Journal articles on the topic 'Peridynamics Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peridynamics Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Seleson, Pablo, Michael L. Parks, and Max Gunzburger. "Peridynamic State-Based Models and the Embedded-Atom Model." Communications in Computational Physics 15, no. 1 (January 2014): 179–205. http://dx.doi.org/10.4208/cicp.081211.300413a.
Full textShen, Feng, Qing Zhang, and Dan Huang. "Damage and Failure Process of Concrete Structure under Uniaxial Compression Based on Peridynamics Modeling." Mathematical Problems in Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/631074.
Full textLiu, Shankun, Fei Han, Xiaoliang Deng, and Ye Lin. "Thermomechanical Peridynamic Modeling for Ductile Fracture." Materials 16, no. 11 (May 30, 2023): 4074. http://dx.doi.org/10.3390/ma16114074.
Full textMikeš, Karel, Milan Jirásek, Jan Zeman, Ondřej Rokoš, and Ron H. J. Peerlings. "LOCALIZATION ANALYSIS OF DAMAGE FOR ONE-DIMENSIONAL PERIDYNAMIC MODEL." Acta Polytechnica CTU Proceedings 30 (April 22, 2021): 47–52. http://dx.doi.org/10.14311/app.2021.30.0047.
Full textAltenbach, Holm, Oleksiy Larin, Konstantin Naumenko, Olha Sukhanova, and Mathias Würkner. "Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis." AIMS Materials Science 9, no. 5 (2022): 702–18. http://dx.doi.org/10.3934/matersci.2022043.
Full textVazic, Bozo, Erkan Oterkus, and Selda Oterkus. "In-Plane and Out-of Plane Failure of an Ice Sheet using Peridynamics." Journal of Mechanics 36, no. 2 (January 17, 2020): 265–71. http://dx.doi.org/10.1017/jmech.2019.65.
Full textKarpenko, Olena, Selda Oterkus, and Erkan Oterkus. "An in-depth investigation of critical stretch based failure criterion in ordinary state-based peridynamics." International Journal of Fracture 226, no. 1 (October 2, 2020): 97–119. http://dx.doi.org/10.1007/s10704-020-00481-z.
Full textAhadi, Aylin, Per Hansson, and Solveig Melin. "Simulating Nanoindentation of Thin Cu Films Using Molecular Dynamics and Peridynamics." Solid State Phenomena 258 (December 2016): 25–28. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.25.
Full textVazic, Bozo, Erkan Oterkus, and Selda Oterkus. "Peridynamic Model for a Mindlin Plate Resting on a Winkler Elastic Foundation." Journal of Peridynamics and Nonlocal Modeling 2, no. 3 (January 10, 2020): 229–42. http://dx.doi.org/10.1007/s42102-019-00019-5.
Full textShen, Feng, Zihan Chen, Jia Zheng, and Qing Zhang. "Numerical Simulation of Failure Behavior of Reinforced Concrete Shear Walls by a Micropolar Peridynamic Model." Materials 16, no. 8 (April 18, 2023): 3199. http://dx.doi.org/10.3390/ma16083199.
Full textLu, Wei, Mingyang Li, Bozo Vazic, Selda Oterkus, Erkan Oterkus, and Qing Wang. "Peridynamic Modelling of Fracture in Polycrystalline Ice." Journal of Mechanics 36, no. 2 (February 21, 2020): 223–34. http://dx.doi.org/10.1017/jmech.2019.61.
Full textLi, Tianyi, Xin Gu, Qing Zhang, and Xiaozhou Xia. "Elastoplastic Constitutive Modeling for Reinforced Concrete in Ordinary State-Based Peridynamics." Journal of Mechanics 36, no. 6 (October 23, 2020): 799–811. http://dx.doi.org/10.1017/jmech.2020.50.
Full textRen, Huilong, Xiaoying Zhuang, and Timon Rabczuk. "A new peridynamic formulation with shear deformation for elastic solid." Journal of Micromechanics and Molecular Physics 01, no. 02 (July 2016): 1650009. http://dx.doi.org/10.1142/s2424913016500090.
Full textFallah, Arash S., Ilias N. Giannakeas, Rizgar Mella, Mark R. Wenman, Yasser Safa, and Hamid Bahai. "On the Computational Derivation of Bond-Based Peridynamic Stress Tensor." Journal of Peridynamics and Nonlocal Modeling 2, no. 4 (July 2, 2020): 352–78. http://dx.doi.org/10.1007/s42102-020-00036-9.
Full textHan, Junzhao, Guozhong Wang, Xiaoyu Zhao, Rong Chen, and Wenhua Chen. "Modeling of Multiple Fatigue Cracks for the Aircraft Wing Corner Box Based on Non-Ordinary State-Based Peridynamics." Metals 12, no. 8 (July 30, 2022): 1286. http://dx.doi.org/10.3390/met12081286.
Full textYakin, H. N., M. R. M. Rejab, Nur Hashim, and N. Nikabdullah. "A new quasi-brittle damage model implemented under quasi-static condition using bond-based peridynamics theory for progressive failure." Theoretical and Applied Mechanics, no. 00 (2023): 6. http://dx.doi.org/10.2298/tam230404006y.
Full textImachi, Michiya, Hiroki Takahashi, and Satoyuki Tanaka. "Quasi-brittle fracture model in peridynamics." Proceedings of The Computational Mechanics Conference 2019.32 (2019): 281. http://dx.doi.org/10.1299/jsmecmd.2019.32.281.
Full textRoy, Pranesh, and Debasish Roy. "Peridynamics model for flexoelectricity and damage." Applied Mathematical Modelling 68 (April 2019): 82–112. http://dx.doi.org/10.1016/j.apm.2018.11.013.
Full textFan, Lin, Song Rong Qian, and Teng Fei Ma. "The Numerical Methods of Peridynamics Theory Used in Failure Analysis of Materials." Advanced Materials Research 1030-1032 (September 2014): 223–27. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.223.
Full textZhou, Ji, and Songrong Qian. "Simulation of Brittle Materials Based on Ordinary State-based Peridynamics." Journal of Physics: Conference Series 2549, no. 1 (July 1, 2023): 012022. http://dx.doi.org/10.1088/1742-6596/2549/1/012022.
Full textWang, Fei, Yu’e Ma, Yanning Guo, and Wei Huang. "Studies on Quasi-Static and Fatigue Crack Propagation Behaviours in Friction Stir Welded Joints Using Peridynamic Theory." Advances in Materials Science and Engineering 2019 (October 31, 2019): 1–16. http://dx.doi.org/10.1155/2019/5105612.
Full textRoy, Pranesh, Anil Pathrikar, S. P. Deepu, and Debasish Roy. "Peridynamics damage model through phase field theory." International Journal of Mechanical Sciences 128-129 (August 2017): 181–93. http://dx.doi.org/10.1016/j.ijmecsci.2017.04.016.
Full textZhang, Feng, Xinting Hou, Pihua Ji, Cheng Han, Lei Cheng, and Xiaoxiao Liu. "Dynamic simulation of aircraft electro-impulse de-icing using bond-based peridynamics." Advances in Mechanical Engineering 14, no. 11 (November 2022): 168781322211302. http://dx.doi.org/10.1177/16878132221130218.
Full textCluni, Federico, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, and Patrizia Pucci. "A mixed operator approach to peridynamics." Mathematics in Engineering 5, no. 5 (2023): 1–22. http://dx.doi.org/10.3934/mine.2023082.
Full textBuryachenko, Valeriy A. "Variational principles and generalized Hill’s bounds in micromechanics of linear peridynamic random structure composites." Mathematics and Mechanics of Solids 25, no. 3 (November 25, 2019): 682–704. http://dx.doi.org/10.1177/1081286519887222.
Full textRezaul Karim, Mohammad, Kai Kadau, Santosh Narasimhachary, Francesco Radaelli, Christian Amann, Kaushik Dayal, Stewart Silling, and Timothy C. Germann. "Crack nucleation at forging flaws studied by non-local peridynamics simulations." Mathematics and Mechanics of Solids 27, no. 6 (December 14, 2021): 1129–49. http://dx.doi.org/10.1177/10812865211057211.
Full textRen, Huilong, Xiaoying Zhuang, and Timon Rabczuk. "Implementation of GTN Model in Dual-horizon Peridynamics." Procedia Engineering 197 (2017): 224–32. http://dx.doi.org/10.1016/j.proeng.2017.08.099.
Full textYou, H. Q., X. Xu, Y. Yu, S. Silling, M. D’Elia, and J. Foster. "Towards a unified nonlocal, peridynamics framework for the coarse-graining of molecular dynamics data with fractures." Applied Mathematics and Mechanics 44, no. 7 (July 2023): 1125–50. http://dx.doi.org/10.1007/s10483-023-2996-8.
Full textGu, X. B., and Q. H. Wu. "The Application of Nonordinary, State-Based Peridynamic Theory on the Damage Process of the Rock-Like Materials." Mathematical Problems in Engineering 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/9794605.
Full textRAHMAN, R., and A. HAQUE. "A PERIDYNAMICS FORMULATION BASED HIERARCHICAL MULTISCALE MODELING APPROACH BETWEEN CONTINUUM SCALE AND ATOMISTIC SCALE." International Journal of Computational Materials Science and Engineering 01, no. 03 (September 2012): 1250029. http://dx.doi.org/10.1142/s2047684112500297.
Full textOngaro, Greta, Alessandro Pontefisso, Elena Zeni, Francesco Lanero, Alessia Famengo, Federico Zorzi, Mirco Zaccariotto, et al. "Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy–Nanomica Composites—New Model Insights for Mechanical Properties." Polymers 15, no. 6 (March 15, 2023): 1456. http://dx.doi.org/10.3390/polym15061456.
Full textPostek, Eligiusz, and Tomasz Sadowski. "Impact model of the Al2O3/ZrO2 composite by peridynamics." Composite Structures 271 (September 2021): 114071. http://dx.doi.org/10.1016/j.compstruct.2021.114071.
Full textPathrikar, Anil, Shashi Bhushan Tiwari, Prashanthan Arayil, and Debasish Roy. "Thermomechanics of damage in brittle solids: A peridynamics model." Theoretical and Applied Fracture Mechanics 112 (April 2021): 102880. http://dx.doi.org/10.1016/j.tafmec.2020.102880.
Full textZhao, Teng, and Yongxing Shen. "A Nonlocal Model for Dislocations with Embedded Discontinuity Peridynamics." International Journal of Mechanical Sciences 197 (May 2021): 106301. http://dx.doi.org/10.1016/j.ijmecsci.2021.106301.
Full textCruz, Atila Lupim, and Mauricio Vicente Donadon. "An elastoplastic constitutive damage model based on peridynamics formulation." International Journal of Non-Linear Mechanics 142 (June 2022): 103978. http://dx.doi.org/10.1016/j.ijnonlinmec.2022.103978.
Full textMitchell, John, Stewart Silling, and David Littlewood. "A position-aware linear solid constitutive model for peridynamics." Journal of Mechanics of Materials and Structures 10, no. 5 (November 6, 2015): 539–57. http://dx.doi.org/10.2140/jomms.2015.10.539.
Full textSong, Xiaoyu, and Nasser Khalili. "A peridynamics model for strain localization analysis of geomaterials." International Journal for Numerical and Analytical Methods in Geomechanics 43, no. 1 (September 12, 2018): 77–96. http://dx.doi.org/10.1002/nag.2854.
Full textWang, Fei, Yu'e Ma, Yanning Guo, and Wei Huang. "Study on Transient Thermal Response for Functionally Graded Materials Based on Peridynamic Theory." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 37, no. 5 (October 2019): 903–8. http://dx.doi.org/10.1051/jnwpu/20193750903.
Full textGu, Xin, Qing Zhang, and Erdogan Madenci. "Refined bond-based peridynamics for thermal diffusion." Engineering Computations 36, no. 8 (October 7, 2019): 2557–87. http://dx.doi.org/10.1108/ec-09-2018-0433.
Full textDai, Zili, Jinwei Xie, Zhitang Lu, Shiwei Qin, and Lin Wang. "Numerical Modeling on Crack Propagation Based on a Multi-Grid Bond-Based Dual-Horizon Peridynamics." Mathematics 9, no. 22 (November 10, 2021): 2848. http://dx.doi.org/10.3390/math9222848.
Full textSong, Ying, Haicheng Yu, and Zhuang Kang. "Numerical study on ice fragmentation by impact based on non-ordinary state-based peridynamics." Journal of Micromechanics and Molecular Physics 04, no. 01 (March 2019): 1850006. http://dx.doi.org/10.1142/s2424913018500066.
Full textWu, Liwei, Dan Huang, Yepeng Xu, and Lei Wang. "A rate-dependent dynamic damage model in peridynamics for concrete under impact loading." International Journal of Damage Mechanics 29, no. 7 (January 24, 2020): 1035–58. http://dx.doi.org/10.1177/1056789519901162.
Full textAlebrahim, Reza, Pawel Packo, Mirco Zaccariotto, and Ugo Galvanetto. "Wave propagation improvement in two-dimensional bond-based peridynamics model." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235, no. 14 (January 20, 2021): 2542–53. http://dx.doi.org/10.1177/0954406220985551.
Full textZhou, Yanqiao, Mingyi Zhang, Wansheng Pei, and Yapeng Wang. "A non-local frost heave model based on peridynamics theory." Computers and Geotechnics 145 (May 2022): 104675. http://dx.doi.org/10.1016/j.compgeo.2022.104675.
Full textLiu, Renwei, Yanzhuo Xue, Duanfeng Han, and Baoyu Ni. "Studies on model-scale ice using micro-potential-based peridynamics." Ocean Engineering 221 (February 2021): 108504. http://dx.doi.org/10.1016/j.oceaneng.2020.108504.
Full textPathrikar, Anil, Md Masiur Rahaman, and D. Roy. "A thermodynamically consistent peridynamics model for visco-plasticity and damage." Computer Methods in Applied Mechanics and Engineering 348 (May 2019): 29–63. http://dx.doi.org/10.1016/j.cma.2019.01.008.
Full textMASUDA, Kazuyuki, and Yoshinori SHIIHARA. "An implementation of orthotropic elasto-plastic model on NOSB-peridynamics." Proceedings of The Computational Mechanics Conference 2018.31 (2018): 260. http://dx.doi.org/10.1299/jsmecmd.2018.31.260.
Full textFoster, John T., and Xiao Xu. "A generalized, ordinary, finite deformation constitutive correspondence model for peridynamics." International Journal of Solids and Structures 141-142 (June 2018): 245–53. http://dx.doi.org/10.1016/j.ijsolstr.2018.02.026.
Full textShishkanov, Dmitry A., Maxim V. Vetchinnikov, and Yuriy N. Deryugin. "Peridynamics method for problems solve of solids destruction." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 24, no. 4 (December 31, 2022): 452–68. http://dx.doi.org/10.15507/2079-6900.24.202204.452-468.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full text