Academic literature on the topic 'Permutations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Permutations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Permutations"
Wituła, Roman, Edyta Hetmaniok, and Damian Słota. "On Commutation Properties of the Composition Relation of Convergent and Divergent Permutations (Part I)." Tatra Mountains Mathematical Publications 58, no. 1 (March 1, 2014): 13–22. http://dx.doi.org/10.2478/tmmp-2014-0002.
Full textSavchuk, M., and M. Burlaka. "Encoding and classification of permutations bу special conversion with estimates of class power." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 2 (2019): 36–43. http://dx.doi.org/10.17721/1812-5409.2019/2.3.
Full textAdamczak, William. "A Note on the Structure of Roller Coaster Permutations." Journal of Mathematics Research 9, no. 3 (May 24, 2017): 75. http://dx.doi.org/10.5539/jmr.v9n3p75.
Full textBrualdi, Richard A., and Geir Dahl. "Permutation Matrices, Their Discrete Derivatives and Extremal Properties." Vietnam Journal of Mathematics 48, no. 4 (March 24, 2020): 719–40. http://dx.doi.org/10.1007/s10013-020-00392-5.
Full textSenashov, Vasily S., Konstantin A. Filippov, and Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography." E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.
Full textGao, Alice L. L., Sergey Kitaev, Wolfgang Steiner, and Philip B. Zhang. "On a Greedy Algorithm to Construct Universal Cycles for Permutations." International Journal of Foundations of Computer Science 30, no. 01 (January 2019): 61–72. http://dx.doi.org/10.1142/s0129054119400033.
Full textVidybida, Alexander K. "Calculating Permutation Entropy without Permutations." Complexity 2020 (October 22, 2020): 1–9. http://dx.doi.org/10.1155/2020/7163254.
Full textSteingrı́msson, Einar. "Permutation Statistics of Indexed Permutations." European Journal of Combinatorics 15, no. 2 (March 1994): 187–205. http://dx.doi.org/10.1006/eujc.1994.1021.
Full textZHOU, YINGCHUN, and MURAD S. TAQQU. "APPLYING BUCKET RANDOM PERMUTATIONS TO STATIONARY SEQUENCES WITH LONG-RANGE DEPENDENCE." Fractals 15, no. 02 (June 2007): 105–26. http://dx.doi.org/10.1142/s0218348x07003526.
Full textMansour, Toufik, Howard Skogman, and Rebecca Smith. "Passing through a stack k times." Discrete Mathematics, Algorithms and Applications 11, no. 01 (February 2019): 1950003. http://dx.doi.org/10.1142/s1793830919500034.
Full textDissertations / Theses on the topic "Permutations"
Cox, Charles. "Infinite permutation groups containing all finitary permutations." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401538/.
Full textKu, Cheng Yeaw. "Intersecting families of permutations and partial permutations." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416959.
Full textSteingrímsson, Einar. "Permutations statistics of indexed and poset permutations." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/35952.
Full textWest, Julian 1964. "Permutations with forbidden subsequences, and, stack-sortable permutations." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13641.
Full textCooper, Joshua N. "Quasirandom permutations /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091341.
Full textHyatt, Matthew. "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/609.
Full textBoberg, Jonas. "Counting Double-Descents and Double-Inversions in Permutations." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54431.
Full textMaazoun, Mickaël. "Permutons limites universels de permutations aléatoires à motifs exclus." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN064.
Full textPattern-avoiding permutations are an important theme of enumerative combinatorics, and their study from a probabilistic point of view form a recently expanding subject, for instance by considering the scaling limit behavior, in the permuton sense, of the diagram of a large uniform permutation in a pattern-avoiding class. The case of separable permutations was studied by Bassino, Bouvel, Féray, Gerin and Pierrot, who showed convergence to a random object, the Brownian separable permuton. We provide an explicit construction through stochastic processes, allowing to study the fractal properties, and compute some statistics, of this object. We study the universality class of this permuton among classes admitting a finite specification in the sense of the so-called decomposition substitution. For many of them, under a simple combinatorial condition, their limit is a one-parameter deformation of the Brownian permuton. In the specific instance of substitution-closed classes, we also consider sufficient conditions to escape this universality class, and introduct the family of stable permutons. Cographs are the inversion graphs of separable permutations. Using similar methods, we investigate the scaling limit in the graphon sense of uniform labeled and unlabeled cographs. We also show that the normalized degree of a uniform vertex in a uniform cograph is asymptotically uniform. Finally, we study local and scaling limits of Baxter permutations, a class avoiding vincular patterns. This family is in bijection with many remarkable combinatorial objects, in particular bipolar oriented maps. Our result has interpretations in terms of the Peanosphere convergence of such maps, completing a result of Gwynne, Holden and Sun
Bogaerts, Mathieu. "Codes et tableaux de permutations, construction, énumération et automorphismes." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210302.
Full textUn code de permutations G(n,d) un sous-ensemble C de Sym(n) tel que la distance de Hamming D entre deux éléments de C est supérieure ou égale à d. Dans cette thèse, le groupe des isométries de (Sym(n),D) est déterminé et il est prouvé que ces isométries sont des automorphismes du schéma d'association induit sur Sym(n) par ses classes de conjugaison. Ceci mène, par programmation linéaire, à de nouveaux majorants de la taille maximale des G(n,d) pour n et d fixés et n compris entre 11 et 13. Des algorithmes de génération avec rejet d'objets isomorphes sont développés. Pour classer les G(n,d) non isométriques, des invariants ont été construits et leur efficacité étudiée. Tous les G(4,3) et les G(5,4) ont été engendrés à une isométrie près, il y en a respectivement 61 et 9445 (dont 139 sont maximaux et décrits explicitement). D’autres classes de G(n,d) sont étudiées.
A permutation code G(n,d) is a subset C of Sym(n) such that the Hamming distance D between two elements of C is larger than or equal to d. In this thesis, we characterize the isometry group of the metric space (Sym(n),D) and we prove that these isometries are automorphisms of the association scheme induced on Sym(n) by the conjugacy classes. This leads, by linear programming, to new upper bounds for the maximal size of G(n,d) codes for n and d fixed and n between 11 and 13. We develop generating algorithms with rejection of isomorphic objects. In order to classify the G(n,d) codes up to isometry, we construct invariants and study their efficiency. We generate all G(4,3) and G(4,5)codes up to isometry; there are respectively 61 and 9445 of them. Precisely 139 out of the latter codes are maximal and explicitly described. We also study other classes of G(n,d)codes.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Dansie, B. R. "The analysis of permutations /." Title page, contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phd191.pdf.
Full textBooks on the topic "Permutations"
Passman, Donald S. Permutation groups. Mineola, N.Y: Dover Publications, Inc., 2012.
Find full textTidhar, Lavie. Cloud permutations. [Hornsea]: PS Publishing, 2010.
Find full textMaughn, James. The Arakaki permutations. United States: Black Radish Books, 2011.
Find full textStrauss, Anselm L. Continual permutations of action. New Brunswick, N.J: AldineTransaction, 2008.
Find full textCamina, A. R. Linear groups and permutations. Boston: Pitman Advanced Publishing Program, 1985.
Find full textPfahl, John. Permutations on the picturesque. Syracuse, NY: Robert B. Menschel Photography Gallery, Schine Student Center, Syracuse University, 1997.
Find full textPfahl, John. Permutations on the picturesque. [Syracuse, NY: Robert B. Menschel Photography Gallery, Schine Student Center, Syracuse University, 1997.
Find full textStrauss, Anselm L. Continual permutations of action. New Brunswick, N.J: AldineTransaction, 2008.
Find full textCamina, A. R. Linear groups and permutations. Boston: Pitman, 1985.
Find full textKitaev, Sergey. Patterns in Permutations and Words. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17333-2.
Full textBook chapters on the topic "Permutations"
Petersen, T. Kyle. "Permutations." In Inquiry-Based Enumerative Combinatorics, 33–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18308-0_2.
Full textSane, Sharad S. "Permutations." In Texts and Readings in Mathematics, 39–56. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-55-2_3.
Full textArmstrong, M. A. "Permutations." In Undergraduate Texts in Mathematics, 26–31. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-4034-9_6.
Full textBlyth, T. S., and E. F. Robertson. "Permutations." In Sets and Mappings, 76–97. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-015-7713-7_5.
Full textTapp, Kristopher. "Permutations." In Symmetry, 75–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0299-2_6.
Full textEffinger, Gove, and Gary L. Mullen. "Permutations." In An Elementary Transition to Abstract Mathematics, 57–63. Boca Raton : CRC Press, Taylor … Francis Group, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429324819-10.
Full textJohnson, Tom, and Franck Jedrzejewski. "Permutations." In Looking at Numbers, 1–20. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0554-4_1.
Full textKerber, Adalbert. "Permutations." In Algorithms and Combinatorics, 275–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-11167-3_9.
Full textCaulton, Adam. "Permutations." In The Routledge Companion to Philosophy of Physics, 578–94. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-54.
Full textGolomb, Solomon W., and Andy Liu. "Permutations." In Solomon Golomb’s Course on Undergraduate Combinatorics, 149–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72228-9_4.
Full textConference papers on the topic "Permutations"
Galvão, Gustavo Rodrigues, and Zanoni Dias. "Algorithms for Sorting by Reversals or Transpositions, with Application to Genome Rearrangement." In XXIX Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2016.9145.
Full textRyabov, Vladimir Gennadievich. "On number of substitutions of vector space over finite field with affine approximations with given accuracy." In Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-88.
Full textMatyushkin, Igor, and Pavel Rubis. "CELLULAR AUTOMATA ALGORITHMS FOR PSEUDORANDOM NUMBERS GENERATION." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1648.silicon-2020/354-357.
Full textSkala, Matthew. "Counting distance permutations." In 2008 IEEE 24th International Conference on Data Engineeing workshop (ICDE Workshop 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdew.2008.4498346.
Full textChen, Yiling, Lance Fortnow, Evdokia Nikolova, and David M. Pennock. "Betting on permutations." In the 8th ACM conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250910.1250957.
Full textSkala, Matthew. "Counting Distance Permutations." In 2008 First International Workshop on Similarity Search and Applications (SISAP). IEEE, 2008. http://dx.doi.org/10.1109/sisap.2008.15.
Full textDomsa, Ovidiu, and Nicolae Bold. "GENERATOR OF VARIANTS OF TESTS USING THE SAME QUESTIONS." In eLSE 2016. Carol I National Defence University Publishing House, 2016. http://dx.doi.org/10.12753/2066-026x-16-174.
Full textMoraga, Claudio. "Permutations under Spectral Transforms." In 2008 38th International Symposium on Multiple Valued Logic (ismvl 2008). IEEE, 2008. http://dx.doi.org/10.1109/ismvl.2008.16.
Full textWang, Da, Arya Mazumdar, and Gregory W. Wornell. "Lossy compression of permutations." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6874785.
Full textSu, Lili, Farzad Farnoud, and Olgica Milenkovic. "Similarity distances between permutations." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875237.
Full textReports on the topic "Permutations"
Tovar, Benjamin, Luigi Freda, and Steven M. LaValle. Learning Combinatorial Map Information from Permutations of Landmarks. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada536930.
Full textHoran, Victoria. Overlap Cycles for Permutations: Necessary and Sufficient Conditions. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada623587.
Full textTavare, Simon. International Conference on Random Mappings, Partitions and Permutations Held in Los Angeles, California on 3-6 January 1992. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada257259.
Full textAlexander-Morrison, G. M. Experimental attempt to achieve microstructure variations through temperature/time permutations for a nonwrought powder metallurgy uranium-6 niobium alloy. Office of Scientific and Technical Information (OSTI), June 1985. http://dx.doi.org/10.2172/5791338.
Full textRay, Jason, James Kinnebrew, Ramsay Bell, and Martin Schultz. Sensitivity of simulated flaw-height estimates to phased array scan parameters. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47403.
Full textFLORIDA STATE UNIV TALLAHASSEE. Scrambled Sobol Sequences via Permutation. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada510216.
Full textHuang, Jonathan, Carlos Guestrin, and Leonidas Guibas. Inference for Distributions over the Permutation Group. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada488051.
Full textKilian, Joe, Shlomo Kipnis, and Charles E. Leiserson. The Organization of Permutation Architectures with Bussed Interconnections. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada208817.
Full textBugni, Federico A., and Joel L. Horowitz. Permutation tests for equality of distributions of functional data. The IFS, March 2018. http://dx.doi.org/10.1920/wp.cem.2018.1818.
Full textDworkin, Morris J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. National Institute of Standards and Technology, July 2015. http://dx.doi.org/10.6028/nist.fips.202.
Full text