Academic literature on the topic 'Peridynamics Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peridynamics Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Peridynamics Model"
Seleson, Pablo, Michael L. Parks, and Max Gunzburger. "Peridynamic State-Based Models and the Embedded-Atom Model." Communications in Computational Physics 15, no. 1 (January 2014): 179–205. http://dx.doi.org/10.4208/cicp.081211.300413a.
Full textShen, Feng, Qing Zhang, and Dan Huang. "Damage and Failure Process of Concrete Structure under Uniaxial Compression Based on Peridynamics Modeling." Mathematical Problems in Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/631074.
Full textLiu, Shankun, Fei Han, Xiaoliang Deng, and Ye Lin. "Thermomechanical Peridynamic Modeling for Ductile Fracture." Materials 16, no. 11 (May 30, 2023): 4074. http://dx.doi.org/10.3390/ma16114074.
Full textMikeš, Karel, Milan Jirásek, Jan Zeman, Ondřej Rokoš, and Ron H. J. Peerlings. "LOCALIZATION ANALYSIS OF DAMAGE FOR ONE-DIMENSIONAL PERIDYNAMIC MODEL." Acta Polytechnica CTU Proceedings 30 (April 22, 2021): 47–52. http://dx.doi.org/10.14311/app.2021.30.0047.
Full textAltenbach, Holm, Oleksiy Larin, Konstantin Naumenko, Olha Sukhanova, and Mathias Würkner. "Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis." AIMS Materials Science 9, no. 5 (2022): 702–18. http://dx.doi.org/10.3934/matersci.2022043.
Full textVazic, Bozo, Erkan Oterkus, and Selda Oterkus. "In-Plane and Out-of Plane Failure of an Ice Sheet using Peridynamics." Journal of Mechanics 36, no. 2 (January 17, 2020): 265–71. http://dx.doi.org/10.1017/jmech.2019.65.
Full textKarpenko, Olena, Selda Oterkus, and Erkan Oterkus. "An in-depth investigation of critical stretch based failure criterion in ordinary state-based peridynamics." International Journal of Fracture 226, no. 1 (October 2, 2020): 97–119. http://dx.doi.org/10.1007/s10704-020-00481-z.
Full textAhadi, Aylin, Per Hansson, and Solveig Melin. "Simulating Nanoindentation of Thin Cu Films Using Molecular Dynamics and Peridynamics." Solid State Phenomena 258 (December 2016): 25–28. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.25.
Full textVazic, Bozo, Erkan Oterkus, and Selda Oterkus. "Peridynamic Model for a Mindlin Plate Resting on a Winkler Elastic Foundation." Journal of Peridynamics and Nonlocal Modeling 2, no. 3 (January 10, 2020): 229–42. http://dx.doi.org/10.1007/s42102-019-00019-5.
Full textShen, Feng, Zihan Chen, Jia Zheng, and Qing Zhang. "Numerical Simulation of Failure Behavior of Reinforced Concrete Shear Walls by a Micropolar Peridynamic Model." Materials 16, no. 8 (April 18, 2023): 3199. http://dx.doi.org/10.3390/ma16083199.
Full textDissertations / Theses on the topic "Peridynamics Model"
Van, Der Merwe Carel Wagener. "A peridynamic model for sleeved hydraulic fracture." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95993.
Full textENGLISH ABSTRACT: Current numerical methods in the eld of hydraulic fracturing are based mainly on continuum methods, such as the Finite Element Method (FEM) and the Boundary Element Method (BEM). These methods are governed by Linear Elastic Fracture Mechanics (LEFM) criteria, which su er from the inherent aw of a non-physical stress representation at the fracture tip. In response to this, a non-local method is proposed, namely the peridynamic theory, to model sleeved hydraulic fracture. A 2D implicit quasi-static ordinary state based peridynamic formulation is implemented on various benchmark problems, to verify the ability to capture constitutive behaviour in a linear elastic solid, as well as, the quanti cation of adverse e ects on the accuracy of the displacement solution, due to the nature of the non-local theory. Benchmark tests consist of a plate in tension, where convergence to the classical displacement solution, non-uniform re nement and varying cell sizes are tested, as well as, a thick walled cylinder with internal pressure, where three di erent loading techniques are tested. The most accurate loading technique is applied to the sleeved fracture model, in order to simulate fracture initiation and propagation. This model is then veri ed and validated by using the Rummel & Winter hydraulic fracturing model and experimental results, respectively. Displacement error minimisation methods are implemented and as a result, the displacement solutions for a plate in tension converges to the analytical solution, while the thick walled cylinder solutions su er from inaccuracies due to an applied load on an irregularly discretized region. The fracture initiation test captures the fracture tip behaviour of the Rummel & Winter model and the fracture propagation test show good correlation with experimental results. This research shows that the peridynamic approach to sleeved hydraulic fracture can yield a realistic representation of fracture initiation and propagation, however, further research is needed in the area of a pressure load application on a solid using the peridynamic approach.
AFRIKAANSE OPSOMMING: Huidige numeriese metodes in die veld van hidrouliese breking is hoofsaaklik gebaseer op kontinuum metodes, soos die Eindige Element Metode (EEM) en die Rand Element Metode (REM). Hierdie metodes word beheer deur Linie^ere Elastiese Breukmeganika (LEB) kriteria, wat ly aan die inherente gebrek van 'n nie- siese voorstelling van die spanning by die fraktuur punt. Om hierdie probleme aan te spreek, word 'n nie-lokale metode voorgestel, naamlik die peridinamiese teorie, om gehulsde hidrouliese breking te modelleer. 'n 2D implisiete kwasi-statiese ordin^ere toestand gebaseerde peridinamika formulering word ge mplimenteer op verskeie norm probleme, om te veri eer of dit oor die vermo e beskik om die konstitutiewe gedrag van 'n linie^ere elastiese soliede materiaal te modeleer, asook die kwanti sering van nadelige e ekte op die verplasings oplossing as gevolg van die natuur van die nie-lokale teorie. Normtoetse bestaan uit 'n plaat in trek spanning, waar konvergensie na die klassieke verplasings oplossing, nie-uniforme verfyning en vari^eerende sel groottes getoets word, asook 'n dikwandige silinder onder interne druk, waar drie verskillende belasting aanwendingstegnieke getoets word. Die mees akkurate belasting aanwendingstegniek word dan gebruik in die gehulsde hidrouliese breking model, om fraktuur aanvangs en uitbreiding na te boots. Die model word dan geveri- eer deur die Rummel & Winter hidrouliese breking model en eksperimentele resultate, onderskeidelik. Fout minimering metodes word toegepas en as 'n resultaat, konvergeer die verplasing oplossing vir die plaat na die analitiese oplossing, terwyl die oplossing van die dikwandige silinder onakuraathede toon as gevolg van 'n toegepaste belasting op 'n onre elmatig gediskretiseerde gebied. Die modellering van die fraktuur inisi ering by die fraktuur punt, stem goed ooreen met die Rummel en Winter voorspelling en die fraktuur uitbreiding stem goed ooreen met eksperimentele resultate. Hierdie navorsing toon dat die peridinamiese benadering tot gehulsde hidrouliese breking wel die fraktuur inisi ering en uitbreiding realisties kan modelleer, maar nog navorsing word wel benodig in die area waar 'n druk belasting op 'n peridinamiese soliede model toegepas word.
Birkey, Justin. "Development of Visual EMU, a graphical user interface for the peridynamic EMU code." Thesis, Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/466.
Full textGlaws, Andrew Taylor. "Finite Element Simulations of Two Dimensional Peridynamic Models." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/48121.
Full textMaster of Science
Bai, Ruqing. "Numerical modeling of isotropic and composites structures using a shell-based peridynamic method." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2482.
Full textThis thesis introduces some new complements and improvments for the Bond-Based Peridynamics theory concerning the numerical modeling of thin structures such as beams and plates, isotropic and multilayer composites subjected to dynamic loading. Our developments have been focused mainly on exploring the possibilities offered by the Peridynamic method, which has been widely applied in various engineering domains where strong or weak discontinuities may occur such as cracks or heterogeneous media. The generalization procedure of the Peridynamics method for the modeling of Timoshenko beam structures and Reissner-Mindlin plate structures respectively with a wide range of thickness to length ratio starting from thick structures to very thin structures is given. And A simplified low velocity impact based on the developed Peridynamic model for Timoshenko beam and ReissnerMindlin plate has been proposed by using a specific contact procedure for the estimation of the impact load. The originality of the present method was the introduction for the first time of two techniques for the alleviation of the shear locking problem which arises in thin beam and plate structures, namely the reduced (or selective) integration method and mixed formulation. The resulting Peridynamic model for Timoshenko beam structures and Reissner-Mindlin plate structures is efficient and does not suffer from any shear locking phenomenon. Besides, the generalization procedure of Peridynamic method for the modeling of fiber-reinforced thin composite structures is introduced. The Peridynamic approach for the modeling of a lamina is firstly validated in the quasi-statics including a crack propagation prediction problems subjected to mechanical loading conditions and then the Peridynamic method was further extended to analyze fiber-reinforced thin composite structures using the fundamental lamina theory. Finally, several applications involving fiber-reinforced thin composite structures and numerical results were validated by comparison to the FEM solution obtained using commercial software or to reference solutions from the literature. In all applications, the Peridynamics shows that results are matching perfectly the reference solutions, which proves its efficiency potentiality especially for crack paths simulation in isotropic and composite structures
Deepu, S. P. "Non-Local Continuum Models for Damage in Solids and Delamination of Composites." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4206.
Full textRahaman, Md Masiur. "Dynamic Flow Rules in Continuum Visco-plasticity and Damage Models for Poly-crystalline Solids." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4240.
Full textPelech, Petr. "Peridynamické a nelokální modely v mechanice kontinua pevných látek." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-352762.
Full textRoy, Pranesh. "Non-classical continuum models for solids using peridynamics and gauge theory." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4847.
Full textPathrikar, Anil. "Nonlocal continuum models for plasticity and damage." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5719.
Full textBooks on the topic "Peridynamics Model"
Gerstle, Walter. Introduction to practical peridynamics: Computational solid mechanics without stress and strain. New Jersey: World Scientific, 2016.
Find full textHandbook of Peridynamic Modeling. Taylor & Francis Group, 2016.
Find full textT, Foster John, Florin Bobaru, Philippe H. Geubelle, and Stewart A. Silling. Handbook of Peridynamic Modeling. Taylor & Francis Group, 2016.
Find full textPeridynamic Theory And Its Applications. Springer-Verlag New York Inc., 2013.
Find full textMadenci, Erdogan, and Erkan Oterkus. Peridynamic Theory and Its Applications. Springer, 2013.
Find full textMadenci, Erdogan, and Erkan Oterkus. Peridynamic Theory and Its Applications. Springer New York, 2016.
Find full textMadenci, Erdogan, and Erkan Oterkus. Peridynamic Theory and Its Applications. Springer London, Limited, 2013.
Find full textBook chapters on the topic "Peridynamics Model"
Ganzenmüller, Georg C., Stefan Hiermaier, and Michael May. "Improvements to the Prototype Micro-brittle Model of Peridynamics." In Lecture Notes in Computational Science and Engineering, 163–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06898-5_9.
Full textRabczuk, Timon, Huilong Ren, and Xiaoying Zhuang. "Nonlocal Operator Method for Dynamic Brittle Fracture Based on an Explicit Phase Field Model." In Computational Methods Based on Peridynamics and Nonlocal Operators, 243–69. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20906-2_9.
Full textLyu, Yao, Jinglu Zhang, Ari Sarafopoulos, Jian Chang, Shihui Guo, and Jian Jun Zhang. "Integral-Based Material Point Method and Peridynamics Model for Animating Elastoplastic Material." In Transactions on Computational Science XXXVII, 91–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61983-4_6.
Full textWang, Hong. "Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22977-5_35-1.
Full textWang, Hong. "Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1331–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-58729-5_35.
Full textDu, Qiang, and Xiaochuan Tian. "Robust Discretization of Nonlocal Models Related to Peridynamics." In Lecture Notes in Computational Science and Engineering, 97–113. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06898-5_6.
Full textZhang, Shangyuan, and Yufeng Nie. "Peridynamic Damage Model Based on Absolute Bond Elongation." In Computational Science – ICCS 2022, 637–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08751-6_46.
Full textFreimanis, Andris, and Ainārs Paeglītis. "Modal Analysis of Healthy and Cracked Isotropic Plates in Peridynamics." In Topics in Modal Analysis & Testing, Volume 9, 359–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74700-2_41.
Full textGalvanetto, U., F. Scabbia, and M. Zaccariotto. "Accurate numerical integration in 3D meshless peridynamic models." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 457–63. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-75.
Full textGalvanetto, U., F. Scabbia, and M. Zaccariotto. "Accurate numerical integration in 3D meshless peridynamic models." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 161–62. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-75.
Full textConference papers on the topic "Peridynamics Model"
Littlewood, David J. "Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40621.
Full textKulkarni, Shank S., Alireza Tabarraei, and Xiaonan Wang. "Study of Spurious Wave Reflection at the Interface of Peridynamics and Finite Element Regions." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86129.
Full textKulkarni, Shank S., Alireza Tabarraei, and Xiaonan Wang. "Modeling the Creep Damage of P91 Steel Using Peridynamics." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10069.
Full textLittlewood, David J. "A Nonlocal Approach to Modeling Crack Nucleation in AA 7075-T651." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64236.
Full textHa, Youn D., and Florin Bobaru. "Dynamic Brittle Fracture Captured With Peridynamics." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65515.
Full textA., Aguiar, and Seitenfuss A. "A LINEARLY ELASTIC CONSTITUTIVE MODEL IN PERIDYNAMICS." In Innovative technologies In science and education. DSTU-Print, 2019. http://dx.doi.org/10.23947/itno.2019.386-392.
Full textVasenkov, Alex V. "Stent Fracture Predictions With Peridynamics." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6866.
Full textBhattacharya, Debdeep, Patrick Diehl, and Robert P. Lipton. "Peridynamics for Quasistatic Fracture Modeling." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70793.
Full textRen, Baihua, and Jun Song. "Peridynamic Simulation of Particles Impact and Interfacial Bonding in Cold Spray Process." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0396.
Full textZhang, J. "An extended ordinary state-based peridynamics model for ductile fracture analysis." In Aerospace Science and Engineering. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902677-43.
Full textReports on the topic "Peridynamics Model"
Mitchell, John Anthony. A nonlocal, ordinary, state-based plasticity model for peridynamics. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1018475.
Full textMitchell, John Anthony. A non-local, ordinary-state-based viscoelasticity model for peridynamics. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1029821.
Full textSilling, Stewart Andrew, and Abe Askari. Peridynamic model for fatigue cracking. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1160289.
Full textD'Elia, Marta, Stewart Silling, Yue Yu, and Huaiqian You. A data-driven peridynamic continuum model for upscaling molecular dynamics. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1821529.
Full textSilling, Stewart A. Stability of Peridynamic Correspondence Material Models and Their Particle Discretizations. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1457611.
Full textD'Elia, Marta, and Yue Yu. On the prescription of boundary conditions for nonlocal Poisson's and peridynamics models. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1817978.
Full textD'Elia, Marta, Stewart Silling, Huaiqian You, Yue Yu, and Muge Fermen-Coker. Peridynamic Model for Single-Layer Graphene Obtained from Coarse Grained Bond Forces. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819404.
Full textVogler, Tracy, and Christopher James Lammi. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159446.
Full text