvent with different rates. during the treatment complex exchanges are appearing at the same time under the influence of quite a lot of physicochemical properties. A whole understanding of this topic is critically important for improving solar cell performance. MAPbI3 doped by the tetrabutylammonium TBA is boosting the formation of perovskite structure, leading to a higher orientation along the (110) and shows better crystallinity, large grain size, pinhole-free, which is suitable for the manufacturing of the optoelectronic devices with higher performance. Also, we have identified the impact of TBA in the photo-physical properties, we have noticed that the TBA improve the photoluminescence emission by reducing the density of trap states and the optical absorption indicates a significant shift to the lower wavelength and optical bandgap varied from 1.8 to 1.52 eV. Finally, the stability was explored for 5% TBA, it found that after 15 days the stability remained excellent in relative humidity of ~60%. These results would be helpful for realizing stable and high performance MAPbI3-based devices. Furthermore, we inspect the effect of monovalent cation substitution of Guanidinium (GA) on the structural and optical properties of FAPbI3 thin films perovskites. The ratio between the desirable a-phase and the undesirable y yellow phase is studied as a function of GA content. GA doping is shown to be efficient in the control of a/y phases ratio and then in the stabilization of the a-FaPbI3 phase. We qualitatively evaluate the impact of 10% of guanidinium on the phase composition and microstructure of films. The results show that an adequate amount of 10% GA:FaPbI3 leads to a homogeneous perovskite film with stable a phase, large grains, and free pinholes. 10% GA: FaPbI3 films demonstrate excellent stability after aging for 15 days in relative humidity of~60%.
[CA] L'objectiu principal d'aquesta tesi és contribuir a l'avanç de noves tècniques d'elaboració de baix cost, fent servir materials d'aliatges del tipus de coure, indi, gal·li i seleni (CIGS) i perovskites, per a aplicacions en energia solar fotovoltaica. El CIGS sembla ser adequat ja que són de baix cost de producció i s'han reportat eficiències de conversió del 23,35%. D'altra banda, les perovskites híbrides d'halurs de plom orgànics-inorgànics han aparegut com a nous materials excepcionals per cel·les solars, especialment perquè l'eficiència de les cel·les solars basades en perovskites ha augmentat del 3.8% al 22.7% en menys d'un lustre. En el present treball, reportem l'elaboració i caracterització de CIGS y de perovskitas de iodur de plom de metilamoni (MAPbI3) i de iodur de plom de formamidini (FaPbI3) per a les cèl·lules solars de CIGS i tàndem Perovskites/CIGS. En les capes de CIGS dipositades per electrodeposició es va investigar l'efecte dels diferents paràmetres sobre el procés d'electrodeposició, així com l'efecte del contacte posterior sobre les propietats estructurals i òptiques del CIGS. Ens trobem que el tipus de contacte posterior té un efecte significatiu en la posterior interpretació de pel·lícules primes CIGS. A més, vam estudiar la tècnica de polvorització de la piròlisi per produir pel·lícules de CIGS. Es va estudiar el procés de recuit, que és el factor clau per millorar el rendiment de les cèl·lules solars. Es van produir diferents pel·lícules fines formades pel nostre dispositiu CdZnS/CdS/CIGS/Mo que utilitzaven una capa conductiva CdZnS transparent per minimitzar l'alineació de la interfície. D'altra banda, es van investigar perovskites MAPbI3, amb la finalitat d'optimitzar la composició química i estudiar el procés de cristal·lització també per a conèixer l'estabilitat dels materials de perovskita. la cristal·lització s'aconsegueix alentint la solubilitat en una solució saturada mitjançant l'addició d'una quantitat diferent de l'antisolvent d'èter dietílic. Durant el tractament apareixen al mateix temps intercanvis complexos sota la influència de moltes propietats fisicoquímiques. Una comprensió completa d'aquest tema és de vital importància per a millorar el rendiment. Amb l'objectiu principal d'augmentar l'estabilitat de MAPbI3, el tetrabutilamoni (TBA) es pot incorporar a MAPbI3, impulsant la formació de l'estructura de perovskita, la qual cosa porta a una major orientació al llarg de (110). MAPbI3 dopades amb TBA presenten una millora de la cristalinitat, major grandària, la qual cosa és adequada per a la fabricació de dispositius optoelectròniques de major rendiment. A més, hem identificat l'impacte de TBA en les propietats foto físiques de MAPbI3. Hem notat que el dopatge amb TBA millora tant l'emissió de la fotoluminiscència en reduir la densitat dels estats de trampes com l'absorció òptica on apareix un canvi significatiu de la banda òptica prohibida cap a longituds d'ona més llargues que significa disminuir l'energia del gap, que va variar de 1.8 a 1.52 eV. Finalment, es va explorar l'estabilitat per les perovsquites dopades amb 5%TBA. Es va trobar que després de 15 dies l'estabilitat romania excel·lent en un humitat de 60%. A més, hem estudiat FAPbI3 com un dels materials de perovskita més atractius. Hem investigat l'efecte de la substitució de guanidini (GA) sobre les propietats estructurals i òptiques de FAPbI3. La relació entre la fase a de perovskita desitjable i la fase indesitjable y es va estudiar en funció del contingut de GA. Es mostra que el dopatge amb GA és eficaç en el control de la relació de fases a /y i després en l'estabilització de la fase a-FaPbI3. Els resultats mostren que una quantitat adequada de 10% GA condueix a una pel·lícula homogènia amb fase a estable, grans grans lliures de porus i forats. Les pel·lícules de 10% GA:FaPbI3 demostraren una excel·lent estabilitat després de l'envelliment durant 15 dies en un ambient humit (humitat relativa de 60%).
Bouich, A. (2020). Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160621
TESIS
APA, Harvard, Vancouver, ISO, and other styles
3

Ljungström, Elin, Ellen Hådén, Lukas Lekberg, and Nima Taherpour. "Design, synthesis and characterization of Dimethylammonium / Ethylammonium / Cesium Lead Halide Perovskites for optoelectronic applications." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277109.

Full text
Abstract:
The world is facing a climate crisis and to be able to solve it society needs to decrease the use of fossil fuels and find renewable alternatives. Solar energy is a great contender for a renewable energy source since it can be harvested for eternal time. One of the problems with the solar cells available today is that they are more expensive than fossil alternatives, and the process of making them still uses a lot of resources and energy. However, in the last decade an alternative has arisen; perovskite solar cells. Due to the fact that perovskite solar cell production uses less energy and resources than the current silicon solar cell, perovskite solar cells are more cost effective. The main problem with perovskite solar cells is that they are too unstable and do not last very long. One way to stabilize them is to introduce one more cation and make hybrid perovskites. The purpose of this project was to synthesize a perovskite material with the chemical formula AA’PbI3 (A = Cs, A’ = dimethylammonium or ethylammonium) to see if any of the compositions would generate a stable black cubic phase, which is the optimal phase of the perovskite. Mesoporous N-I-P solar cells were created by a layer by layer deposition method. The perovskite layer was added using a spin-coater to deposit the perovskite solution. The films were then characterized using XRD and UV/Vis absorption spectroscopy. Due to the coronavirus pandemic of 2020, the hole transport material and gold electrode were not added to the solar cell. As a consequence of this, not all of the compositions were synthesised which also means that the results are not conclusive. It was observed that all of the films were yellow, which indicates that none of the perovskites achieved a cubic structure. An explanation could be that some parts of the synthesis needs to be done inside a glove box where the environmental variables like humidity could be controlled. The XRDs show that some films had the expected perovskite composition, while some perovskites had decomposed into its starting materials. For hybrid components and pure ethylammonium perovskite film it was harder to confirm our conclusion since no characterization of single crystals was available for these components. However, it was determined that the addition of cesium did make the perovskites more stable.
APA, Harvard, Vancouver, ISO, and other styles
4

McDonald, Calum James. "Alternative perovskites for photovoltaics." Thesis, Ulster University, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.722581.

Full text
Abstract:
This thesis explores new types of perovskite and perovskite-like materials for photovoltaics, with a view towards demonstrating novel and low-cost materials such as metal oxide perovskites for photovoltaics. The first part explores the prototypical organometal halide perovskite CH3NH3Pbl3, where CH3NH3 = methylammonium (MA). MAPbl3 has been studied by the partial replacement of its organic component, MA, with the larger molecule ethylenediammonium (EDA), with the chemical formula NH3(CH2)2NH3. This in turn introduces vacancies into EDA-containing MAPbl3, which has allowed the study of a non-stoichiometric organometal halide perovskite. This work observed that the partial replacement of the MA molecule with a larger molecule reduced the hysteresis. Following this, the low-cost perovskite-like material methylammonium iodo bismuthate has been studied. Methylammonium iodo bismuthate has the chemical formula MA3Bi2lg (MABI), and forms a zero­dimensional network of Bi2lg bioctahedra with quantum confinement. MABI has been characterised and used to fabricate solar cells. This bulk material with an ordered zero-dimensional internal structure exhibits carrier multiplication, and this thesis has demonstrated the fabrication of MABI solar cells. The structure has also been shown to favourably accommodate a small quantity of quantum confined silicon nanocrystals, opening up an avenue of possible hybrid devices which can be explored. Building on this knowledge, this thesis then explores two perovskite oxide materials which have not previously been demonstrated in photovoltaics. Both perovskite oxides exhibit strong and broad visible light absorption which extends into the near-infrared spectrum. One of which, Sr-deficient strontium niobate (Sro.gNb03), exhibits metallic conduction, and has been demonstrated in a photovoltaic cell for the first time. This work demonstrates the possibility of extracting excited carriers in a metal oxide with metallic conduction. The metal oxide perovskite calcium manganite, Ca2Mn2O5, has also been explored for photovoltaics. Ca2Mn2O5 is a plasmonic metal oxide and is therefore highly attractive material for photovoltaics. Solar cells were successfully fabricated using Ca2Mn2O5, and these results demonstrate the possibility of carrier extraction and highlight great opportunities for solar energy harvesting.
APA, Harvard, Vancouver, ISO, and other styles
5

Yao, Disheng. "Interfacial and compositional engineering of perovskite solar cells for enhanced device performance and stability." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202693/1/Disheng_Yao_Thesis.pdf.

Full text
Abstract:
This project was a comprehensive study of interfacial and compositional engineering on perovskite solar cells (PSCs). Significantly enhanced power conversion efficiency and device lifetime of PSC photovoltaic technology were achieved by ion doping based on solution-processed and vapour-assisted treatments. The effects of various amine-contained ligands on enhancing performance of PSC were systematically investigated to reveal controlling defects and interfacial properties in the materials. This work provides several new insights into perovskite solar cells. The research outcomes benefit the development of PSCs based photovoltaic technology.
APA, Harvard, Vancouver, ISO, and other styles
6

Ovalle, Alejandro. "Manganese titanium perovskites as anodes for solid oxide fuel cells." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Papargyriou, Despoina. "Materials and catalysts incorporation for the fuel oxidation layer of oxygen transport membranes." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12113.

Full text
Abstract:
Oxygen Transport Membranes (OTMs) can drastically reduce the energy and cost demands of processes that require pure oxygen, as they offer the possibility to combine a separation unit with a chemical reactor. One of the most commercially viable applications of OTMs is the partial oxidation of hydrocarbons for syngas production. A typical OTM configuration is a sequential arrangement of layers, i.e. an inactive support, a fuel oxidation layer, a dense layer and an oxygen reduction layer. However, one of the limitations of the OTM system is the low catalytic activity and stability of the materials currently used for the fuel oxidation layer. Moreover, the traditional deposition techniques that are used for the catalysts preparation are difficult to perform, as the fuel oxidation layer is buried deeply in the structure of the OTM. To simplify the OTM fabrication and improve the catalysts activity and stability, this thesis explores the exsolution of Ni nanoparticles from two different host lattice compositions, as potential materials for the fuel oxidation layer of OTMs. The (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected, as the first candidate material for the OTMs. During reduction, the exsolution of Ni nanoparticles from the perovskite lattice took place and enhanced significantly the catalytic activity of the material regarding methane conversion. However, these nanoparticles were oxidised during the first hours of the testing and slowly reincorporated into the perovskite structure, leading to drop in the performance. Thereafter, the (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected as an alternative composition. When the oxide lattice was sufficiently reduced, the exsolution of Fe-Ni alloy nanoparticles occurred. The catalytic testing suggested that the Fe-Ni alloy nanoparticles on LSCFNi5 presented lower activity for methane conversion comparing to the Ni nanoparticles on LSCMNi5, but higher stability in oxidising conditions. By increasing the Ni doping on the B-site of LSCF to 15 mol%, the catalytic activity of the material regarding methane conversion was increased and exceeded that of LSCMNi5. A CH₄ conversion of 70% was achieved, which was 20 times higher than that of the initial LSCF perovskite. Therefore, by tailoring the perovskite composition and the exsolution of the Fe-Ni alloy nanoparticles, it was possible to synthesize a material for the fuel oxidation layer of OTMs, which combined the high catalytic activity of Ni and the good redox stability of Fe.
APA, Harvard, Vancouver, ISO, and other styles
8

Kang, Sung Gu. "Dense metal and perovskite membranes for hydrogen and proton conduction." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48944.

Full text
Abstract:
First- principles modeling is used to predict hydrogen permeability through Palladium (Pd)-rich binary alloy membranes as a function of temperature and H2 pressure. We introduce a simplified model that incorporates only a few factors and yields quantitative prediction. This model is used to predict hydrogen permeability in a wide range of binary alloy membranes and to find promising alloys that have high hydrogen permeability. We show how our efficient Density Functional Theory (DFT)-based model predicts the chemical stability and proton conductivity of doped barium zirconate (BaZrO3), barium stannate (BaSnO3), and barium hafnate (BaHfO3). Our data is also used to explore the physical origins of the trends in chemical stability and proton conductivity among different dopants. We also study potassium tantalate (KTaO3), which is a prototype perovskite, to examine the characteristics of undoped perovskites. Specifically, we study the impacts of isotope effects, tunneling effects, and native point defects on proton mobility in KTaO3. It is important to find and develop solid-state Li-ion electrolyte materials that are chemically stable and have high ionic conductivities for high performance Li-ion batteries. We show how we predict the chemical stability of Li7La3Zr2O12, Li7La3Sn2O12, and Li7La3Hf2O12 with respect to carbonate and hydroxide formation reactions.
APA, Harvard, Vancouver, ISO, and other styles
9

Roknuzzaman, Md. "Ab initio atomistic insights into lead-free perovskites for photovoltaics and optoelectronics." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198196/1/Md_Roknuzzaman_Thesis.pdf.

Full text
Abstract:
This project focuses on the development of advanced non-toxic materials for the applications in energy generation and consumption devices like solar cells, light-emitting diodes, lasers and photodetectors. A first-principles density functional theory calculations are conducted to investigate the properties of a number of inorganic, hybrid and double perovskites compounds to predict their potential for applications in photovoltaics and optoelectronics. The achieved outcomes provide a better understanding of the structural, electronic, optical and mechanical properties of a group of potential compounds and provide new scientific knowledge to develop non-toxic high-quality organic-inorganic materials for photovoltaic and optoelectronic applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Peng, Yong. "Hybrid Lead Perovskites as Photocatalysts and Materials for Photo- and Electrocatalytic N2 Reduction." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/171731.

Full text
Abstract:
Tesis por compendio
[ES] La conversión de energía solar a productos químicos se considera una de las estrategias más viables para abordar los problemas derivados del uso masivo de combustibles fósiles y la excesiva emisión antropogénica de CO2. En catálisis asistida con luz, incluida la fotocatálisis y la catálisis fototérmica, el punto clave es el desarrollo de fotocatalizadores eficientes y robustos que puedan utilizar al máximo la energía solar y que sean lo suficientemente estables como para su comercialización. Los materiales basados en perovskitas híbridas orgánicas-inorgánicas han revolucionado el campo de la fotovoltaica en la última década, alcanzando una eficiencia de conversión de luz solar del 23%. Dado que los campos de la fotocatálisis y la fotovoltaica comparten procesos comunes, se abre la posibilidad de aplicación de estos materiales en fotocatálisis. Con el objetivo de confirmar esta posible aplicación de las perovskitas híbridas en fotocatálisis, en esta Tesis Doctoral, se han sintetizado nuevos materiales híbridos de perovskita con el objetivo de mejorar su estabilidad frente a la humedad aprovechando la gran variedad de ligandos orgánicos disponibles, que además pueden ser usados para promover modificaciones superficiales capaces de ajustar las propiedades hidrofílicas / hidrofóbicas. La actividad fotocatalítica de estos nuevos materiales de perovskita se ha estudiado en reacciones modelo para confirmar su estabilidad en las condiciones de reacción. Por otro lado, la reacción de fijación de nitrógeno fotoasistida también ha sido estudiada en detalle en esta Tesis Doctoral. Por un lado, se han sintetizado, caracterizado y testado nuevos complejos organometálicos como foto- y electrocatalizadores homogéneos para esta reacción. Estos han demostrado ser capaces de activar la molécula de dinitrógeno bajo un potencial electroquímico de reducción para formar amoníaco. Por otro lado, se han preparado nanopartículas de rutenio depositadas sobre un material de perovskita a base de titanato como fotocatalizador heterogéneo para la producción de amoniaco en flujo continuo. Además, se ha demostrado que la incorporación de metales alcalinos a este fotocatalizador puede potenciar su actividad fotocatalítica en esta reacción. Así, este material compuesto ha demostrado estar entre los fotocatalizadores más eficientes del estado del arte en la actualidad para esta reacción demostrando además una su elevada estabilidad en las condiciones de reacción.
[CA] La conversió d'energia solar en productes químics es considera una de les estratègies més viables per abordar els problemes derivats de l'ús massiu de combustibles fòssils i l'excessiva emissió antropogènica de CO2. En catàlisi assistida amb llum, inclosa la fotocatàlisi i la catàlisi fototèrmica, el punt clau és el desenvolupament de fotocatalitzadors eficients i robustos que puguen utilitzar al màxim l'energia solar i que siguen prou estables com per a la seva comercialització. Els materials basats en perovskites híbrides orgàniques-inorgàniques han revolucionat el camp de la fotovoltaica en l'última dècada, aconseguint una eficiència de conversió de llum solar del 23%. Atès que els camps de la fotocatàlisi i la fotovoltaica comparteixen processos comuns, s'obre la possibilitat d'aplicació d'aquests materials en fotocatàlisi. Amb l'objectiu de confirmar aquesta possible aplicació de les perovskites híbrides en fotocatàlisi, en aquesta tesi doctoral, s'han sintetitzat nous materials híbrids de perovskita amb l'objectiu de millorar la seva estabilitat enfront de la humitat aprofitant la gran varietat de lligands orgànics disponibles, que amés poden ser usats per a promoure modificacions superficials capaços d'ajustar les propietats hidrofíliques / hidrofòbiques. L'activitat fotocatalítica d'aquests nous materials de perovskita s'ha estudiat en reaccions model per confirmar la seva estabilitat en les condicions de reacció. D'altra banda, la reacció de fixació de nitrogen fotoassistida també ha sigut estudiada en detall en aquesta tesi doctoral. D'una banda, s'han sintetitzat, caracteritzat i testat nous complexos organometàl·lics com foto- i electrocatalitzadors homogenis per a aquesta reacció. Aquests han demostrat ser capaços d'activar la molècula de dinitrogen sota un potencial electroquímic de reducció per formar amoníac. D'altra banda, s'han preparat nanopartícules de ruteni depositades sobre un material de perovskita a força de titanat com fotocatalitzador heterogeni per a la producció d'amoníac en flux continu. A més, s'ha demostrat que la incorporació de metalls alcalins a aquest fotocatalitzador pot potenciar la seva activitat fotocatalítica en aquesta reacció. Així, aquest material compost ha demostrat estar entre els fotocatalitzadors més eficients de l'estat de l'art actualment per a aquesta reacció seva demostrant amés una elevada estabilitat en les condicions de reacció.
[EN] Solar energy to chemicals conversion is regarded to be one of the most plausible strategies addressing the issues of fossil fuel crisis and excessive anthropogenic CO2 emission. For photo-assisted catalysis, including photocatalysis and photothermal catalysis, the key point is the development of efficient and robust photocatalysts that can efficiently utilize the solar energy as well as they are stable enough that meets the requirements for commercialization. Hybrid organic-inorganic perovskites have revolutionized the photovoltaic field in the last decade, reaching a certified sunlight conversion efficiency of 20 %. Since photocatalysis and photovoltaics share common processes, the application of these materials in photocatalysis would be possible. In this Doctoral Thesis, novel hybrid perovskite materials have been synthesized with the aim to improve their stability against moisture by taking advantage large variety of the available organic ligand, which can promote surface modifications capable to adjust the hydrophilic/hydrophobic properties. Additionally, the photocatalytic activity of these novel perovskite materials has been studied in model reactions in order to confirm their stability under reaction conditions. On the other hand, the photo-assisted nitrogen fixation reaction has been also studied in detail in this Doctoral Thesis. on one hand, new organometallic complexes have been synthetized, characterized and tested as homogeneous photo and electrocatalysts for this reaction. They have been demonstrated to be able to activate dinitrogen molecule under electrochemical cathodic potentials to form ammonia. On the other hand, ruthenium nanoparticles deposited on a titanate-based perovskite material have been prepared and tested as heterogeneous photocatalyst for ammonia production in continuous flow. Moreover, it has been demonstrated that the addition of alkali metals to this photocatalyst can boost the photocatalytic activity of this reaction. Thus, this composite material has demonstrated to be among the most efficient photocatalysts in the current state-of-the art for this reaction, as well as very stable under reaction conditions. Considering the large industrial importance of N2 fixation and the mild conditions of pressure and temperature used in the present study, the results of the photo-assisted N2 hydrogenation to ammonia can have a large impact in the area.
Peng, Y. (2021). Hybrid Lead Perovskites as Photocatalysts and Materials for Photo- and Electrocatalytic N2 Reduction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171731
TESIS
Compendio
APA, Harvard, Vancouver, ISO, and other styles
11

Howell, Thomas G. "Perovskites for use as sulfur tolerant anodes." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397467868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Greul, Enrico [Verfasser], and Thomas [Akademischer Betreuer] Bein. "On the way to non-toxic and highly stable perovskite-based optoelectronics : synthesis and investigations of lead-free perovskites for photovoltaic applications / Enrico Greul ; Betreuer: Thomas Bein." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/119109815X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aktaş, Ece. "Low-Molecular Weight Molecules as Selective Contacts for Perovskite Solar Cells." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672777.

Full text
Abstract:
La tecnologia fotovoltaica és una de les fonts d'energia neta i renovable més prometedores per reduir l'impacte ambiental dels combustibles fòssils en les últimes dècades. en aquest context, les perovskites són un material que ha atret recentment una atenció important a causa de la seva capacitat per aconseguir eficiències de conversió molt elevades. Les capes de càrrega selectiva juguen un paper crucial en el ràpid augment del rendiment del dispositiu i en l'estabilitat de les cel·les solars de perovskita. Recentment, l'aplicació de mono-capes auto-assemblades formades per molècules orgàniques que funcionen com a capes selectives de càrrega en cel·les solars de perovskita ha atret una gran atenció a causa d'avantatges com la rendibilitat, l'estabilitat i l'absència d'additius. L'objectiu d'aquesta tesi és el disseny i la síntesi de noves molècules que formen mono-capes auto-assemblades que funcionin com a capes selectives de forats en cel·les solars de perovskita per aconseguir una eficiència de conversió d'alta d'energia i una vida d'envelliment d'alt rendiment feta a mida.
La tecnología fotovoltaica es una de las fuentes de energía limpia y renovable más prometedoras para reducir el impacto ambiental de los combustibles fósiles en las últimas décadas. en este contexto, las *perovskites son un material que ha atraído recientemente una atención importante a causa de su capacidad para conseguir eficiencias de conversión muy elevadas. Las capas de carga selectiva juegan un papel crucial en el rápido aumento del rendimiento del dispositivo y en la estabilidad de las celdas solares de *perovskita. Recientemente, la aplicación de *mono-capes auto-asemejadas formadas por moléculas orgánicas que funcionan como capas selectivas de carga en celdas solares de *perovskita ha atraído una gran atención a causa de ventajas como la rentabilidad, la estabilidad y la ausencia de aditivos. El objetivo de esta tesis es el diseño y la síntesis de nuevas moléculas que forman *mono-capes auto-asemejadas que funcionen como capas selectivas de agujeros en celdas solares de *perovskita para conseguir una eficiencia de conversión de alta de energía y una vida de envejecimiento de alto rendimiento hecha a medida.
Photovoltaic technology is one of the most promising clean and renewable energy sources to reduce the environmental impact of fossil fuels in recent decades. In this context, perovskites are a material that has recently attracted significant attention due to their ability to achieve very high conversion efficiencys. Selective charge layers play a crucial role in rapidly increasing device performance and in the stability of perovskite solar cells. Recently, the application of self-assembly mono-caps made up of organic molecules that function as selective layers of charge in solar perovskite cells has attracted great attention due to advantages such as profitability, stability and the absence of additives. The goal of this thesis is the design and synthesis of new molecules that form self-assembly mono-layers that function as selective layers of holes in solar perovskite cells to achieve high-energy conversion efficiency and a high-performance aging life tailored to size.
APA, Harvard, Vancouver, ISO, and other styles
14

Eperon, Giles E. "Active layer control for high efficiency perovskite solar cells." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1fa78aab-7479-4fe2-8192-e1be1d12c171.

Full text
Abstract:
The work documented in this thesis concerns the control and modification of semiconducting perovskite thin films for their use in perovksite solar cells (PSCs). PSCs are a promising new thin-film technology, offering both high solar to electricity conversion efficiencies and cheap fabrication costs. Herein, the boundaries of perovskite solar cell research are pushed further by tackling several challenges important to the field. Initially, this work focuses on understanding why the best PSCs made so far have been mesostructured devices, with the perovskite infiltrated into a scaffold. It is shown that this can be seen as simply a fabrication aid; without the scaffold, thin films easily dewet from the substrate. By understanding the crucial parameters important in carefully controlling this dewetting, it is minimised, and it is shown that scaffold-free planar heterojunction devices with high efficiencies can be fabricated. This work leads on to the next section; the development of semi-transparent perovskite solar cells. In their present state, PSCs cannot compete with silicon as stand-alone modules. Here, the morphological control has been leveraged to realise a different embodiment – semi-transparent perovskite devices for use in building-integrated photovoltaics. Competitive efficiency and transparency are demonstrated. Moreover, a hybrid self-tinting power-generating window concept is fabricated, by combining the photovoltaic and electrochromic technologies. In the third section of the thesis, the limitations of the most studied perovskite material, methylammonium lead halide, are addressed: its overly wide bandgap and thermal instability. To address these, the chemical constituents of the perovksite are altered, and the development of more efficient and more stable materials are reported. These are likely to be important for perovskite modules to pass international certification requirements for commercialisation. Finally, an in-depth study on the effect of ambient moisture, relevant for considering scale-up and the fabrication environment needed, is carried out. It is shown that the presence of some moisture during film fabrication allows a reduction of defect states in the perovskite material, enhancing device performance and film quality.
APA, Harvard, Vancouver, ISO, and other styles
15

Satapathy, Akshaya Kumar. "Layered perovskites as cathode materials for IT-SOFC." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/11962.

Full text
Abstract:
T* based La₀.₉Ln₀.₉Sr₀.₂CuO₄ (Ln = Sm & Gd) has been investigated as cathode material for intermediate temperature solid oxide fuel cell using Ce₀.₉Gd₀.₁O₁.₉₅ (GDC) and La₀.₉Sr₀.₁Ga₀.₈Mg₀.₂O₃-δ (LSGM-9182) as the electrolyte material. Both oxides crystallize in tetragonal P4/nmm symmetry. The structural and phase stability has been confirmed up to 800 °C by High temperature XRD studies. The coefficient of thermal expansion (CTE) and oxygen content decrease with decreasing size of the Ln³+ ions from Ln = Sm to Gd. While the decrease in CTE is due to the increasing co-valence of the Ln–O bond, the decrease in electrical conductivity at high temperature is due to the increasing oxide ion vacancies and a bending of the O–Cu–O bonds. The highest value of DC conductivity has been observed for the LSSCu, which showed a metal like temperature dependence. LGSCu showed a semiconductor to metallic temperature dependence of conductivity with a maximum of 25 Scm-¹. From the microstructural characterization and the polarisation resistance measurement of the symmetric cells at temperature ranges from 700 - 800 °C, 900 °C has been chosen as the most suitable sintering temperature and LGSCu has shown the minimum polarization resistance of 0.35 Ωcm² and 0.09 Ωcm² at 800 °C using GDC and LSGM-9182 electrolytes respectively under OCV condition. To improve the ASR of LGSCu, the composite of LGSCu and GDC with varying wt. % of GDC has been optimised and it shows the ASR of 0.12 Ωcm² using GDC as the electrolyte because it enhance the triple phase boundary region. The maximum power density of single-cell SOFCs fabricated with the La₀.₉Ln₀.₉Sr₀.₂CuO₄ (Ln= Sm & Gd) cathodes, La₀.₉Sr₀.₁Ga₀.₈Mg₀.₂O₃-δ (LSGM-9182) electrolyte, and Ni–Ce₀.₉Gd₀.₁O₁.₉₅ cermet anode exhibit 720 and 824 mWcm-² at 800 °C respectively. The phase pure T* Nd₁.₃₂Ce₀.27Sr₀.₄₁CuO₄-δ (NCSCu) has been synthesized by combustion method and its crystal chemistry, thermal and electrochemical properties, and catalytic activity in SOFC were evaluated using LSGM-9182 as the electrolyte. It shows promising performance and can be used as potential cathode materials for IT-SOFC. The effect of B-site Ni and Co substitution for Cu on the structural and electrochemical properties of the T* La₀.₉Gd₀.₉Sr₀.₂CuO₄ has been investigated as cathode materials for intermediate temperature solid oxide fuel cells using LSGM-9182 as the electrolyte. At a given temperature, the electrical conductivity gradually increases with increasing Ni content and the CTE gradually decreases. Ni doping has also improved the electrochemical performance. Sr doped A /A //B₂O₅+δ (A / = Rare Earth, A // = Ba or Sr and B = Transition Metals) layered perovskites improves the electrochemical performance due to the increase in electrical conductivity and smaller size difference between Ln+³ and Sr+². However these layered perovskites suffer from high thermal expansion coefficient (20-23 x 10-6 K-1) which does not match with the state of the art electrolyte materials. B-site transition metal doped layered perovskites of compositions SmBa₀.₅Sr₀.₅Co₂-ₓO₅+δ (M = Cu, Ni, Fe) have been investigated as cathode material for intermediate temperature solid oxide fuel cell using LSGM-9182 as the electrolyte material. Phase purity has been confirmed by XRD technique. The crystal cell parameters have been found out using Rietveld refinement by FULLPROF software. The substitution of Cu, Ni and Fe for Co lowers the CTE of Co-based materials by suppression of the spin state transition of Co³+ which will be highly advantageous for long term SOFC application. The introduction of transition metals exhibit inferior electrochemical performance to pristine cathode using LSGM-9182 as the electrolyte but still shows reasonable power density with advantage of lower CTE value thereby can be explored as promising cathode material for IT-SOFCs.
APA, Harvard, Vancouver, ISO, and other styles
16

Muraleedharan, Nair Mahesh. "High surface area mesoporous perovskites for catalytic applications." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30509/30509.pdf.

Full text
Abstract:
Les pérovskites sont des oxydes métalliques mixtes qui peuvent être représentés par la formule générale ABO3. Depuis la première revue mettant en évidence leur activité catalytique, ces matériaux ont attiré l’attention des chercheurs dans le monde entier. Il a été confirmé que les pérovskites peuvent être considérées comme des alternatives rentables et efficaces aux métaux nobles pour plusieurs applications (les réactions de synthèse à titre d’exemple). En outre, ces oxydes métalliques mixtes sont bien connus pour leur stabilité à haute température, leur grande mobilité d'oxygène ainsi que la stabilisation des inhabituels états d'oxydation des cations. Pour ces raisons, plusieurs stratégies ont été développées pour la synthèse de ces matériaux. Cependant, les méthodes conventionnelles de synthèse des pérovskites permettent d’obtenir seulement des matériaux ayant une faible surface spécifique, ce qui constitue un inconvénient majeur du fait que des applications catalytiques sont mis en jeux. La faible surface spécifique est due à un traitement thermique de haute température appliqué au cours de la synthèse de ces matériaux. Le premier objectif de ce présent travail est donc l’obtention d’oxydes métalliques mixtes structurés de type pérovskite avec une grande surface spécifique. Le “Nanocasting”, une méthode de gabarits solides récemment développée, a montré son efficacité pour la synthèse de diverses compositions chimiques ayant des valeurs extrêmement élevées de surface spécifique. En se basant sur cette méthode, plusieurs pérovskites LaBO3 (B = Mn , Ni , Co, Fe) ont été synthétisées. Ces matériaux se caractérisent par leur grande surface spécifique qui peut atteindre 150 m2 g-1. Les premiers essais de l'oxydation totale du méthanol, une molécule sonde, out confirmé que ces nouveaux matériaux sont des catalyseurs très actifs, en particulier les LaMnO3. De plus, d'autres études ont confirmé que l'augmentation de l’activité catalytique est évidemment liée à la plus grande surface spécifique et a la plus grande quantité d’oxygène adsorbée des pérovskites développées. Les résultats ont montré une proportionnalité entre les vitesses des réactions et la surface spécifique du catalyseur. Dans une étude suivante, l’intérêt de la recherche est porté sur reformage du méthane à sec, comme cette réaction est très pertinente pour l’industrie du fait qu’elle consiste en la conversion de deux gaz à effet serre (CH4 et CO2) en gaz de synthèse (CO + H2). Des résultats prometteurs ont été obtenus dans ce cas aussi en utilisant les matériaux développés de type LaNiO3 comme un pré-catalyseur. De meilleures efficacité et stabilité ont été observées pour Ni/La2O3, catalyseurs dérivés des LaNiO3, par rapport à son homologue en vrac.
Perovskites are mixed metal oxides that can be represented by the general formula ABO3. Since the initial report regarding their catalytic activity, these materials have received immense research attention worldwide. Perovskites are proven to be cost effective and efficient alternatives to noble metals for various total/partial oxidation as well as synthetic chemical reactions. Additionally these mixed metal oxides are well known for their high temperature stability, high mobility of oxygen and the stabilization of unusual cation oxidation states. For these reasons various strategies were developed for the synthesis of these materials. However perovskites synthesized using conventional methods generally result in low specific surface area materials, which is a major drawback as far as catalytic applications are concerned. This pertinent lower value of surface area is resulting from the high temperature treatment involved in the synthesis of these materials. This issue was taken up and in the present project the first goal was to obtain perovskite structured mixed metal oxides with high specific surface area. Nanocasting is a recently developed solid templating method that is proven to be efficient for the synthesis of various chemical compositions with extremely high values of specific surface area. By applying this method a series of LaBO3 (B = Mn, Ni, Co, Fe) perovskites were synthesized and these materials were found to posses extremely high values of specific surface areas (up to 150 m2g-1). Initial tests for the total oxidation of methanol as a probe molecule confirmed that these novel materials are highly active catalysts, especially LaMnO3. Further studies confirmed that the enhanced activity was obviously related to the higher specific surface areas and higher amount of adsorbed oxygen species obtained for the nanocast perovskites in comparison with the bulk. Our results demonstrated the proportionality of reaction rates to the specific surface area of the catalyst. In a following study, we chose dry reforming of methane, since this reaction involves the conversion of two green house gases (CH4 and CO2) into syngas (CO + H2), which is more industrially relevant. Promising results were obtained in this case also using nanocast LaNiO3 as a pre-catalyst. Enhanced efficiency and stability were observed for Ni/La2O3 catalysts derived from nanocast LaNiO3 in comparison to its bulk counterpart. In particular, these materials were found to be coke resistant for 48 hours under the conditions of dry reforming.
APA, Harvard, Vancouver, ISO, and other styles
17

Sterianou, Iasmi. "Bismuth-based perovskites for high temperature piezoelectric applications." Thesis, University of Sheffield, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Marshall, Kenneth P. "Inorganic tin halide perovskites for planar photovoltaic devices." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/99468/.

Full text
Abstract:
The research presented in this thesis focuses on the use of B-g CsSnI3 perovskite as the light harvesting semiconductor in discrete layer photovoltaic (PV) devices. Chapters 1 and 2 give a brief introduction with relevant theory, and experimental techniques respectively. Chapter 3 describes the use of B-g CsSnI3 in PV devices based on a CuIj CsSnI3j fullerene architecture, showing how device Voc is strongly dependent on the energetics at the perovskite fullerene interface, and that using excess SnI2 in CsSnI3 preparation greatly improves device stability. Chapter 4 describes the effect that different tin halides have on stabilising films of B-g CsSnI3 and on the performance of PV devices. SnCl2 was found to be the most beneficial source of excess Sn, with the champion device achieving a power conversion efficiency of over 3.5% combined with remarkable stability. Spontaneous n-type doping of the fullerene layer by SnCl2 is shown to be the reason for high device efficiency. In Chapter 5 the effect of different substrate electrodes on the stability of PV devices based on CsSnI3:SnCl2 films is described. It is shown that the stability of thin films of B-g CsSnI3 perovskite towards oxidation in air depends strongly on the choice of substrate electrode and that unencapsulated devices using ITO or semi-transparent Au as the hole-extracting electrode, without an HTL, are more stable than those using an HTL. PV devices using ITO only as the hole-extracting electrode exhibit the highest stability, with a 30% reduction in efficiency only after 20 hours testing in air for the champion device. Chapter 6 describes an investigation of A and B site substitution in CsSnI3, with particular focus on Rb partial A-site substitution. It was found that increasing the Rb content reduced lm stability, but significantly increased device Voc due to an increase in the perovskite ionisation potential.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhao, Baodan. "Halide perovskites for photovoltaics and light-emitting diodes." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289450.

Full text
Abstract:
Halide perovskite solar cells, with rapid efficiency improvements from ~10% to ~23% in 6 years, have attracted significant attention due to their remarkable performance, low processing cost and their potential to become a strong alternative candidate to silicon solar cells. Significant development has also been achieved in halide perovskite-based LEDs with EQE improved from below 1% to ~20% in less than 4 years. This remarkable progress can mainly be attributed to the optimisation of halide perovskite properties. This dissertation focuses on the correlation between optical and electrical properties of halide perovskites and their remarkable performance. Bandgap tunabilities of halide perovskites in blue to green regions through mixing Br-and Cl-and in near infra-red region by substituting Pb2+ with Sn2+ are demonstrated. The absorption and PL spectra are consistent with each other supporting the bandgap tunability. Corresponding EL spectra, which are consistent with their PL spectra, are also demonstrated for blue to green regions. Terahertz measurements coupled with PLQE and transient PL results reveal that the high carrier mobilities are the main reason behind the high efficiency of tin-rich samples. A novel perovskite-polymer-bulk heterostructure is introduced and studied comprehensively. Correlations between their optoelectronic properties and remarkable performance on timescales ranging from femtosecond to microsecond are presented. Transient optical spectroscopy reveals the energy transfer from 2D regions to 3D regions happens in 1 ps. The 20% EQE of the LEDs based in this structure is consistent with conventional thin-film optical models giving internal quantum efficiency of ~100%. This in agreement with near-unity PLQE value of the pristine emissive layer material and the dominant bimolecular recombination process observed in nanosecond-scale transient PL measurements. Two typical interfacial engineering methods to improve the quality of halide perovskite and device performance are then presented. Optimised NiOx is adopted to improve the anode interface. From transient photovoltaic measurements, we find the charge collection ability of NiOx is superior to that of PEDOT:PSS. This is also the main reason behind their better photovoltaic device performance. A unique anti-solvent treatment with additive modifies both the bulk and surfaces of halide perovskites and improves the device performance significantly. Transient PL and PLQE measurements demonstrate that non-radiative recombination pathways are significantly reduced.
APA, Harvard, Vancouver, ISO, and other styles
20

Sangar, Neeraj 1974. "Nanocrystalline perovskites for catalytic combustion and oxygen separation." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/17562.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2002.
Includes bibliographical references.
Nanocrystalline perovskites (Lal-xAMnl-yByO3) were successfully synthesized with higher surface area and smaller grain size by chemical co-precipitation compared to solid-state and complexation/combustion synthesis routes. The choice of solvent, base and suspension pH in co-precipitation was found to strongly affect the chemical stoichiometry of the resulting material. Stoichiometric La0.5Sr0.sMnO3 was successfully obtained at a high pH using isopropanol as the solvent and tetraethylammonium hydroxide as the base. La0.sSr0.sMnO3 was derived with a ultrafine grain size of 13 nm and a high surface area of 43 m2/g at 650⁰C, and maintained its nanocrystalline microstructure on heating to 1000⁰C, with a grain size of 25 nm and a surface area of 19 m2/g. The catalytic activity of these perovskites was investigated for different A- and B-site substitutions. Among LaBO3 perovskites, the catalytic activity was found to decrease in the order: Mn > Fe [approx.] Ni > Co, with LaMnO3 showing the lowest light-off temperature of 420⁰C. The intrinsic catalytic activity at 650C decreased in the order: Ni > Co > Fe > Mn. Substitution of Group IIA metals for La3+ was found to increase the reaction rate of LalxAxMnO3, while higher valency dopants did not change or decreased catalyst activity. In the case of Ca2+ and Sr +dopants, intrinsic activity of Lal-xAxMnO3 was found to increase with doping level until x = 0.4 and 0.6, respectively. La0.4Sr0.6MnO3 exhibited the lowest light-off temperature of 3800C, with a reaction rate that was 2.5 times higher than LaMnO3. Methane TPR experiments showed that methane oxidation over the perovskites occurred by methane adsorption on the catalyst surface via hydrogen abstraction.
(cont.) Substitution of Group IIA metals for La3+ enhanced catalytic activity by increasing the rate of methane activation, but lowered activity at high doping levels due to slow carbonate decomposition. Mixed conducting BalxSrCol-yMyO3- perovskite membranes were developed for oxygen separation applications. Ba0.75Sr0.25Coo.8Feo.203- showed a very high oxygen flux of [approx.] 3.8 cm3[STP]/min/cm2 at 900⁰C. Bao.25ro.75Co0sTio.2036 exhibited an oxygen flux of [approx.] 1.4 cm3[STP]/min/cm2 at 750⁰C with excellent stability over time. These oxygen fluxes were [approx.] 2 times higher than those reported for the best existing membrane materials. High oxygen fluxes were obtained by creating a high oxygen vacancy concentration ([approx.] 15% of oxygen lattice sites) via extrinsic doping, and by increasing the unit cell free volume to allow facile oxide ion hopping. The challenge in developing these membranes was to prevent the phase transformation of the vacancy-disordered perovskite to a poorly conductive vacancy-ordered structure in the desired temperature range of 750-900⁰C. This was accomplished by doping various cations in place of cobalt at the B site. Iron was found to be the most effective dopant for stabilizing the perovskite phase, followed by titanium and tin. A novel approach was developed to stabilize the vacancy-disordered perovskite phase of BaCoo.8M0.203 on cooling to room temperature, so that significantly higher oxygen fluxes could be achieved at low temperatures with excellent stability. When a single type of dopant cation was introduced at the B site, the vacancy-disordered phase could not be ...
by Neeraj Sangar.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
21

Almohareb, Muneerah. "Novel Lithium Ionic Conducting Perovskite Materials for Lithium-Air Batteries." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36515.

Full text
Abstract:
Lithium Air (Li/O2) batteries are energy conversion devices that produce electricity from the oxidation of lithium metal at the anode and the reduction of molecular oxygen at the cathode. These batteries are considered as promising rechargeable cells for high power applications due to their high power density ranging from 1000 to 2000 Wh/kg. However, one of the most significant challenges is the need to separate the metallic lithium anode from any oxygen or water-containing environment while at the same time allowing fast and efficient lithium ion transport through the electrolyte. Therefore, lithium ion conducting materials that are water and CO2 resistant are a prerequisite. Common materials used as anode protective films and/or Li+ conducting electrolytes for lithium air batteries are perovskite-type oxides (formula: ABO3). Perovskites are good candidates for this application because of their versatility, particularly in regards to ionic conductivity. In the present work, a low cost perovskite family such as SFO (SmFeO3) is developed as a lithium ion conducting material by the introduction of Li+ into its lattice. The perovskites have been synthesized using a solid-state reaction method (SSR) and characterized using different techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray Spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS). The synthesized perovskites are based on samarium lithium ferrite and divided into two groups depending on the formal presence of vacancies in the stoichiometric formula. The first group (SLFO) with no formal vacancies has the stoichiometric formula of SmxLi1-xFeO2+x (where x = 0.1, 0.2, 0.3, 0.5 and 0.7). While the second group (SLFO*) was generated with less metal atoms than specified in the perovskite structure, thereby generating a structure with intrinsic vacancies and with the formula, Sm(x)Li([1-x] – [0.1] or [0.2]) FeO3-δ (where x = 0.3, 0.4, 0.5 and 0.6). Finally, the effect of varying Li and Sm concentrations in both groups and vacancies created in the lattice for the second group, on the ionic conductivity is explored.
APA, Harvard, Vancouver, ISO, and other styles
22

Schulze, Patricia S. C. [Verfasser], Harald [Akademischer Betreuer] Hillebrecht, and Stefan [Akademischer Betreuer] Glunz. "High band gap perovskite absorbers for application in monolithic perovskite silicon tandem solar cells." Freiburg : Universität, 2020. http://d-nb.info/122336612X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Syed, Ali Asgher. "Hole extraction layer/perovskite interfacial modification for high performing inverted planar perovskite solar cells." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/553.

Full text
Abstract:
Organo-metallic halide perovskite solar cells (PSCs) are considered as a promising alternative photovoltaic technology due to the advantages of low-cost solution fabrication capability and high power conversion efficiency (PCE). PSCs can be made using a conventional (n-i-p) structure and an inverted (p-i-n) configuration. PCE of the conventional p-i-n type PSCs is slightly higher than that of the inverted n-i-p type PSCs. However, the TiO2 electron transporting layer adopted in the conventional PSCs is formed at a high sintering temperature of >450 °C. The TiO2 electron transporting layer limits the application of conventional PSCs using flexible substrates that are not compatible with the high processing temperature. The hole extraction layer (HEL) in the inverted p-i-n type PSCs can be prepared by low-temperature solution fabrication processes, which can be adopted for achieving high performance large area flexible solar cells at a low cost. Inverted PSCs with a PCE range from 10 to 20% have been reported over the past few years. In comparison with the progresses of other photovoltaic technologies, the rapid enhancement in PCE of the PSCs offers an attractive option for commercial viability. The aim of this PhD project is to study the origin of the improvement in the performance of solution-processable inverted PSCs. The surface morphological and electronic properties of the HEL are crucial for the growth of the perovskite active layer and hence the performance of the inverted PSCs. Enhancement in short circuit current density (Jsc), reduced loss in open circuit voltage (Voc), improvement in cha Organo-metallic halide perovskite solar cells (PSCs) are considered as a promising alternative photovoltaic technology due to the advantages of low-cost solution fabrication capability and high power conversion efficiency (PCE). PSCs can be made using a conventional (n-i-p) structure and an inverted (p-i-n) configuration. PCE of the conventional p-i-n type PSCs is slightly higher than that of the inverted n-i-p type PSCs. However, the TiO2 electron transporting layer adopted in the conventional PSCs is formed at a high sintering temperature of >450 °C. The TiO2 electron transporting layer limits the application of conventional PSCs using flexible substrates that are not compatible with the high processing temperature. The hole extraction layer (HEL) in the inverted p-i-n type PSCs can be prepared by low-temperature solution fabrication processes, which can be adopted for achieving high performance large area flexible solar cells at a low cost. Inverted PSCs with a PCE range from 10 to 20% have been reported over the past few years. In comparison with the progresses of other photovoltaic technologies, the rapid enhancement in PCE of the PSCs offers an attractive option for commercial viability. The aim of this PhD project is to study the origin of the improvement in the performance of solution-processable inverted PSCs. The surface morphological and electronic properties of the HEL are crucial for the growth of the perovskite active layer and hence the performance of the inverted PSCs. Enhancement in short circuit current density (Jsc), reduced loss in open circuit voltage (Voc), improvement in charge collection efficiency (ηcc) through suppression of charge recombination were investigated systematically via controlled growth of the perovskite active layer in solution-processed inverted PSCs. Poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS) is one of the widely used solution processable conductive materials for hole transporting in different optoelectronic devices. PEDOT:PSS HEL also is a perfect electron blocking layer due to its high LUMO level. However, it has been reported that PEDOT:PSS HEL is related to the deterioration in the stability of PSCs due to its acidic and hygroscopic nature. Modification of PEDOT:PSS using solvent additives or incorporating metallic oxide nanoparticles for improving the processability and the performance of the inverted PSCs were reported. This work has been focused primary on realizing the controlled growth of perovskite active layer via HEL/perovskite interfacial modification using sodium citrate-treated PEDOT:PSS HEL and WO3-PEDOT:PSS composite HEL. Apart from investigating the properties of the modified PEDOT:PSS HELs, the purpose of the work is to improve the understanding of the effect of modified HEL on the growth of the perovskite layer, revealing the charge recombination processes under different operation conditions, analyzing change extraction probability, and thereby improving the overall performance of the PSCs. PCE of >11.30% was achieved for PSCs with a sodium citrate-modified PEDOT:PSS HEL, which is >20% higher than that of a structurally identical control device having a pristine PEDOT:PSS HEL (9.16%). The incident photon to current efficiency (IPCE) and light intensity-dependent J-V measurements reveal that the use of the sodium citrate-modified PEDOT:PSS HEL helps to boost the performance of the inverted PSCs in two ways: (1) it improves the processability of perovskite active layer on HEL, and (2) it enables to enhance the charge extraction efficiency at the HEL/perovskite interface. The suppression of charge recombination in the PSCs with a modified HEL also was examined using photocurrent-effective voltage (Jph-Veff) and transient photocurrent (TPC) measurements. Morphological and structural properties of the perovskite layers were investigated using the scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements. The results reveal that high quality perovskite active layer on the modified HEL was attained forming complete perovskite phase. The surface electronic properties of the modified PEDOT:PSS and pristine PEDOT:PSS layers were studied using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements. XPS results reveal that treatment of sodium citrate partially removes the PSS unit in the PEDOT:PSS, resulting in an increase in the ratio of PEDOT to PSS from 0.197 for a treated PEDOT:PSS HEL to that of 0.108 for the pristine PEDOT:PSS HEL. UPS measurements also show that there is an observable reduction in the work function of the modified HEL, implying that sodium citrate-modified PEDOT:PSS HEL possesses an improved electron blocking capability, which is beneficial for efficient operation of the inverted PSCs.;The performance enhancement in MAPbI3-based PSCs with a tungsten oxide (WO3)-PEDOT:PSS composite HEL also was analyzed. The uniform composite WO3-PEDOT:PSS HEL was formed on indium tin oxide (ITO) surface by solution fabrication process. The morphological and surface electronic properties of WO3-PEDOT:PSS composite film were examined using AFM, XPS, UPS and Raman Spectroscopy. SEM images reveal that the perovskite films grown on the composite HEL had a full coverage without observable pin holes. XRD results show clearly that no residual of lead iodide phase was observed, suggesting a complete perovskite phase was obtained for the perovskite active layer grown on the composite HEL. The volume ratio of WO3 to PEDOT:PSS of 1:0.25 was optimized for achieving enhanced current density and Voc in the PSCs. It is demonstrated clearly that the use of the WO3-PEDOT:PSS composite HEL helps to improve the charge collection probability through suppression of the charge recombination at the MAPbI3/composite HEL interface. The charge extraction efficiency at the perovskite/PEDOT:PSS and perovskite/composite HEL interfaces were investigated by analyzing the PL quenching efficiency of the MAPbI3 active layer. It is shown that the PL efficiency quenching at the MAPbI3/composite HEL samples is one order of magnitude higher than that measured for the perovskite/pristine PEDOT:PSS sample, suggesting an enhanced hole extraction probability at the MAPbI3/composite HEL interface. The combined effects of improved perovskite crystal growth and enhanced charge extraction capabilities result in the inverted PSCs with a PCE of 12.65%, which is 22% higher than that of a structurally identical control device (10.39%). The use of the WO3-PEDOT:PSS composite HEL also benefits the efficient operation of the PSCs, demonstrated in the stability test, as compared to that of the control cell under the same aging conditions. With the progresses made in improving the performance of MAPbI3-based PSCs, the research was extended to study the performance of efficient PSCs with mixed halide of MA0.7FA0.3Pb (I0.9Br0.1)3. The effect of the annealing temperature on the growth of the mixed MA0.7FA0.3Pb (I0.9Br0.1)3 perovskite active layer was analyzed. It was found that the optimal growth of the mixed perovskite active layer occurred at an annealing temperature of 100°C. UPS results reveal that the ionization potential of 5.76 eV measured for the mixed cation perovskite is lower than that of MAPbI3-based single cation perovskite layer (5.85 eV), while the corresponding electron affinity of the mixed perovskite was 4.28 eV and that for the MAPbI3 layer was 4.18 eV, respectively. The changes in the bandgap and the energy levels of the MA0.7FA0.3Pb (I0.9Br0.1)3 and MAPbI3 active layers were examined using UV-vis absorption spectroscopy and UPS measurements. Compared to the MAPbI3-based control cell, a 23% increase in Jsc, a 15% increase in Voc and an overall 25% increase in PCE for the MA0.7FA0.3Pb (I0.9Br0.1)3 were achieved as compared to that of the MAPbI3-based PSCs. An obvious improvement in charge collection efficiency in MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs operated at different Veff was clearly manifested by the light intensity dependent J-V characteristic measurements. PL quenching efficiency also shows the charge transfer between MA0.7FA0.3Pb (I0.9Br0.1)3 and PEDOT:PSS HEL is one order of magnitude higher as compare to that in the MAPbI3-based PSCs, suggesting the formation of improved interfacial properties at the MA0.7FA0.3Pb (I0.9Br0.1)3/HEL interface. The impact of incorporating mixed MA0.7FA0.3Pb (I0.9Br0.1)3 perovskite active layer on PCE and the stability of the PSCs was further studied using a combination of TPC measurement and aging test. The stability of MA0.7FA0.3Pb (I0.9Br0.1)3- and MAPbI3-based PSCs with respect to the aging time was monitored for a period of >2 months. The MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs are more stable compared to the MAPbI3-based PSCs aged under the same conditions. The aging test supports the findings made with the TPC and light intensity dependent J-V measurements. It shows that the improved interfacial quality at the perovskite/HEL and the enhanced charge extraction capability are favorable for efficient and stable operation of MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs.
APA, Harvard, Vancouver, ISO, and other styles
24

Sutton, Rebecca J. "Towards stable perovskite materials for photovoltaics." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:4cc567a2-9c2f-44c8-9fdf-b2d0493683d3.

Full text
Abstract:
This thesis explores a range of photoactive metal halide perovskite materials for use in photovoltaic applications. These materials are of huge interest due to their outstanding optoelectronic properties which result in high photovoltaic power conversion efficiencies. In particular, this thesis discusses perovskites with stoichiometry ABX3 where A is a singly charged cation, for example methylammonium (MA), B is predominantly lead (Pb2+), and X is iodide (I-) and/or bromide (Br-). At present the commercial applications of these materials are limited by the chemical instability of the A-site cation. In this thesis, the effect of chemical substitution of the A-site is investigated as a way to increase the stability of the perovskite material. Full replacement with the inorganic cation caesium (Cs+) is shown to significantly improve the chemical stability. However, the inorganic lead halide perovskites with ideal bandgaps for photovoltaic applications exhibit structural instability. Routes to achieve both chemical and structural stability for these perovskites are discussed. Consequently, this thesis represents pioneering work in the field of inorganic halide perovskites and will greatly assist the development of stable inorganic perovskite materials for optoelectronic applications such as tandem photovoltaics and LEDs. Chapters 1 and 2 of this thesis present the motivation for perovskite materials to be used in solar cells, along with relevant background information about these materials and solar cell operation in general. Chapter 3 details the methods utilised in the experimental results chapters which follow. The first experimental results chapter, Chapter 4, shows how incorporation of Br- in place of I- in CsPbI3 leads to increased ambient stability of the perovskite structure, and the first solar cells with CsPbI2Br as the absorbing photovoltaic material are reported. Chapter 5 remedies the deficit of information about the optoelectronic properties of the CsPbI3-xBrx (0 ≤ x ≤ 3) perovskites through magneto-optical measurements on thin-films. These measurements raise questions about the room temperature perovskite structure of the CsPbI3-xBrx compositions with small x, previously thought to be cubic perovskite, which is shown in Chapter 6 to be an orthorhombic perovskite polymorph. This finding motivates preliminary work presented in Chapter 7 aimed at chemical stabilisation of this orthorhombic perovskite polymorph. Finally, Chapter 8 summarises the work presented in this thesis, and recommends further research for the development of stable perovskite materials for photovoltaics.
APA, Harvard, Vancouver, ISO, and other styles
25

Moghadamzadeh, Somayeh [Verfasser], and U. [Akademischer Betreuer] Lemmer. "Multi-Cation Perovskite Semiconductors for All-Perovskite Tandem Solar Cells / Somayeh Moghadamzadeh ; Betreuer: U. Lemmer." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1230475737/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hassler, Julia. "Mesoporous metal oxides for perovskite solar cells." Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-263064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hoerantner, Maximilian. "Novel device architectures for perovskite solar cells." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:bb0ebbb0-5743-45fa-a69a-3848dc2018bb.

Full text
Abstract:
The aim of the work presented in this thesis is to study the opto-electronic properties of semi-conducting perovskite materials when being used in unconventional solar cell device configurations. Being a young technology, perovskites as solar cell materials have seen an unparalleled rise in the research community which has driven the fastest performance inflation to power conversion efficiencies competing with the ones of long established single crystalline technologies. The ability to process perovskites inexpensively makes them the new hope in the fight against climate change. Herein device architectures were developed with a special focus on potential commercial applications. Initially the work in this thesis has been motivated by the interest in crystal growth and morphology of perovskite thin-films, which has led to the study of confined crystal growth within microstructures. Controlling the crystal domain geometry enabled the fabrication of enhanced semi-transparent devices. More efforts were directed into the improvement of specifically neutral colour semi-transparent devices, which could be improved via a simple treatment of selectively attaching shunt-blocking layers. Furthermore, a back-contacted perovskite device design was introduced, which allows not only for the fabrication of a new type of perovskite solar cell, but also represent a great material testing platform to study perovskite and electrode characteristics. This led to the discovery of charge transport distances, that exceed those of other thin-film devices. Finally, perovskite-on-silicon tandem solar cell designs were analysed through a rigorous optical model to estimate the expected real world energy yield from such systems. Important implications include the fact that two terminal tandem solar cells come close to four-terminal configurations and can overall compete, in relative terms, well with established single junction silicon cells.
APA, Harvard, Vancouver, ISO, and other styles
28

Hossain, Ihteaz Muhaimeen [Verfasser], and U. W. [Akademischer Betreuer] Paetzold. "Semitransparent perovskite solar cells for perovskite-based tandem photovoltaics / Ihteaz Muhaimeen Hossain ; Betreuer: U. W. Paetzold." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1230475745/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Elm, Svensson Erik. "Nanomaterials for high-temperature catalytic combustion." Licentiate thesis, Stockholm : School of Chemical Science, KTH, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Roberts, Alexa A. "Implementation of Microfluidic Mixers for the Optimization of Polymeric, Gold, and Perovskite Nanomaterials Synthesis." Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1624663333598068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

FU, QIANG FU. "POLYMER-TEMPLATED NUCLEATION AND CRYSTAL GROWTH OF PEROVSKITE FILM AND CONDUCTIVE IONOMER DOPED PEROVSKITE FILLM FOR HIGH PERFORMANCE OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1495207539153854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

McQueen, Andrew J. "Structure-property relationships in hexagonal perovskites for microwave dielectric applications." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574559.

Full text
Abstract:
Structure-property relationships in various 12- and IS-layer hexagonal perovskites have been investigated for use in Microwave Dielectric (MD) applications. Specifically; (i) the structural origin(s) of a peak in Er at 465 K for the 12-layer hexagonal perovskite Ba3LaNb3012, BLN, and its effect on the Temperature Coefficient of resonant Frequency, TCF; (ii) synthesis and structure-property relationships of related 12-layer hexagonal perovskites based on Ba3RENb)012 and Sr)RENbJOI2 with RE ions smaller than La3+ ; (iii) a study of the IS-layer hexagonal perovskite solid solution phase (Bas-xSrx)Nb4015 to establish if similar properties to BLN can be obtained and therefore improve our understanding of how octahedral tilting in hexagonal perovskites influences their microwave dielectric properties. (i) A study of the BLN crystal structure using mode analysis of Neutron Powder Diffraction, NPD data showed the structure to go from one with a tilted NbOIi network (space group RI) at 300 K to un-tilted (space group RIm) at 500 K. On cooling, the change in Nb06 framework at - 500 K causes displacement of the A-site cations from their ideal positions within the AO .• layers at - 465 K; it is this movement of A-site cations in response to octahedral tilting that gives rise to the peak in Er. Raman Spectroscopy, RS showed the loss of a peak (- 425 cm -I) at - 400 K that is associated with the phase transition. (ii) Ba,RENbJOl2 with RE = Pr3+ or Nd3+ did not exhibit resonance at microwave frequencies. Instead a relaxor-type response was observed from radio frequency measurements with a maximum in I::r near or below room temperature. NPD and RS data showed this behaviour is linked to size mismatch (cation variance) between the A-site cations. Sr3PrNb3012 showed encouraging microwave dielectric properties with I::r - 35, Q.f - 17,000 GHz and TCF - 8 ppm K-'. (iii) The (Bas_xSrx)Nb4015 study found materials that do show similar properties to BLN. Sr-rich members of this study vi can be described has having a tilted NbOf, network (space group PJe!) whereas the Ba- rich members contain untilted Nb06 octahedra (space group PJmJ) at room temperature. This change from a tilted to untilted structure as the Ba content increases leads to a crossover from a tilt to untilt system at room temperature for Ba2:;Sr2.sNb4015 (B2.5S2SNO). This crossover at B2.5S2.sNO is reflected in the room temperature er and TCF (Er - 47, TCF - 343 ppm K-1) which have their highest values for this composition. This provides confirmation of the effect octahedral tilting can have on MD properties. The trend in Q.f is obscured by extrinsic effects, for example as a result of an irregular ceramic microstructure (SrsNb40ls) and the presence of impurities that exist as intergrowths within the main phase. The analysis of the FWHM of M" Debye peaks from IS data was useful to detect electrical heterogeneity within the grains and could be used to link with Q.f. vii
APA, Harvard, Vancouver, ISO, and other styles
33

Weber, Oliver. "Structural chemistry of hybrid halide perovskites for thin film photovoltaics." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.

Full text
Abstract:
Hybrid lead halide perovskites, AMX 3 compounds in which A = CH 3 NH 3 (MA), CH(NH 2 ) 2(FA), Cs; M = Pb,Sn; X = I, Br, Cl, display remarkable performance in solution-processed optoelectronic devices, including > 22% efficient thin film photovoltaic cells. These compounds represent the first class of materials discovered to exhibit properties associated with high performance compound semiconductors, while being formed at or near room temperature using simple solution chemistry techniques. This thesis is focused on the synthesis, structural characterisation and phase behaviour of MAPbI 3 , FAPbI 3 , A-site solid solutions and novel organic metal halide framework materials. The complete atomic structure and phase behaviour of methylammonium lead iodide is elucidated for the first time, including hydrogen positions, using high flux, constant wave-length neutron powder diffraction. At 100 K an orthorhombic phase, space group Pnma, is observed, with the methylammonium cations ordered as the C–N bond direction alternates in adjacent inorganic cages. Above 165 K a first order phase transition to tetragonal, I4/mcm, occurs with the unlocking of cation rotation, which is disordered primarily in the ab plane. Above 327 K a cubic phase, space group Pm3m, is formed, with the cations isotropically disordered on the timescale of the crystallographic experiment. The high temperature phase of formamidinium lead iodide, α-FAPbI 3 is shown for the first time to be cubic, (Pm3m), at room temperature using time-of-flight, high resolution neutron powder diffraction. Polymorphism and the low temperature phase behaviour of FAPbI 3 have been further investigated using reactor and spallation neutron sources with high resolution in temperature. A tetragonal phase, P4/mbm, is confirmed in the temperature range 140-285 K.The composition, structural and optical parameters of ’A’ site solid solutions (MA/FA)PbI 3 have been investigated by single crystal X-ray diffraction, UV-vis spectroscopy and 1 H solution NMR. A composition-dependent transition in the crystal class from tetragonal to cubic(or pseudo-cubic) at room temperature is identified and correlated to trends in the optical absorption. Novel hybrid materials with inorganic frameworks of varying dimensionality from 0D to 2D, including imidazolium lead iodide and piperazinium lead iodide, have been synthesised using various templating organic cations and their atomic structures solved by single crystal X-ray diffraction.
APA, Harvard, Vancouver, ISO, and other styles
34

Price, Michael Beswick. "Transient photophysics of hybrid lead halide perovskites for optoelectronic applications." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Neagu, Dragos. "Materials and microstructures for high temperature electrochemical devices through control of perovskite defect chemistry." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3606.

Full text
Abstract:
The development of technologies that enable efficient and reliable energy inter-conversion and storage is of key importance for tempering the intermittent availability of renewable energy sources, and thus for developing an energy economy based on sustainable, clean energy production. Solid oxide electrolysis cells (SOECs) may be used to store excess electrical energy as hydrogen, while solid oxide fuel cells (SOFCs) could convert back hydrogen into electricity, thus balancing energy availability and demand. However, the current state-of-the-art hydrogen electrode used in both SOECs and SOFCs, the Ni-yttria-stabilised zirconia cermet (Ni-YSZ), is unreliable in conjunction with intermittent energy sources, in particular due to its innate redox instability. This thesis explores the fundamental properties of various inherently redox stable A-site deficient titanate perovskite systems (A1-αBO3, B = Ti), seeking to uncover the principles that enhance their properties so that they may be used to replace Ni-YSZ. In particular, this work demonstrates that the versatility of perovskites with respect to the introduction of lattice defects such as vacancies and cation substitutions enables considerable improvements in the extent of reduction, electronic conductivity and overall electrochemical activity. Most importantly, the defect chemistry context set by the presence of A-site vacancies was found to trigger the exsolution of electrocatalytically active nanoparticles from the parent perovskite, upon reduction. This is an entirely new phenomenon which was explored and exploited throughout this study to produce perovskite surfaces decorated with uniformly distributed catalytically active nanoparticles. As demonstrated in this study, the exsolution phenomenon excels in terms of producing nanoparticles with uniform size, distribution, diverse composition and ‘unconventional' surface anchorage. The resulting enhanced properties, and especially the exsolution phenomenon, contributed coherently towards improving the suitability of the perovskites developed here towards their application as hydrogen electrode materials. Consequently, when integrated into SOEC button cells as hydrogen electrodes, they exhibited a step-change increase in performance compared to other perovskites considered to date. Many of the principles and perovskite defect chemistry explored and exemplified in this study on perovskite titanates may be extended to other perovskites as well. In particular the advanced control and understanding achieved in this work over the exsolution phenomenon may inspire the formulation of new and sophisticated oxide materials with advanced functionality.
APA, Harvard, Vancouver, ISO, and other styles
36

Janczak, Julia. "Theory of Spectral Function and Optical Conductivity for Half-Metallic Double Perovskites." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354713689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Fengjiu. "Architecture design for highly efficient perovskite solar cells." Kyoto University, 2019. http://hdl.handle.net/2433/244572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Junyue. "Perovskite thermoelectric materials for high-temperature energy conversion." Thesis, Boston University, 2014. https://hdl.handle.net/2144/21206.

Full text
Abstract:
Thesis (M.Sc.Eng.)
Despite of recent success in achieving the figure of merit ZT > 1 based on the nanoscale patterned thermoelectric structures, there have been few stable n-type materials with attractive thermoelectric responses for high temperature applications at T > 800K. In this thesis, we applied the first-principles density functional theory (DFT) calculations to probe the structure and thermoelectric properties relationship of a comprehensive series of perovskite materials. The density of states (DOS), Seebeck coefficient S, electric conductivity σ, and electronic contribution of the thermal conductivity Ke were obtained directly from the first-principles DFT calculations. In particular, Lanthanum (La), Gadolinium (Gd), Samarium (Sm), Yttrium (Y) doped MU+2093SrU+2081U+208BU+2093TiOU+2083 and Niobium (Nb) doped SrNbyTi1-yOU+2083 and doubly doped LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083 systems were studied. The change of the power factor S^2σ corresponding to the different dopant concentration had a good agreement with the experimental data. Our computed power factors S^2σ as a function of the dopant con- centration agree well with the available experimental data, and at the same time provide new insights for the optimal compositions. In the low doping region (x U+003E 12:5%), gadolinium and niobium are the best candidates of perovskite thermoelectric materials while at high doping level (x U+003E 25%), lanthanum and yttrium are the best options. In the case of doubly doped perovskites LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083, our calculations predict that the x= 12.5% and y= 12.5% is the best choice.
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Xiaomin. "Engineering of Perovskite Oxides for Electrochemical Water Splitting." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82587.

Full text
Abstract:
While electrochemical water splitting offers an alluring prospect of carbon-neutral H₂ production from renewable resources, its efficiency is limited by the slow kinetics of the anodic/cathodic half-reactions. This thesis centres on the engineering of non-precious metal-based perovskite oxides as electrocatalysts to drive the water electrolysis. By fine-tuning the chemical compositions and structures, perovskite oxides with improved catalytic efficiency are developed. A deepened understanding of the structure–activity relationship of the perovskite electrocatalysts is also provided.
APA, Harvard, Vancouver, ISO, and other styles
40

Lavinscky, Anderson Borges da Silva. "Síntese e caracterização do sistema SrTi1-xSnxO3 na forma de pó e na forma de filmes finos para aplicação como sensores de gases tóxicos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-15022019-085246/.

Full text
Abstract:
O objetivo desta tese de doutorado foi estudar a influência da adição do íon estanho (Sn4+) à rede do composto SrTiO3 em substituição ao íon de titânio visando otimizar as propriedades elétricas desse composto e, como consequência, obter uma melhora de seu desempenho como um sensor de gás na forma de filmes finos. Para realizar a deposição destes filmes finos através dos métodos de Deposição por Feixe de Elétrons (EBD), alvos cerâmicos de composição SrTi1-xSnxO3 (STSO) com x = 0; 0,20; 0,40; 0,60; 0,80; 0,85; 0,90; 0,95; 1 foram obtidos através do método dos precursores poliméricos modificado. A sequência de formação de soluções sólidas foi determinada através do refinamento Rietveld das amostras STSO na forma de pó sinterizadas, obtidas através dos métodos dos precursores poliméricos e de reação de estado sólido, mostrando que a transição da fase cúbica Pm3̄m do composto SrTiO3 até a fase ortorrômbica Pnma do composto SrSnO3 não depende do método de síntese. As medidas de espectroscopia Raman e absorção de raios-X (XANES, na borda K do Ti) das amostras tanto na forma de pó, obtidas através do método dos precursores poliméricos e de reação de estado sólido, quanto na forma de filme fino obtidas por EBD revelaram a existência de uma desordem local na rede do composto SrTiO3 que diminui com o aumento da temperatura e com a diminuição da concentração de Sn. Os filmes finos STSO obtidos por EBD foram avaliados como sensores utilizando-se os gases O3 e NH3. Em medidas realizadas com o gás ozônio (O3), os resultados mostraram que os filmes finos de 100 nm de espessura apresentaram uma maior sensibilidade tendo a amostra com 60% de Sn com o melhor desempenho a 350°C para 0,15 ppm do gás. As análises de performance dos filmes STSO quanto a seletividade indicaram que não foram seletivos e que apresentaram uma maior resposta ao gás ozônio quando comparados ao gás NH3.
The objective of this work was to study the influence of the addition of tin ion (Sn4+) into the SrTiO3 compound lattice, to replace the titanium ion (Ti4+). The aim was to optimize the electrical properties of SrTiO3 compound and, as a consequence, to obtain an improvement of its performance as a gas sensor in the thin films samples. To perform the deposition of these thin films through Electron Beam Deposition (EBD), ceramic targets of composition SrTi1-xSnxO3 (STSO) with x = 0; 0.20; 0.40; 0.60; 0.80; 0.85; 0.90; 0.95; and 1 were obtained by the modified polymer precursor method. The solid solution formation sequence was determined by the Rietveld refinement of the STSO sintered powdered samples, obtained by both polymeric precursor and solid-state reaction methods, showing that the transition from the cubic Pm3̄m phase of the SrTiO3 compound to the orthorhombic Pnma phase of the SrSnO3 compound does not depend on the synthesis method. The measurements of Raman spectroscopy and absorption of X-rays (XANES, at Ti K-edge), of the powdered samples obtained by both synthesis methods and of the thin films obtained by EBD, revealed the existence of a local disorder in the SrTiO3 compound lattice which decreases with increasing of temperature and with decreasing of Sn concentration. The STSO thin films were evaluated as sensors using the O3 and NH3 gases. In measurements accomplished with the ozone gas (O3), the results showed that thin films of 100 nm thickness had a higher sensitivity. The sample having 60% of tin showed the best performance at 350°C for 0.15 ppm of ozone gas. The performance analysis related to the selectivity of the STSO films indicated they were not selective and that presented a higher response to the ozone gas when compared to the NH3 gas.
APA, Harvard, Vancouver, ISO, and other styles
41

Smith, Debbie A. "Analytical Methods for Toxic Metals and Proteins and Synthesis of Perovskites." Youngstown State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1289923061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.

Full text
Abstract:
Ce travail de thèse a pour sujet la conception des cellules solaires photovoltaïques à base de pérovskite hybride par le biais de la technologie d’impression jet d’encre. Les deux premiers chapitres font la présentation du contexte de la thèse, à savoir l’alimentation d’un réseau autonome de capteurs, et passent en revue les aspects scientifiques des technologies jet d’encre et photovoltaïque de nouvelle génération. Le troisième chapitre présente la mise au point d’une cellule photovoltaïque à l’état de l’art et son évolution vers une architecture imprimable à basse température de recuit. La problématique de la stabilité des cellules photovoltaïques à pérovskite est aussi abordée. La dernière partie présente les différents aspects et problématiques de l’impression par jet d’encre des trois couches internes d’une cellule solaire pérovskite. Au terme de ce travail la possibilité d’imprimer des cellules solaires pérovskites avec des rendements supérieurs à 10 % a été démontrée, le tout en condition ambiante et à basse température
This thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
APA, Harvard, Vancouver, ISO, and other styles
43

Marronnier, Arthur. "Anharmonicity and Instabilities in Halide Perovskites for Last Generation Solar Cells." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX031/document.

Full text
Abstract:
Les pérovskites hybrides halogénées (ABX3) sont utilisées depuis cinq ans comme couches absorbantes pour de nouvelles cellules solaires à bas coût combinant les avantages des matériaux organiques (molécule A) et inorganiques (métal B et halogène X). Très récemment, des cellules solaires à boîtes quantiques à bases de pérovskites purement inorganiques ont également montré des efficacités prometteuses, ce qui en fait une alternative potentiellement stable et efficace à leurs cousins hybrides.Le but de cette thèse de doctorat est d'étudier et de mieux comprendre les instabilités structurelles et thermodynamiques de ces pérovskites halogénées, avec un focus sur la pérovskite purement inorganique CsPbI3.Dans un premier temps les propriétés vibrationnelles et électroniques des différentes phases de CsPbI3 sont étudiées grâce à différentes techniques ab-initio, dont la plupart sont basées sur la théorie de la fonctionnelle de la densité (DFT) et son approche en réponse linéaire (DFPT). Alors que la phase γ noire, cruciale pour les applications photovoltaïques, se comporte de manière harmonique autour de l'équilibre, pour les trois autres phases nos calculs de phonons froids révèlent une instabilité de double puits au centre de la zone de Brillouin. Nos calculs montrent également que le terme d'entropie d'ordre-désordre lié à ce double puits est crucial pour empêcher la formation de la phase pérovskitoïde jaune. Nous analysons ensuite en détail les changements structurels et l’effet Rashba dynamique le long de trajectoires de dynamique moléculaire à la lumière de ces résultats.La seconde partie de la thèse porte sur la stabilité thermodynamique de la pérovskite hybride MAPbI3. Notre étude expérimentale par ellipsométrie apporte une meilleure compréhension de la décomposition chimique de MAPbI3 en ses deux précurseurs, l’iodure de méthylamonium et l'iodure de plomb, que nous avons prédite grâce à des calculs de diagrammes de stabilité DFT et que nous confirmons par diffraction des rayons X. Enfin, nous démontrons que la pérovskite hybride MAPbI3 se comporte davantage comme les composés inorganiques (grande constante diélectrique, faible énergie de liaison des excitons) que comme les matériaux organiques (faible constante diélectrique, forte énergie de liaison d'exciton)
Hybrid halide perovskites (ABX3) have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic (molecule A) and inorganic (metal B, halogen X) materials. Very recently, fully inorganic perovskite quantum dots also shown promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins.The aim of this PhD thesis is to study and better understand both the structural and thermodynamic instabilities of these halide perovskites, with a specific focus on purely inorganic CsPbI3 structures.We first use various ab-initio techniques, the majority of which are based on Density Functional Theory (DFT) and its linear-response approach (DFPT), to investigate the vibrational and electronic properties of the different phases of CsPbI3. While the black γ-phase, crucial for photovoltaic applications, is shown to behave harmonically around equilibrium, for the other three phases frozen phonon calculations reveal a Brillouin zone center double-well instability. We also show that avoiding the order-disorder entropy term arising from these double-well instabilities is key in order to prevent the formation of the yellow perovskitoid phase, and evidence a Rashba effect when using the symmetry breaking structures obtained through frozen phonon calculations. We then analyze the structural changes and the dynamical Rashba splitting along molecular dynamics trajectories in the light of our findings.In a second phase, we investigate the thermodynamical stability of hybrid perovskite MAPbI3. Our experimental ellipsometry-based study brings better understanding of the chemical decomposition of MAPbI3 into its two precursors, methylammonium and lead iodides, which we predicted using DFT stability diagram calculations and which we confirm by X-Ray diffraction. Last, we prove that hybrid perovskite structure MAPbI3 behaves more like inorganic compounds (high dielectric constant, low exciton binding energy) than like organic materials (low dielectric constant, high exciton binding energy)
APA, Harvard, Vancouver, ISO, and other styles
44

Rodríguez, Seco Cristina. "Low-Molecular Weight Semiconductors for Organic and Perovskite Solar Cells." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667660.

Full text
Abstract:
Actualment, les fonts d'energia renovables estan atraient molta atenció degut a l'impacte negatiu que els combustibles fòssils estan causant al planeta. Les tecnologies basades en les cel·les fotovoltaiques són una alternativa sostenible per cobrir la demanda energètica mundial. El principal objectiu d'aquest treball és el disseny i la síntesis de noves molècules per tal de reemplaçar els polímers habitualment utilitzats com a molècules captadores de llum en cel·les solars orgàniques i el spiro-OMeTAD usat com a transportador de buits (HTM per les sigles en anglès "hole transporting material") en dispositius solars de perovskita. D'una banda, els polímers són coneguts per ser bons transportadors de buits, posseir una elevada solubilitat i una bona habilitat per a la formació de capes, però entre els diferents lots existeix una baixa reproductibilitat degut a la seva síntesi complexa. D'altra banda, el spiro-OMeTAD és la molècula que millor reproductibilitat i eficiència presenta en cel·les solars de perovskita. No obstant això, la seva síntesi complexa i d’alt cost impedeix la possibilitat d'escalat a nivell industrial. Per tal de solucionar aquests problemes, aquesta tesi s'ha enfocat en el disseny, síntesi i caracterització d'un conjunt de molècules petites de baix pes molecular per a la seva aplicació en aquests dispositius.
Actualmente, las fuentes de energía renovables están atrayendo mucha atención debido al impacto negativo que los combustibles fósiles están causando al planeta. Las tecnologías basadas en las celdas fotovoltaicas son una alternativa sostenible para cubrir la demanda energética mundial. El principal objetivo de este trabajo fue el diseño y la síntesis de nuevas moléculas que reemplacen los polímeros comúnmente utilizados como moléculas captadoras de luz en celdas solares orgánicas y el spiro-OMeTAD usado como transportador de huecos (HTM por sus siglas en inglés “hole transporting material”) en dispositivos solares de perovskita. Por una parte, los polímeros son conocidos por ser buenos transportadores de huecos, su alta solubilidad y su favorable habilidad en la formación de capas, pero tienen muy poca reproducibilidad entre distintos lotes. Por otra parte, el spiro-OMeTAD es la molécula que mejor reproducibilidad y eficiencia presenta en celdas solares de perovskita. Sin embargo, su síntesis compleja y de alto coste impide la posibilidad de escalado a nivel industrial. Con el fin de solucionar estos problemas, esta tesis se ha enfocado en el diseño, síntesis y caracterización de un conjunto de moléculas pequeñas de bajo peso molecular para su aplicación en dichos dispositivos
Nowadays, renewable energy sources are attracting a lot of attention due to the undesired environmental impact the fossil fuels are causing to the Earth. Solar cells technologies are a sustainable alternative to the increasing world energy demand. The main aim of this work was to design and synthetize novel molecules that could replace the polymers widely used as absorbers in organic solar cells and spiro-OMeTAD used as a hole transporting material (HTM) in perovskite solar cells. On the one hand, polymers are known for their good hole transporting properties, high solubility and good film forming abilities but they have a poor batch-to-batch reproducibility. Furthermore, spiro-OMeTAD is the best molecule to achieve reproducible and highly efficient perovskite solar cells. However, its complex and expensive synthesis and purification hinder its usage in industrial scale photovoltaics. In order to overcome these problems, the rational design, synthesis and characterization of a variety of small molecules for both applications have been on a focus of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
45

Sun, Shijing. "Synthesis, characterization and properties of hybrid organic-inorganic perovskites for photovaltaic applications." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267739.

Full text
Abstract:
The hybrid organic-inorganic perovskites (HOIPs), e.g. methylammonium and formamidinium lead halide (MA/FAPbX3, X = I, Br or Cl), are a class of materials that has recently achieved remarkable performances in photovoltaic applications. This thesis describes the synthesis, structure and properties of this class of perovskites, with particular focus on their crystal chemistry, mechanical responses and structural diversity. Understanding the unique crystal chemistry of HOIPs is crucial for device design. While MA-based perovskites have been widely studied, there are still many open questions on the crystal chemistry of FA-based perovskites. In this work, FAPbX3 (X= Br or I) was shown to undergo a cubic (Pm3 ̅m) to tetragonal (P4/mbm) transition on cooling. Studies on the high-pressure crystallography of FAPbI3 exhibited a similar trend and further illustrated band gap tuning via external stimuli. In addition, the cubic lattice of FAPbBr3 was found to be more strained than its MA counterpart. The observed intrinsic strain was modelled with anisotropic line broadening and < 100 > was found to be the least strained direction. To explore potential applications in flexible devices, crystals of single (Pb-based) and double (Bi-based) perovskites were probed by nanoindentation and their mechanical properties, such as Young’s moduli (E) (10 – 20 GPa) and hardnesses (H) (0.2 -0.5 GPa), were determined. The mechanical responses of MA- and FA-based hybrid perovskites correlated well with the chemical and structural variations in these analogues, showing a general trend of ECl > EBr > EI and EPb > EBi. By analogy with classical inorganic perovskites, the hybrid phases can crystallise in both three-dimensional (3D) and low dimensional perovskite-like forms. To improve the stability and remove the toxicity in the current prototypical hybrid perovskites, compositional engineering was applied, focusing on non-toxic bismuth (Bi) as a viable alternative to lead (Pb) in future photovoltaic materials. We report a new layered perovskite, (NH4)3Bi2I9, which exhibits a band gap of 2.0 eV, comparable to MAPbBr3 and FAPbBr3. This work contributes to the materials design goal of more stable and eco-friendly perovskite devices.
APA, Harvard, Vancouver, ISO, and other styles
46

Fuentes, Pineda Rosinda. "Triphenylamine-based hole transport materials for perovskite solar cells." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31410.

Full text
Abstract:
The rapid development in perovskite solar cells (PSC) has generated a tremendous interest in the photovoltaic community. The power conversion efficiency (PCE) of these devices has increased from 3.8% in 2009 to a recent certified efficiency of over 20% which is mainly the product of the remarkable properties of the perovskite absorber material. One of the most important advances occurred with the replacement of the liquid electrolyte with a solid state hole conductor which enhanced PCE values and improved the device stability. Spiro-OMeTAD (2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)- 9,9'-spirobifluorene) is the most common hole transport material in perovskite solar cells. Nevertheless, the poor conductivity, low charge transport and expensive synthetic procedure and purification have limited its commercialisation. Triphenylamines (TPA) like Spiro-OMeTAD are commonly employed due to the easy oxidation of the nitrogen centre and good charge transport. Other triarylamines have similar properties to Spiro-OMeTAD but are easier to synthesise. The aim of this doctoral thesis is to investigate different types of hole transport materials in perovskite solar cells. Three different series of triphenylamine-based HTM were designed, synthesised, characterised and studied their function in perovskite solar cells. A series of five diacetylide-triphenylamine (DATPA) derivatives (Chapter 3) with different alkyl chain length in the para position was successfully synthesised through a five step synthesis procedure. A range of characterisation techniques was carried out on the molecules including; optical, electrochemical, thermal and computational methods. The results show that the new HTMs have desirable optical and electrochemical properties, with absorption in the UV, a reversible redox property and a suitable highest occupied molecular orbital (HOMO) energy level for hole transport. Perovskite solar cell device performances were studied and discussed in detail. This project studied the effect of varying the alkyl chain length on structurally similar triarylamine-based hole transport materials on their thermal, optical, electrochemical and charge transport properties as well as their molecular packing and solar cell parameters, thus providing insightful information on the design of hole transport materials in the future. The methoxy derivative showed the best semiconductive properties with the highest charge mobility, better interfacial charge transfer properties and highest PCE value (5.63%). The use of p-type semiconducting polymers are advantageous over small molecules because of their simple deposition, low cost and reproducibility. Styrenic triarylamines (Chapter 4) were prepared by the Hartwig-Buchwald coupling followed by their radical polymerization. All monomers and polymers were fully characterised through electrochemical, spectroscopic and computational techniques showing suitable HOMO energy levels and desirable optoelectrochemical properties. The properties and performance of these monomers and polymers as HTMs in perovskite solar cells were compared in terms of their structure. Despite the lower efficiencies, the polymers showed superior reproducibility on each of the device parameters in comparison with the monomers and spiro-OMeTAD. Finally, star-shaped structures combine the advantages of both small molecules, like well-defined structures and physical properties, and polymers such as good thermal stability. Two star-shaped triarylamine-based molecules (Chapter 5) were synthesised, fully characterised and their function as hole-transport materials in perovskite solar cells studied. These materials afford a PCE of 13.63% and high reproducibility and device stability. In total this work provided three series of triarylamine-based hole transport materials for perovskite solar cells application and enabled a comparison of the pros and cons of different design structures: small-molecule, polymeric and star-shaped.
APA, Harvard, Vancouver, ISO, and other styles
47

Sahner, Kathy [Verfasser]. "Modeling of p-type semiconducting perovskites for gas sensor applications / Kathy Sahner." Aachen : Shaker, 2006. http://d-nb.info/1166513262/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vega, Fleitas Erica. "Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113402.

Full text
Abstract:
[ES] Las perovskitas orgánicas-inorgánicas de haluros de metilamonio y plomo y sus mezclas han mostrado propiedades optoelectrónicas óptimas como absorbente ideal para aplicaciones fotovoltaicas. Los dispositivos solares basados en perovskita han evolucionado rápidamente, desde una eficiencia del 3.9% en 2009, al 22.7% en 2017 y con un coste de fabricación más bajo que las células solares de silicio. Una desventaja del uso de absorbentes de perovskita en dispositivos fotovoltaicos es su baja estabilidad. Las células con un alto rendimiento, pierden su eficiencia y se degradan rápidamente. Para poder producir estos materiales industrialmente es necesario realizar estudios en profundidad que mejoren la eficiencia y estabilidad. Una vía de mejora es la ingeniería composicional, estrategia que hemos empleado en la elaboración de esta tesis y que consiste en la investigación y mejora de las propiedades optoelectrónicas y morfológicas, derivadas de la sustitución y/o combinación de cationes y aniones, que constituyen el material de perovskita. Se sintetizaron polvos puros de perovskita de I, Br, Cl, a partir de los cuales se prepararon capas puras y mixtas MAPbX3-xYx, con el objetivo de mejorar sus propiedades optoelectrónicas y estructurales. Los análisis de difracción de rayos X mostraron las propiedades estructurales de los polvos cristalinos y capas puras y mixtas. Los análisis de UV-vis y fotoluminiscencia mostraron que el rango de absorción varía a lo largo del espectro visible en función del contenido del haluro en las capas. Los análisis de fotoluminiscencia y calorimetría diferencial de barrido muestran los cambios de fase de las perovskitas puras a distintas temperaturas, coincidiendo dichos cambios en ambos análisis. El análisis FESEM de las perovskitas puras mostró las diferencias morfológicas entre los polvos y capas. Siguiendo esta línea de investigación, se estudiaron con más detalle las perovskitas mixtas de yodo-bromo, con un contenido de bromo de hasta el 33%, consiguiendo ajustar el bandgap para evitar pérdidas en la absorción y mejorar las propiedades optoelectrónicas, estructurales y morfológicas. A pesar de las buenas propiedades optoelectrónicas de las perovskitas de metilamonio, el catión orgánico disminuye su estabilidad, lo que llevó a investigar otros cationes inorgánicos. Las perovskitas de cesio son una alternativa prometedora, y por esta razón hemos sintetizado capas finas de perovskitas de cesio mixtas, CsPbBr3-xIx, para determinar los efectos que produce la sustitución parcial del yodo en las propiedades físicas y la estabilidad. Se obtuvieron capas con una buena resistencia a la humedad y temperatura, favoreciendo su aplicación en el campo fotovoltaico. Se ha estudiado la sustitución parcial del catión de metilamonio con otros cationes orgánicos, como el guanidinio e imidiazolio. Se demostró que pequeñas cantidades de guanidinio mejoran la estabilidad de las capas y su morfología. Se estableció el límite de solubilidad del guanidinio en el 20%, aproximadamente, y se determinó la estructura cristalina de las mezclas. La intensidad del pico de fotoluminiscencia aumentó para mezclas por debajo del límite de solubilidad. Se obtuvieron resultados similares para la sustitución del metilamonio con pequeñas cantidades de imidazolio. Los análisis de rayos X establecieron el límite de solubilidad en aproximadamente el 10% y una mejora en la cristalinidad. Los resultados de fotoluminiscencia sugieren que pequeñas cantidades de imidazolio reducen significativamente las recombinaciones no radiativas, actuando como un pasivador efectivo. Finalmente, se muestra el proceso de fabricación de dispositivos basados en MAPbI3 y sintetizados en función de las condiciones ambientales y empleando el dietil éter como anti-solvente. Los dispositivos mostraron una eficiencia máxima del 14.73%. Se ha probado que la oxidación del spiro-OMeTAD, bajo condiciones cont
[FR] Les perovskites orgàniques-inorgàniques de halurs de metilamoni i plom i les seues mescles han mostrat propietats optoelectròniques òptimes com a absorbent ideal per a aplicacions fotovoltaiques. Els dispositius solars basats en perovskita han evolucionat ràpidament, passant d'una eficiència del 3.9% en 2009, fins al 22.7% en 2017, i amb un cost de fabricació més baix que les cèl·lules solars de silici. No obstant això, un dels desavantatges de l'ús de absorbents de perovskita és la baixa estabilitat. En general, les cèl·lules que mostren un alt rendiment, perden la seua eficiència i es degraden ràpidament. Per a que aquestos materials puguen ser produits industrialment a gran escala és necessari estudiar-los en profunditat per millorar la eficiència i estabilitat. Una de les vies de millora és l'enginyeria composicional, estratègia que hem emprat en l'elaboració d'aquesta tesi i que consisteix en la investigació i la millora de les propietats optoelectròniques i morfològiques, derivades de la substitució i/o combinació de cations i anions, que constitueixen el material de perovskita. S'han sintetitzat pols purs de perovskita per a I, Br, Cl, a partir d'els quals es van preparar capes pures i mixtes MAPbX3-xYx per a millorar les propietats optoelectròniques i estructurals. Mitjançant anàlisi de difracció de raigs X, s'estudiaren les propietats estructurals del pols cristalins i capes pures i mixtes. Els anàlisis d'UV-vis i fotoluminiscència, mostren que el rang d'absorció varia al llarg de l'espectre visible en funció del contingut de l'halur. Les anàlisis de fotoluminiscència i calorimetria diferencial mostren els canvis de fase de les perovskites pures a diferents temperatures, coincidint aquestos canvis en totes dues anàlisis. L'anàlisi FESEM de les perovskites pures, mostra les diferències morfològiques entre els pols i capes. Seguint aquesta línia d'investigació, s'estudiaren les perovskites mixtes de iode-brom, amb un contingut de brom de fins el 33%, ajustant el bandgap per a evitar pèrdues en l'absorció i millorar les propietats optoelectròniques, estructurals i morfològiques. Malgrat les bones propietats optoelectròniques de les perovskites de metilamoni, el catió orgànic disminueix la estabilitat, la qual cosa ha portat a investigar l'ús d'altres cations inorgànics. Les perovskites de cesi són una alternativa prometedora, i per aquesta raó hem sintetitzat capes fines de perovskites de cesi mixtes, CsPbBr3-xIx, per tal de determinar els efectes de la substitució parcial del iode en les propietats físiques i l'estabilitat. Es van obtenir capes amb una bona resistència a la humitat i a la temperatura, afavorint la seua aplicació en el camp fotovoltaic. S'ha estudiat també la substitució parcial del catió de metilamoni amb altres cations orgànics, com el guanidini i imidiazoli. S'ha demostrat que petites quantitats de guanidini milloren l'estabilitat i la morfologia de les capes. S'ha establert que el límit de solubilitat del guanidini es del 20%, aproximadament, i s'ha determinat l'estructura cristal·lina de les mescles. S'ha observat un augment en la intensitat del pic de fotoluminiscència per a mescles per sota del límit de solubilitat. Es van obtenir resultats similars per a la substitució del metilamoni amb petites quantitats de imidazoli. Les anàlisis de difracció de raigs X van establir el límit de solubilitat en aproximadament el 10% i una millora en la cristalinitat. Els resultats de fotoluminiscència suggereixen que petites quantitats de imidazoli redueixen les recombinacions no radiatives, actuant com un pasivador efectiu. Finalment, es mostra el procés de fabricació de dispositius basats en MAPbI3 i sintetitzats en funció de les condicions ambientals, especialment la humitat relativa i utilitzant el dietil èter com anti-solvent. Els dispositius van mostrar una eficiència màx
[EN] Organic-inorganic methylammonium lead halides perovskites and their mixtures have shown optimal optoelectronic properties as an ideal absorber for photovoltaic applications. In the last decade, solar devices based on perovskite have evolved rapidly, going from an initial efficiency of only 3.9% in 2009, to an efficiency of 22.7% in 2017 and being, at the same time, more cost-effective than silicon solar cells. However, one of the main disadvantages when using perovskite absorbents in photovoltaic devices is their low stability. In general, cells that show high performance lose their efficiency and degrade rapidly. For these materials to be scalable it is necessary to carry out in-depth studies aiming at improved efficiency and stability. One of the main sources to improve stability and efficiency is compositional engineering, a strategy employed in the elaboration of this thesis, consisting of the investigation and improvement of the optoelectronic and morphological properties, derived from the substitution and / or combination of cations and anions, which constitute the perovskite material. Pure powders of perovskite were synthesized, for I, Br, Cl, from which pure and mixed MAPbX3-xYx films were prepared in order to improve their optoelectronic and structural properties. By means of X-ray diffraction analysis, the structural properties of crystalline powders and pure and mixed films were studied. Employing UV-vis and photoluminescence analysis, it was observed that the absorption range varied along the visible spectrum as a function of the halide content in the thin films. Both, photoluminescence and differential scanning calorimetry analysis showed the changes of phase of the pure perovskites at different temperatures. FESEM characterization of the pure perovskites showed the morphological differences between the powders and the films. Following this line of research, mixed perovskites of iodine-bromine with a bromine content of up to 33% were studied in more detail. The bandgap was tuned to avoid significant losses in absorption and improve the optoelectronic, structural and morphological properties. Despite the excellent optoelectronic properties of the methylammonium perovskite, the presence of the organic cation decreases its stability, which prompted research into the use of other inorganic cations. Cesium perovskites, are a very promising alternative, and for this reason we synthesized thin films of mixed cesium perovskites, CsPbBr3-xIx, to determine the effects of the partial substitution of iodine on physical properties and stability. Films with a very good resistance to moisture and temperature were obtained, which will favor the application of this type of perovskites in the photovoltaic field. The partial replacement of the methylammonium cation with other organic cations, such as guanidinium and imidiazolium, was also studied, showing that small amounts of guanidinium significantly improve the stability of the films and their morphology. It was established that the solubility limit of guanidinium is approximately 20%, and the crystalline structure of the mixtures was determined. An increase in the intensity of the photoluminescence peak for mixtures below the solubility limit was observed. Similar results were obtained for the substitution of methylammonium with small amounts of imidazolium. X-ray diffraction analyzes established the solubility limit at approximately 10% and an improvement in crystallinity. Photoluminescence results suggest that small amounts of imidazolium significantly reduce nonradiative recombinations, acting as an effective passivator. Finally, the manufacturing process of devices based on MAPbI3 and synthesized according to environmental conditions, especially relative humidity and using diethyl ether as anti-solvent is shown. The devices presented a maximum efficiency of 14.73%, proving that the oxidation of spiro-OMeTAD, under controlled humidity conditions, can improve efficiency.
Vega Fleitas, E. (2018). Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113402
TESIS
APA, Harvard, Vancouver, ISO, and other styles
49

Wood, Simon. "Liquid crystals and novel gain materials for thin-film photonic devices." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:934d6116-6f22-4274-b718-a83e647a738c.

Full text
Abstract:
This thesis describes work to create a variety of thin-film photonic devices based upon liquid crystalline materials. Firstly, a variety of liquid crystal phases are polymer- templated by combining a liquid crystalline material with photo-polymerisable reactive mesogens. Upon photo-curing, a polymer scaffold, which is a template of the original phase, is formed with liquid crystal molecules in interstitial sites. This liquid crystal is removed to yield a polymer scaffold which can be used to template the original phase. Here, polymer-templating is used to template the smectic A liquid crystal alignment onto nematic liquid crystals for the first time; this results in materials with improved contrast ratios and faster response times than conventional nematic devices. Next, a study is performed to compare the electro-optic properties of polymer-templated and polymer-stabilised chiral nematic liquid crystals. The enhanced tuning range of polymer-templated liquid crystals is applied to create a polymer-templated liquid crystal laser and to electrically tune its emission wavelength. Subsequently, thin-film elastomeric liquid crystal lasers are created. The lasing wavelength of these films can be reversibly and selectively tuned without hysteresis by subjecting them to a mechanical stress. Finally, work is performed to study the potential of inorganic materials for use in liquid crystal lasers. Transition metal clustomesogens (liquid crystalline materials that contain highly emissive molybdenum clusters) and inorganic-organic perovskites are considered here. The dispersal and emissive properties of clustomesogens in liquid crystals are studied, and they are used to create circularly polarised light sources with a polarisation that can be controlled using electric fields. Layered structures of inorganic- organic perovskite and liquid crystal are created; these exhibit enhanced amplified spontaneous emission. Then, perovskites are used as the gain materials in distributed feedback lasers for the first time. These lasers may be wavelength-tuned by varying the grating spacing of the structure.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Jiewei. "Investigating low cost hole transporting materials for perovskite solar cells." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:51073048-faed-439d-9ce5-cbe4c55fe4b2.

Full text
Abstract:
Organic-inorganic halide perovskites (CH3NH3PbI3) have attracted strong attention of photovoltaic research community since 2012, benefiting from the low cost of organolmetal halide perovskite precursors and their simple solution processability. However, the chemical instability of this material, especially in high humidity environment, restricts its photovoltaic application in industry. This thesis is focusing on employing novel hole transporting materials (HTMs) for perovskite solar cells (PSCs). Besides their main responsibility acting as a hole selective layer increasing the photovoltaic performance, HTMs can also play an additional role serving as moisture blocking layers, enhancing the stability of PSCs. Chapter 2 presents the general background knowledge of the physics of solar cells, delving deeper into the working principle of PSCs and related researches about the HTMs and stability of the devices. In chapter 3, the device fabrication techniques and the characterization methods used are presented in details. Commencing from chapter 4, the application of two kinds of HTMs and related studies are discussed. Chapter 4 demonstrates the use of a p-type organic material, PEDOT, on 'regular' structured PSCs, achieving devices with decent power conversion efficiency (PCE) but relatively huge hysteresis and low stabilized power output (SPO). Stability analysis shows this organic material provides a better protection of the perovskite film comparing to that of doped Spiro-OMeTAD, which is the most generally used HTM. Chapter 5 presents a study about CuSCN, an inorganic p-type semiconductor, being applied in PSCs as HTM. The CuSCN based devices show comparable performance to that of Spiro-OMeTAD based devices, but an interfacial degradation mechanism is found to facilitate the perovskite degradation even in inert atmosphere. A facile sealing protocol is established to deal with this problem, leading to super stable photovoltaic devices under thermal stressing. The following chapter 6 demonstrates a CuI doping technique to improve the hole transporting effectiveness of CuSCN layer. This doping technique modifies the morphology of CuSCN film and leads to a substantial improvement in the photovoltaic performance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography