Academic literature on the topic 'Perovskite photovoltaic cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perovskite photovoltaic cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perovskite photovoltaic cells"

1

Dai, Xianfeng, Ke Xu, and Fanan Wei. "Recent progress in perovskite solar cells: the perovskite layer." Beilstein Journal of Nanotechnology 11 (January 6, 2020): 51–60. http://dx.doi.org/10.3762/bjnano.11.5.

Full text
Abstract:
Perovskite solar cells (PSCs) are set to be game changing components in next-generation photovoltaic technology due to their high efficiency and low cost. In this article, recent progress in the development of perovskite layers, which are the basis of PSCs, is reviewed. Achievements in the fabrication of high-quality perovskite films by various methods and techniques are introduced. The reported works demonstrate that the power conversion efficiency of the perovskite layers depends largely on their morphology and the crystalline quality. Furthermore, recent achievements concerning the scalability of perovskite films are presented. These developments aim at manufacturing large-scale perovskite solar modules at high speed. Moreover, it is shown that the development of low-dimensional perovskites plays an important role in improving the long-term ambient stability of PSCs. Finally, these latest advancements can enhance the competitiveness of PSCs in photovoltaics, paving the way for their commercialization. In the closing section of this review, some future critical challenges are outlined, and the prospect of commercialization of PSCs is presented.
APA, Harvard, Vancouver, ISO, and other styles
2

McDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti, and Vladimir Svrcek. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (October 18, 2019): 1481. http://dx.doi.org/10.3390/nano9101481.

Full text
Abstract:
Over the past decade, lead halide perovskites have emerged as one of the leading photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional perovskites, where at least one of the structural dimensions is measured on the nanoscale, have demonstrated significantly higher stabilities, and although their power conversion efficiencies are slightly lower, these materials also open up the possibility of quantum-confinement effects such as carrier multiplication. Furthermore, both bulk perovskites and low-dimensional perovskites have been demonstrated to form hybrids with silicon nanocrystals, where numerous device architectures can be exploited to improve efficiency. In this review, we provide an overview of perovskite solar cells, and report the current progress in nanoscale perovskites, such as low-dimensional perovskites, perovskite quantum dots, and perovskite-nanocrystal hybrid solar cells.
APA, Harvard, Vancouver, ISO, and other styles
3

Jeon, Il, Kyusun Kim, Efat Jokar, Minjoon Park, Hyung-Woo Lee, and Eric Wei-Guang Diau. "Environmentally Compatible Lead-Free Perovskite Solar Cells and Their Potential as Light Harvesters in Energy Storage Systems." Nanomaterials 11, no. 8 (August 15, 2021): 2066. http://dx.doi.org/10.3390/nano11082066.

Full text
Abstract:
Next-generation renewable energy sources and perovskite solar cells have revolutionised photovoltaics research and the photovoltaic industry. However, the presence of toxic lead in perovskite solar cells hampers their commercialisation. Lead-free tin-based perovskite solar cells are a potential alternative solution to this problem; however, numerous technological issues must be addressed before the efficiency and stability of tin-based perovskite solar cells can match those of lead-based perovskite solar cells. This report summarizes the development of lead-free tin-based perovskite solar cells from their conception to the most recent improvements. Further, the methods by which the issue of the oxidation of tin perovskites has been resolved, thereby enhancing the device performance and stability, are discussed in chronological order. In addition, the potential of lead-free tin-based perovskite solar cells in energy storage systems, that is, when they are integrated with batteries, is examined. Finally, we propose a research direction for tin-based perovskite solar cells in the context of battery applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Samiul Islam, Md, K. Sobayel, Ammar Al-Kahtani, M. A. Islam, Ghulam Muhammad, N. Amin, Md Shahiduzzaman, and Md Akhtaruzzaman. "Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D." Nanomaterials 11, no. 5 (May 5, 2021): 1218. http://dx.doi.org/10.3390/nano11051218.

Full text
Abstract:
Recent achievements, based on lead (Pb) halide perovskites, have prompted comprehensive research on low-cost photovoltaics, in order to avoid the major challenges that arise in this respect: Stability and toxicity. In this study, device modelling of lead (Pb)-free perovskite solar cells has been carried out considering methyl ammonium tin bromide (CH3NH3SnBr3) as perovskite absorber layer. The perovskite structure has been justified theoretically by Goldschmidt tolerance factor and the octahedral factor. Numerical modelling tools were used to investigate the effects of amphoteric defect and interface defect states on the photovoltaic parameters of CH3NH3SnBr3-based perovskite solar cell. The study identifies the density of defect tolerance in the absorber layer, and that both the interfaces are 1015 cm−3, and 1014 cm−3, respectively. Furthermore, the simulation evaluates the influences of metal work function, uniform donor density in the electron transport layer and the impact of series resistance on the photovoltaic parameters of proposed n-TiO2/i-CH3NH3SnBr3/p-NiO solar cell. Considering all the optimization parameters, CH3NH3SnBr3-based perovskite solar cell exhibits the highest efficiency of 21.66% with the Voc of 0.80 V, Jsc of 31.88 mA/cm2 and Fill Factor of 84.89%. These results divulge the development of environmentally friendly methyl ammonium tin bromide perovskite solar cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Fangfang, Qing Chang, Yikai Yun, Sizhou Liu, You Liu, Jungan Wang, Yinyu Fang, et al. "Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance." Research 2021 (May 28, 2021): 1–11. http://dx.doi.org/10.34133/2021/9797053.

Full text
Abstract:
Halide perovskites with low-dimensionalities (2D or quasi-2D) have demonstrated outstanding stabilities compared to their 3D counterparts. Nevertheless, poor charge-transporting abilities of organic components in 2D perovskites lead to relatively low power conversion efficiency (PCE) and thus limit their applications in photovoltaics. Here, we report a novel hole-transporting low-dimensional (HT2D) perovskite, which can form a hole-transporting channel on the top surface of 3D perovskite due to self-assembly effects of metal halide frameworks. This HT2D perovskite can significantly reduce interface trap densities and enhance hole-extracting abilities of a heterojunction region between the 3D perovskite and hole-transporting layer. Furthermore, the posttreatment by HT2D can also reduce the crystal defects of perovskite and improve film morphology. As a result, perovskite solar cells (PSCs) can effectively suppress nonradiative recombination, leading to an increasement on photovoltage to >1.20 V and thus achieving >20% power conversion efficiency and >500 h continuous illumination stability. This work provides a pathway to overcome charge-transporting limitations in low-dimensional perovskites and delivers significant enhancements on performance of PSCs.
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Ping, Huan-Xin Peng, Zhuang-Hao Zheng, Zi-Hang Chen, Shi-Jie Tan, Xing-Ye Chen, Yan-Di Luo, Zheng-Hua Su, Jing-Ting Luo, and Guang-Xing Liang. "Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells." Nanomaterials 9, no. 12 (December 11, 2019): 1760. http://dx.doi.org/10.3390/nano9121760.

Full text
Abstract:
Lead-free double perovskites have been considered as a potential environmentally friendly photovoltaic material for substituting the hybrid lead halide perovskites due to their high stability and nontoxicity. Here, lead-free double perovskite Cs2AgBiBr6 films are initially fabricated by single-source evaporation deposition under high vacuum condition. X-ray diffraction and scanning electron microscopy characterization show that the high crystallinity, flat, and pinhole-free double perovskite Cs2AgBiBr6 films were obtained after post-annealing at 300 °C for 15 min. By changing the annealing temperature, annealing time, and film thickness, perovskite Cs2AgBiBr6 solar cells with planar heterojunction structure of FTO/TiO2/Cs2AgBiBr6/Spiro-OMeTAD/Ag achieve an encouraging power conversion efficiency of 0.70%. Our preliminary work opens a feasible approach for preparing high-quality double perovskite Cs2AgBiBr6 films wielding considerable potential for photovoltaic application.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Ming-Chung, Ching-Mei Ho, Kai-Chi Hsiao, Shih-Hsuan Chen, Yin-Hsuan Chang, and Meng-Huan Jao. "Antisolvent Engineering to Enhance Photovoltaic Performance of Methylammonium Bismuth Iodide Solar Cells." Nanomaterials 13, no. 1 (December 23, 2022): 59. http://dx.doi.org/10.3390/nano13010059.

Full text
Abstract:
High absorption ability and direct bandgap makes lead-based perovskite to acquire high photovoltaic performance. However, lead content in perovskite becomes a double-blade for counterbalancing photovoltaic performance and sustainability. Herein, we develop a methylammonium bismuth iodide (MBI), a perovskite-derivative, to serve as a lead-free light absorber layer. Owing to the short carrier diffusion length of MBI, its film quality is a predominant factor to photovoltaic performance. Several candidates of non-polar solvent are discussed in aspect of their dipole moment and boiling point to reveal the effects of anti-solvent assisted crystallization. Through anti-solvent engineering of toluene, the morphology, crystallinity, and element distribution of MBI films are improved compared with those without toluene treatment. The improved morphology and crystallinity of MBI films promote photovoltaic performance over 3.2 times compared with the one without toluene treatment. The photovoltaic device can achieve 0.26% with minor hysteresis effect, whose hysteresis index reduces from 0.374 to 0.169. This study guides a feasible path for developing MBI photovoltaics.
APA, Harvard, Vancouver, ISO, and other styles
8

Shin, Dong, and Suk-Ho Choi. "Recent Studies of Semitransparent Solar Cells." Coatings 8, no. 10 (September 20, 2018): 329. http://dx.doi.org/10.3390/coatings8100329.

Full text
Abstract:
It is necessary to develop semitransparent photovoltaic cell for increasing the energy density from sunlight, useful for harvesting solar energy through the windows and roofs of buildings and vehicles. Current semitransparent photovoltaics are mostly based on Si, but it is difficult to adjust the color transmitted through Si cells intrinsically for enhancing the visual comfort for human. Recent intensive studies on translucent polymer- and perovskite-based photovoltaic cells offer considerable opportunities to escape from Si-oriented photovoltaics because their electrical and optical properties can be easily controlled by adjusting the material composition. Here, we review recent progress in materials fabrication, design of cell structure, and device engineering/characterization for high-performance/semitransparent organic and perovskite solar cells, and discuss major problems to overcome for commercialization of these solar cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Diwen, Qiaohong Li, and Kechen Wu. "Ethylammonium as an alternative cation for efficient perovskite solar cells from first-principles calculations." RSC Advances 9, no. 13 (2019): 7356–61. http://dx.doi.org/10.1039/c9ra00853e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sanders, S., D. Stümmler, J. D. Gerber, J. H. Seidel, G. Simkus, M. Heuken, A. Vescan, and H. Kalisch. "Showerhead-Assisted Chemical Vapor Deposition of Perovskite Films for Solar Cell Application." MRS Advances 5, no. 8-9 (2020): 385–93. http://dx.doi.org/10.1557/adv.2020.126.

Full text
Abstract:
AbstractIn the last years, perovskite solar cells have attracted great interest in photovoltaic (PV) research due to their possibility to become a highly efficient and low-cost alternative to silicon solar cells. Cells based on the widely used Pb-containing perovskites have reached power conversion efficiencies (PCE) of more than 20 %. One of the major hurdles for the rapid commercialization of perovskite photovoltaics is the lack of deposition tools and processes for large areas. Chemical vapor deposition (CVD) is an appealing technique because it is scalable and furthermore features superior process control and reproducibility in depositing high-purity films. In this work, we present a novel showerhead-based CVD tool to fabricate perovskite films by simultaneous delivery of precursors from the gas phase. We highlight the control of the perovskite film composition and properties by adjusting the individual precursor deposition rates. Providing the optimal supply of precursors results in stoichiometric perovskite films without any detectable residues.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Perovskite photovoltaic cells"

1

Kwak, Chankyu. "Improving the sustainability of organic and perovskite photovoltaic cells." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15871/.

Full text
Abstract:
Many researchers have studied conjugated polymer-based photovoltaic cells and perovskite-based photovoltaic cells. They have shown lower efficiencies than inorganic photovoltaic cells so far. However, they are attractive because of their potential low cost and easy process. In order to fabricate organic photovoltaic cells, organic solvents are typically used, which results in significant waste solvent being produced. These are moderately expensive and many are toxic. Perovskite photovoltaics commonly incorporate lead, which is toxic and may hinder their adoption. This thesis aims reduce the need for organic solvents during organic photovoltaic cell manufacture by employing water-soluble conjugated polymers as an alternative. It also seeks to improve the efficiency of the devices such the less solvents are required per Watt produced. Reducing the usage of organic solvents would reduce fabrication and solvent treatment costs. Bismuth perovskites are also studied for use in perovskite photovoltaic cells to replace the toxic lead with a less toxic material. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer used in both types of solar cells has been characterised in order to understand the influence of moisture and oxygen in air on the layer. Eight different thermally annealed PEDOT:PSS films were fabricated namely: as cast, 50, 75, 100, 125, 150, 175, and 200 °C. UV-vis absorption and conductvity were measured. Absorption intensity increased very slightly as thickness increased. In order to develop fabrication skills and understand the principles of these devices, P3HT bulk-heterojunction photovoltaic cells were prepared. The devices were fabricated with different blend ratios both in air and in an oxygen free glovebox. P3HT:PCBM blend ratios of 1:0.6 and 1:0.8 showed the best efficiencies. In this thesis, the synthesis of a new low band gap polyelectrolyte based on fluorene and dithiano-benzothiadiazole is described. Poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-alt-phenylen)-ran-(4,7-di-2-thienyl-2,1,3-benzothiadiazole-alt-phenylene)] is an anionic charged conjugated polyelectrolyte and was synthesised via Suzuki-cross coupling. Sulfonate groups were introduced to help the low band gap polyelectrolyte to dissolve in water. The aim was a new bulk-heterojunction material to be applied in organic photovoltaic cells. It has a strong absorption peak at 372 nm, a weaker one at 530 nm and a photoluminescence emission peak at 647 nm. Although the conjugated polyelectrolyte did not show any photovoltaic effects as an active layer, it resulted in an improvement of efficiency when used as an additive in the PEDOT:PSS hole transporting layer in the devices. There is an efficiency gain as a result of improved carrier generation and charge transport across the interface into the hole transporting layer which is optimised at a CPE concentration close to 5 mg/ml. Improving the efficiency will improve the sustainability of the devices by reducing the materials required and waste produced per Watt of power produced. Although lead-based perovskites have shown high performance in photovoltaic cells, they have led to concerns regarding their toxicity. Hybrid perovskites with reduced lead content are currently being investigated as a strategy to overcome this issue and to this end we evaluate the use of bismuth as a possible candidate for lead substitution. A series of hybrid perovskite films with the general composition MA(PbyBi1-y)I3-xClx were characterised by their basic optical and structural properties using UV-vis spectroscopy, scanning electron microscopy and grazing incidence wide angle X-ray scattering. The bismuth perovskite precursors form a perovskite crystal structure upon annealing, with a corresponding optical bandgap, for MABiI3, of around 2 eV. Whilst the structural and optical characterisation is promising, preliminary photovoltaic cell tests show power conversion efficiencies below 0.01% with a maximum VOC of 0.78 V. It was suggested that such low overall efficiencies reflect a competition between precursor conversion and material de-wetting from the substrate that occurs during perovskite formation, the overall outcome of which is severely limited photocurrent. In the context of current processing methods, these factors may limit the general applicability of hybrid bismuth perovskites in photovoltaic applications. A blend ratio of 3:1 MAI:BiCl3 used to make a perovskite based photovoltaic cell and annealed at 90 °C showed the best results in this research but it was very low efficiency.
APA, Harvard, Vancouver, ISO, and other styles
2

Brivio, Federico. "Atomistic modelling of perovskite solar cells." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698992.

Full text
Abstract:
This thesis focuses on the study of hybrid perovskites properties for the purposes of photovoltaic applications. During the almost four years PhD project that has lead to this thesis the record photovoltaic efficiency for this technology has in- creased from 10.9% to 22.1%. Such a significant pace of development can be com- pared with few other materials. It is for this reason that hybrid perovsites have at- tracted impressive research efforts. We approached the study of such unique ma- terials using computational ab-initio techniques, and in particular Density Func- tional Theory. We considered different materials, but most of the attention was concentrated on MAPI (CH 3 NH 3 PbI 3 ). The results are divided in three chapters, each exploring a different material prop- erty. The first chapter reports the electronic structure of the material bulk, sur- faces, and other electronic-related properties such as the rotation barrier for the organic component and the Berry phase polarization. The second chapter focuses on the vibrational properties primary employing the harmonic approximation but also extends to the quasi-harmonic approximation. The outcome of these calculations permitted us to calculate theoretical IR and Ra- man spectra which are in good agreement with different experimental measure- ments. The quasi-harmonic approximation was used to calculate temperature dependent properties, such as the Grüneisen parameter, the thermal dependence of heat capacity and the thermal volumetric expansion. The third and last chapter reviews the thermodynamic properties of binary halide compounds. The cobination of ab-initio calculations with the generalised quasi- chemical approximation has allowed to study the stability of mixed composition perovskites. The results certified a set of stable structures that could stand at the base of observed phenomena of photo-degradation of hybrid perovskite based devices. All three chapters have been written to understand the chemical and physical behaviour of hybrid perovskites and to extended and contribute to the under- standing of experimental work.
APA, Harvard, Vancouver, ISO, and other styles
3

Mankowski, Trent, and Trent Mankowski. "Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/624135.

Full text
Abstract:
Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, ~85% optical transmittance and ~25 Ω/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that were successful posed difficulties integrating with CuNW-based TCEs. Those shortcomings are discussed, and how future work might skirt the issues revealed here to produce a very low cost, high performance perovskite solar cell.
APA, Harvard, Vancouver, ISO, and other styles
4

Saliba, Michael. "Plasmonic nanostructures and film crystallization in perovskite solar cells." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fdb36a9e-ddf5-4d27-a8dc-23fffe32a2c5.

Full text
Abstract:
The aim of this thesis is to develop a deeper understanding and the technology in the nascent field of solid-state organic-inorganic perovskite solar cells. In recent years, perovskite materials have emerged as a low-cost, thin-film technology with efficiencies exceeding 16% challenging the quasi-paradigm that high efficiency photovoltaics must come at high costs. This thesis investigates perovskite solar cells in more detail with a focus on incorporating plasmonic nanostructures and perovskite film formation. Chapter 1 motivates the present work further followed by Chapter 2 which offers a brief background for solar cell fabrication and characterisation, perovskites in general, perovskite solar cells in specific, and plasmonics. Chapter 3 presents the field of plasmonics including simulation methods for various core-shell nanostructures such as gold-silica and silver-titania nanoparticles. The following Chapters 4 and 5 analyze plasmonic core-shell metal-dielectric nanoparticles embedded in perovskite solar cells. It is shown that using gold@silica or silver@titania NPs results in enhanced photocurrent and thus increased efficiency. After photoluminescence studies, this effect was attributed to an unexpected phenomenon in solar cells in which a lowered exciton binding energy generates a higher fraction of free charge. Embedding thermally unstable silver NPs required a low-temperature fabrication method which would not melt the Ag NPs. This work offers a new general direction for temperature sensitive elements. In Chapters 6 and 7, perovskite film formation is studied. Chapter 6 shows the existence of a previously unknown crystalline precursor state and an improved surface coverage by introducing a ramped annealing procedure. Based on this, Chapter 7 investigates different perovskite annealing protocols. The main finding was that an additional 130°C flash annealing step changed the film crystallinity dramatically and yielded a higher orientation of the perovskite crystals. The according solar cells showed an increased photocurrent attributed to a decrease in charge carrier recombination at the grain boundaries. Chapter 8 presents on-going work showing noteworthy first results for silica scaffolds, and layered, 2D perovskite structures for application in solar cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Almora, Rodríguez Osbel. "Hysteresis and Capacitive Features of Perovskite Solar Cells." Doctoral thesis, Universitat Jaume I, 2020. http://hdl.handle.net/10803/669272.

Full text
Abstract:
In the present work, anomalous distortions occurring in the current-voltage characteristic of perovskite solar cells (PSCs), usually called J-V curve hysteresis, are studied by several methods. This includes dynamic direct current (DC) mode J-V experiments and impedance spectroscopy (IS) analyses in dark and under illumination. The J-V curves of PSCs were measured under different conditions showing capacitive hysteretic currents. This is related with low frequency excess capacitance in the IS spectra. These two features are correlated with the response of mobile ions in space charge regions close to the interfaces. The large values of capacitance under illumination in the sub-Hz regime were explained in terms of mobile ions space charges and chemical capacitances assuming a proportionality between the number of ionized/activated mobile ions and the concentration of charge carriers and photon fluence.
En el presente trabajo se estudian por varios métodos las distorsiones anómalas en la característica de corriente-voltaje de las celdas solares de perovskita (PSC), típicamente llamada histéresis de J-V. Esto incluye experimentos dinámicos de J-V en modo de corriente continua (DC) y análisis de espectroscopía de impedancia (IS) en oscuridad y bajo iluminación. Las curvas J-V en oscuridad de las PSCs exhiben corrientes capacitivas, relacionadas con un exceso de capacitancia de baja frecuencia en los espectros de IS. Estas dos características están correlacionadas con la respuesta de iones móviles en regiones espaciales de carga hacia las interfaces. Los grandes valores de capacitancia bajo iluminación a frecuencias por debajo de las unidades de Hz se explicaron en términos de regiones de cargas espaciales de iones móviles y capacitancias químicas, suponiendo una proporcionalidad entre el número de iones móviles ionizados/activados y la concentración de portadores de carga y flujo de fotones.
APA, Harvard, Vancouver, ISO, and other styles
6

Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.

Full text
Abstract:
Ce travail de thèse a pour sujet la conception des cellules solaires photovoltaïques à base de pérovskite hybride par le biais de la technologie d’impression jet d’encre. Les deux premiers chapitres font la présentation du contexte de la thèse, à savoir l’alimentation d’un réseau autonome de capteurs, et passent en revue les aspects scientifiques des technologies jet d’encre et photovoltaïque de nouvelle génération. Le troisième chapitre présente la mise au point d’une cellule photovoltaïque à l’état de l’art et son évolution vers une architecture imprimable à basse température de recuit. La problématique de la stabilité des cellules photovoltaïques à pérovskite est aussi abordée. La dernière partie présente les différents aspects et problématiques de l’impression par jet d’encre des trois couches internes d’une cellule solaire pérovskite. Au terme de ce travail la possibilité d’imprimer des cellules solaires pérovskites avec des rendements supérieurs à 10 % a été démontrée, le tout en condition ambiante et à basse température
This thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
APA, Harvard, Vancouver, ISO, and other styles
7

Aranda, Alonso Clara. "Bulk and Interfacial Engineering to Enhance Photovoltaic Properties of Iodide and Bromide Perovskite Solar Cells." Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/668135.

Full text
Abstract:
Perovskite solar cells (PSCs) have come to the forefront of photovoltaic technology due to their impressive power conversion efficiency (PCE) of up to 25%. This high efficiency comes together with great advances regarding large-scale deposition methods and a critical enhancement of device stabilities. However, important challenges remain in the shadows for commercialization of this technology. his thesis addresses issues related with the stability under real operation condicions and those associated with the interfacial interactions. For both purposes, two main perovskite materials based in methylammonium lead halides (MAPbX3) were optimized: MAPbI3 and MAPbBr3. Coupled with a wide number of instrumentak techniques for bulk and interfacial characterization, a robust method to fabricate PSCs under moisture conditions was developed using iodide derivatives. On the other han, interfacial engineering with lithium additives in MAPbBr3 devices promoted a decrease in recombination mechanisms allowing to achieve a record open circuit poetential approaching 1.6 V.
Las celdas solares de perovskita han alcanzado la primera línea de la tecnología fotovoltaica debido a las impresionantes eficiencias energéticas conseguidas, superando el 25% en la actualidad. Estos valores vienen acompañados de grandes avances como los métodos de depósito de los films a gran escala y a una mejora considerable en la estabilidad de estos dispositivos. Sin embargo, aún existen numerosas cuestiones que deben solucionarse para conseguir una comercialización real de esta tecnología. sta tesis doctoral aborda las cuestiones relacionadas precisamente con la estabilidad de los dispositivos bajo condiciones reales de operación, así como aquellas cuestiones relacionadas con las interacciones interfaciales. Para la consecución de ambos objetivos, dos formulaciones de perovskita han sido optimizadas con éxito: MAPbI3 y MAPbBr3. Junto con una amplia variedad de técnicas instrumentales de caracterización, tanto del bulk como de las regiones interfaciales, se ha desarrollado un método para la obtención de altas eficiencias bajo condiciones de humedad, así como la reducción de procesos de recombinación interfaciales que han permitido la obtención de valores récord de fotovoltage, alcanzanco los 1.6 V.
APA, Harvard, Vancouver, ISO, and other styles
8

Dindault, Chloe. "Development of coevaporated hybrid perovskite thin films for solar cells applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX079/document.

Full text
Abstract:
Les pérovskites hybrides célèbrent cette année leurs 10e anniversaire dans le domaine du photovoltaïque. En plus de la progression inégalée des rendements des cellules solaires, les pérovskites ont des propriétés optoélectroniques ajustables et peuvent être fabriquées par des procédés bas coûts, ce qui en fait de sérieuses candidates pour les cellules solaires multijunctions. Le réseau cristallin caractéristique des pérovskites hybrides offre une certaine liberté, supportant l’introduction partielle de cations et d’ions halogénures multiples. L’ajustement de la composition d’un matériau pérovskite se traduit par un ajustement de ces propriétés électroniques dont notamment sa structure de bandes. En adaptant la composition il est possible d’obtenir un matériau pérovskite avec une bande interdite de 1,7 eV qui serait parfaitement adapté pour une cellule tandem à base de Silicium cristallin. Les films minces de pérovskites peuvent être fabriqués par une grande diversité de techniques de dépôt, à partir de précurseurs ‘bon marché’ (CH3NH3I et PbI2 par exemple), par des procédés à basse température. Même si la grande majorité des films de pérovskites sont obtenus par la méthode d’enduction centrifuge, celle-ci ne permet pas l’obtention de films homogènes, sur grandes surfaces et de façon répétable. Etant donné l’enjeu industriel qui attend les pérovskites et l’intérêt croissant pour les structures tandems Silicium/Pérovskite, les méthodes sans solvant semblent plus adaptées. Déjà très largement utilisé dans l’industrie des OLEDs, le procédé de coévaporation thermique semble constituer une solution commercialement viable. Publiée pour la première fois en 2013, la synthèse par coévaporation des pérovskites est pour le moment encore étudiée par peu de groupes, car nécessitant des équipements plus coûteux. La présente thèse vise à mettre en place et développer la technique de coévaporation pour la fabrication de films de pérovskites hybrides pour des applications en cellules solaires.Afin d’évaluer la faisabilité du procédé, nous avons commencé notre travail sur un réacteur de démonstration, ce qui nous a permis d’appréhender la réponse à la sublimation des deux précurseurs. Nous avons très vite identifié le comportement du sel organique CH3NH3I comme étant problématique car difficilement contrôlable (s’évaporant sous forme de « nuage »), comme nous l’avions lu dans la littérature. En six mois d’utilisation de ce réacteur, nous avons fabriqué des films de pérovskites ayant permis d’atteindre des rendements de 9% sur des cellules solaires, malheureusement avec une faible reproductibilité (que nous expliquons en partie par le caractère aléatoire de l’évaporation du composé organique CH3NH3I). Nous nous sommes trouvés dans l’incapacité de comprendre plus en profondeur le procédé à cause d’un manque de fonctionnalités de l’équipement. Grâce à ces différents retours d’expérience nous avons pu concevoir, en étroite collaboration avec l’équipementier, un réacteur semi-industriel dédié à la fabrication de films de perovskites par coévaporation. Suite à sa mise en place, nous nous somme focalisé sur la problématique de la reproductibilité dans nos expériences en essayant de diminuer l’impact du nuage organique. Bien que les efficacités atteintes en cellules solaires pour des films coévaporés fussent moindres que pour des films déposés par la technique classique d’enduction centrifuge, nous soupçonnions néanmoins une meilleure homogénéité des films obtenus par voie sèche. Nous avons ainsi intégré à cette thèse une étude comparative voie liquide/voie sèche par le biais d’une technique de spectromicroscopie rayons X en Synchrotron
Hybrid perovskites celebrate this year their 10-year anniversary in the photovoltaic field. Besides the unprecedented rise in solar cells efficiencies, perovskite materials have tunable optical properties and can be manufactured at low cost, making them very promising candidates for the high efficiency, multijunction solar cells strategy. Perovskite crystal structure offers a relative degree of freedom, allowing the partial integration of multiple cations and halide ions. This chemical composition tuning translates into a bandgap tuning. Through fine chemical engineering, the 1.7 eV requirement for a c-Si-based tandem device can be achieved. Perovskite thin films can be prepared by a large variety of deposition techniques, from low cost precursors (CH3NH3I and PbI2 for instance), through low-temperature processes. While most of the reported works on perovskite thin films are based on the basic wet-process spincoating technique, this latter hardly allows large scale, homogeneous and reproducible deposition. With the future challenge of industrialization and the increasing interest for the Silicon/Perovskite tandem approach, solvent-free methods appear more suitable. Already widely implemented in the OLED industry, coevaporation stands as a viable option for perovskites’ future. Reported for the first time in 2013, coevaporated perovskites are still scarcely studied compared to wet-based techniques, requiring more expensive set ups. In the present thesis, we implemented and developed the coevaporation process to fabricate perovskite thin films for solar cells applications.Starting off on a proof-of-concept reactor to assess the feasibility of the technique, we got accustomed to the perovskite precursors behaviour and identify very early on the organic precursor to be hardly manageable, as reported in the literature. In six months, we were nonetheless able to obtain nice perovskite films leading to 9% efficient photovoltaic devices, unfortunately with a poor reproducibility that we think to be partially due to the cloud vapour behaviour of CH3NH3I. We eventually found ourselves missing some features on the equipment, preventing us from accurately get a grasp on the process. From this feedback we then designed, hand in hand with the manufacturer, a dedicated semi-industrial equipment for perovskite coevaporation. Following its implementation, we then focused on establishing the reproducibility of the method, trying to mitigate the parasitic effect of the organic compound. Even though the efficiencies in solar cells were still slightly lower for coevaporated perovskites, with respect to classical spincoated ones, we expected the material homogeneity to be in favour of the vacuum-based process. We then eventually integrated to this thesis a comparative study between wet- and dry-processed perovskite films using a Synchrotron-based X-ray spectromicroscopy technique
APA, Harvard, Vancouver, ISO, and other styles
9

Rathod, Siddharth Narendrakumar. "Structure Stability and Optical Response of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496189488934021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baig, Faisal. "Numerical analysis for efficiency enhancement of thin film solar cells." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/118801.

Full text
Abstract:
[ES] Desde hace una década se esta investigando intensamente la forma de mejorar la eficiencia de conversión de energía (PCE) de las células solares de silicio (Si) y reducir sus precios. Sin embargo, a pesar de las mejoras obtenidas, la fabricación de células solares de Si sigue siendo costosa y puede rebajarse usando materiales en forma de capa fina. Por ello la búsqueda de materiales absorbentes alternativos, no tóxicos, abundantes en la naturaleza y con buenos rendimientos de conversión se ha intensificado en los últimos años. Entre los diferentes materiales absorbentes el sulfuro de estaño (SnS), con una banda prohibida de 1.3 eV cercana a la óptima, es un candidato adecuado para la conversión fotovoltaica. Pero para células experimentales de SnS el rendimiento alcanzado hasta ahora es de 4.6%, que es mucho menos que el PCE para dispositivos de silicio, mientras que entre otras células híbridas (orgánicas-no orgánicas) como la perovskita de metilamonio de plomo y yodo (MAPbI3) se demuestra que es un candidato adecuado con PCE que alcanza un valor del 23%. Aparte de la estabilidad, uno de los problemas para la comercialización de células de MAPbI3 es la naturaleza tóxica del plomo (Pb). Por este motivo, se ha utilizado el análisis numérico para revisar los parámetros de diseño de las células solares de perovskita híbrida sustituyendo el absorbente MAPbI3 por MASnI3 y estudiar el efecto del resto de parámetros de diseño en el rendimiento de estas células solares. Hay varios softwares de simulación disponibles que se utilizan para el análisis numérico de células solares. En este trabajo hemos usamos un software llamado "A Solar Cell Capacitance Simulator" (SCAPS), está disponible de forma gratuita y es muy popular entre la comunidad científica y tecnológica. Para lograr un diseño efectivo para una célula solar eficiente, se propuso una aproximación numérica basada en la mejora de la PCE de una célula solar experimental. Esto se hizo reproduciendo los resultados para la célula solar diseñada experimentalmente en un entorno SCAPS con estructura p-SnS / n-CdS con una eficiencia de conversión del 1,5%. Después de la reproducción de los resultados experimentales, el rendimiento del dispositivo se optimizó ajustando el grosor de la capa absorbente y la capa tampón, la el tiempo de vida de los portadores minoritarios, la concentración del dopado en las capas absorbente, tampón y en la capa de la ventana. Mediante la optimización gradual de los parámetros del dispositivo, se alcanzó un valor de 14.01% en PCE de células solares diseñadas con SCAPS con arquitectura p-SnS / n-CdS / n-ZnO. A partir del análisis, se encontró que la PCE de una célula solar depende en gran medida de la concentración de dopaje de la capa absorbente, el espesor de la capa absorbente y los defectos de la interfaz. Sobre la base de los resultados obtenidos, se realizó un análisis para determinar el efecto de la recombinación de la interfaz en el rendimiento de las células solares y cómo se puede controlar. Para realizar esta tarea, se realizó un análisis para la selección de la capa tampón adecuada para la célula solar de perovskita metilamonio de estaño y yodo (MASnI3) y se encontró que el PCE de la célula solar también depende de la alineación de la banda entre el absorbedor y la capa de tampón. Por otra parte, se ha propuesto una nueva estructura para la célula solar de perovskita libre de Pb (contacto posterior / MASnBr3 / MASnI3 /CdZnS / FTO) con un PCE de 18.71% para un espesor del absorbedor de 500 nm y una concentración de dopado en el aceptor de 1x1016 cm-3. Los resultados obtenidos en esta tesis proporcionarán una guía para que los investigadores experimentales puedan construir células solares más eficientes.
[CAT] Des de fa una dècada s'està investigant intensament la forma de millorar l'eficiència de conversió d'energia (PCE) de les cèl·lules solars de silici (Si) i reduir els seus preus. No obstant això, tot i les millores obtingudes, la fabricació de cèl·lules solars de Si segueix sent costosa i pot rebaixar-se usant materials en forma de capa fina. Per això la recerca de materials absorbents alternatius, no tòxics, abundants en la naturalesa i amb bons rendiments de conversió s'ha intensificat en els últims anys. Entre els diferents materials absorbents, el sulfur d'estany (SnS), amb una banda prohibida de 1.3 eV propera a l'òptima, és un candidat adequat per a la conversió fotovoltaica. Però per a cèl·lules experimentals de SnS el rendiment assolit fins ara és de 4.6%, que és molt menor que el PCE per a dispositius de silici, mentre que entre altres cèl·lules híbrides (orgàniques-no orgàniques) com la perovskita de metilamonio de plom i iode ( MAPbI3) es demostra que és un candidat adequat amb PCE que arriba a un valor del 23%. A part de l'estabilitat, un dels problemes per a la comercialització de cèl·lules de MAPbI3 és la naturalesa tòxica del plom (Pb). Per aquest motiu, s'ha utilitzat l'anàlisi numèrica per revisar els paràmetres de disseny de les cèl·lules solars de perovskita híbrida substituint l'absorbent MAPbI3 per MASnI3 i estudiar l'efecte de la resta de paràmetres de disseny en el rendiment d'estes cèl·lules solars. Hi ha diversos programaris de simulació disponibles que s'utilitzen per a l'anàlisi numèric de cèl·lules solars. En aquest treball hem fem servir un programari anomenat "A Solar Cell Capacitance Simulator" (SCAPS), està disponible de forma gratuïta i és molt popular entre la comunitat científica i tecnològica. Per aconseguir un disseny efectiu per a una cèl·lula solar eficient, es va proposar una aproximació numèrica basada en la millora de la PCE d'una cèl·lula solar experimental. Això es va fer reproduint els resultats per a la cèl·lula solar dissenyada experimentalment en un entorn SCAPS amb estructura p-SnS / n-CdS amb una eficiència de conversió de l'1,5%. Després de reproduir els resultats experimentals, el rendiment del dispositiu es va optimitzar ajustant el gruix de la capa absorbent y de la capa tampó, el temps de vida dels portadors minoritaris, la concentració del dopatge en les capes absorbent, tampó i en la capa finestra. Mitjançant l'optimització gradual dels paràmetres del dispositiu, es va assolir un valor de 14.01% en PCE de cèl·lules solars dissenyades experimentalment en SCAPS amb arquitectura p-SnS / n-CdS / n-ZnO. A partir de l'anàlisi, es va trobar que la PCE d'una cèl·lula solar depèn en gran mesura de la concentració de dopatge de la capa absorbent, el gruix de la capa absorbent i els defectes de la interfície. D'altra banda, es va realitzar una anàlisi per determinar l'efecte de la recombinació de la interfície en el rendiment de les cèl·lules solars i com es pot controlar. Per realitzar aquesta tasca, es va realitzar una anàlisi per a la selecció de la capa tampó adequada per a la cèl·lula solar de perovskita de metilamoni d'estany i iode (MASnI3) i es va trobar que el PCE de la cèl·lula solar també depèn de l'alineació de la banda entre l'absorbidor i la capa de tampó.
[EN] A decade of extensive research has been conducted to enhance the power conversion efficiency (PCE) of silicon (Si) solar cells and to cut their prices short. But still, the fabrication of Si solar cells are costly. So, to reduce the fabrication cost of the solar cell search for alternate earth abundant and non-toxic absorber materials is thriving. Among different absorber materials tin sulfide (SnS) is found to be a suitable candidate for the non-organic solar cell with a band gap of 1.3 eV. But the PCE achieved for SnS is 4.6% that is far less from the PCE of (Si), whereas among other organic non-organic solar cells like methylammonium lead halide perovskite ({\rm MAPbI}_3) is proven to be a suitable candidate with PCE reaching to a value of 23%. The problem with the commercialization of {\rm MAPbI}_3 is due to the toxic nature of lead (Pb). So, in dealing with these issues of solar cell numerical analysis can play a key role as numerical analysis allows flexibility in the design of realistic problem and experimentation with different hypotheses can easily be performed. Complete set of device characteristic can often be easily generated by consuming less amount of time and effort. Because of this reason numerical analysis was used to revisit solar cells design parameters and the effect of solar cell physical parameters on solar cell performance. There are various simulation software's available that are used for solar cell numerical analysis. Here in this work, we used Solar cell capacitance simulator (SCAPS) software, it is freely available and is most popular among the research community. To achieve effective design for efficient solar cell a numerical guide was proposed based on which PCE of an experimental designed solar cell can be enhanced. This was done by reproducing results for the experimentally designed solar cell in SCAPS environment with structure p-SnS/n-CdS having a conversion efficiency of 1.5%. After reproduction of experimental results device performance was optimized by varying thickness of (absorber layer, buffer layer), minority carrier lifetime, doping concentration (absorber, buffer), and adding window layer. By stepwise optimization of device parameters, PCE of an experimental designed solar cell in SCAPS with architecture p-SnS/n-CdS/n-ZnO was reached to a value of 14.01%. From the analysis, it was found that PCE of a solar cell is highly depended upon doping concentration of the absorber layer, the thickness of the absorber layer and interface defects. Based on the results evaluated an analysis was performed for tin based organic non-organic methylammonium tin halide perovskite solar cell ({\rm MASnI}_3) to find the effect of interface recombination on solar cell performance and how it can be governed. The reason for this transition from SnS to {\rm MASnI}_3 was because {\rm MASnI}_3 can be fabricated simply by spin-coating methylammonium iodide (MAI) over SnS layer. To perform this task analysis was performed for the selection of suitable buffer layer for Pb free methylammonium tin halide perovskite solar cell ({\rm MASnI}_3) and it was found that PCE of the solar cell is also depended upon band alignment between absorber and buffer layer. Based on the results a new structure was proposed for Pb free perovskite solar cell (Back\ contact/{\rm MASnBr}_3/{\rm MASnI}_3/CdZnS/FTO) with PCE of 18.71% for absorber thickness of 500 nm and acceptor doping concentration of 1x10^{16}\ {\rm cm}^3. The results achieved in this thesis will provide an imperative guideline for researchers to design efficient solar cells.
Baig, F. (2019). Numerical analysis for efficiency enhancement of thin film solar cells [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118801
TESIS
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Perovskite photovoltaic cells"

1

Fu, Kunwu, Anita Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Kunwu, Anita Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ho-Baillie, Anita Wing, Kunwu Fu, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells: Technology and Practices. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Diau, Eric Wei. Perovskite Solar Cells: Principle, Materials, Devices. World Scientific Publishing Co Pte Ltd, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ho-Baillie, Anita Wing, Kunwu Fu, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells: Technology and Practices. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Materials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.

Full text
Abstract:
The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation. Elsevier Science & Technology Books, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Sabu, and Aparna Thankappan. Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation. Elsevier Science & Technology Books, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giorgi, Giacomo, and Koichi Yamashita. Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Perovskite photovoltaic cells"

1

Stranks, Samuel D., and Henry J. Snaith. "Perovskite Solar Cells." In Photovoltaic Solar Energy, 277–91. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Perovskites Thin Films for Photovoltaic Applications." In Perovskite Solar Cells, 3–38. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cave, James M., and Alison B. Walker. "Modelling Hysteresis in Perovskite Solar Cells." In Photovoltaic Modeling Handbook, 267–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119364214.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Devi, Chandni, and Rajesh Mehra. "Current Perspectives and Advancements of Perovskite Photovoltaic Cells." In Advances in Intelligent Systems and Computing, 83–92. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1483-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Afzaal, Mohammad, and Seema Karkain. "Environmental Assessment of Perovskite Solar Cells." In The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions, 279–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84635-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barrutia, Israel, Renzo Seminario-Córdova, and Vanessa Martinez-Rojas. "Carbon-Based Perovskite Solar Cells: The Future Photovoltaic Technology." In Congress on Research, Development and Innovation in Renewable Energies, 33–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97862-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Divya, Rajesh Mehra, and Balwinder Raj. "Materials and Methods for Performance Enhancement of Perovskite Photovoltaic Solar Cells: A Review." In Lecture Notes in Electrical Engineering, 531–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7994-3_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balachandran, Nisha, Temina Mary Robert, Dona Mathew, and Jobin Cyriac. "Co-sensitization of Perovskite Solar Cells by Organometallic Compounds: Mechanism and Photovoltaic Characterization." In Proceedings of the 7th International Conference on Advances in Energy Research, 1595–601. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Perovskite Tandem Solar Cells for Photovoltaics." In Perovskite Solar Cells, 271–84. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khanna, Vinod Kumar. "2D Perovskite and 2D/3D Multidimensional Perovskite Solar Cells." In Nano-Structured Photovoltaics, 185–205. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215158-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Perovskite photovoltaic cells"

1

Enriquez, Christian, Deidra Hodges, Angel De La Rosa, Luis Valerio Frias, Yves Ramirez, Victor Rodriguez, Daniel Rivera, and Alberto Telles. "Perovskite Solar Cells." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaonkar, Harsh, Junhao Zhu, Ranjith Kottokkaran, Max Noack, and Vikram Dalal. "Thermally Stable Inorganic Perovskite Solar Cells." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Zhengshan J., Bo Chen, Jinsong Huang, and Zachary C. Holman. "Manufacturable Perovskite/Silicon Tandems with Solution-Processed Perovskites on Textured Silicon Bottom Cells." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Yong Hui, Morgan Stefik, Leo-Philipp Heiniger, Peng Gao, Sang Il Seok, Michael Gratzel, and Mohammad Khaja Nazeeruddin. "Power from the sun: Perovskite solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agarwal, Sumanshu, and Pradeep R. Nair. "Performance optimization for Perovskite based solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Chuanxiao, Changlei Wang, Chun-Sheng Jiang, Zhaoning Song, Yanfa Yan, and Mowafak Al-Jassim. "Operando Microscopy Characterization of Perovskite Solar Cells." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Qiaohui, Cuncun Wu, and Lixin Xiao. "Bi-based Lead-free Perovskite Solar Cells." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joshi, Pranav, Liang Zhang, Ranjith Kottokkaran, Hisham Abbas, Istiaque Hossain, Satyapal Nehra, Mahendra Dhaka, Max Noack, and Vikram Dalal. "Physics of instability of perovskite solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kavadiya, Shalinee, Barbara Andrade De Carvalho, Su Huang, and Pratim Biswas. "Aerosol methods to fabricate perovskite solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sachenko, A. V., V. P. Kostylyov, A. V. Bobyl, V. M. Vlasiuk, I. O. Sokolovskyi, E. I. Terukov, and M. Evstigneev. "Photoconversion Efficiency Modeling in Perovskite Solar Cells." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography