Academic literature on the topic 'Perfusion pulmonaire ex vivo'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perfusion pulmonaire ex vivo.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perfusion pulmonaire ex vivo"

1

Citak, N., S. Arni, J. Cehn, L. Ceulemans, I. Schmitt-Opitz, and I. Inci. "Subnormothermic Ex Vivo Lung Perfusion Improves Graft Preservation in Rat Ex Vivo Lung Perfusion Model." Journal of Heart and Lung Transplantation 39, no. 4 (April 2020): S354. http://dx.doi.org/10.1016/j.healun.2020.01.416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdalla, Luis Gustavo, Karina Andrighetti de Oliveira Braga, Natalia Aparecida Nepomuceno, Lucas Matos Fernandes, Marcos Naoyuki Samano, and Paulo Manuel Pêgo-Fernandes. "Ex vivo lung perfusion in Brazil." Jornal Brasileiro de Pneumologia 42, no. 2 (April 2016): 95–98. http://dx.doi.org/10.1590/s1806-37562015000000099.

Full text
Abstract:
Objective: To evaluate the use of ex vivo lung perfusion (EVLP) clinically to prepare donor lungs for transplantation. Methods: A prospective study involving EVLP for the reconditioning of extended-criteria donor lungs, the criteria for which include aspects such as a PaO2/FiO2 ratio < 300 mmHg. Between February of 2013 and February of 2014, the lungs of five donors were submitted to EVLP for up to 4 h each. During EVLP, respiratory mechanics were continuously evaluated. Once every hour during the procedure, samples of the perfusate were collected and the function of the lungs was evaluated. Results: The mean PaO2 of the recovered lungs was 262.9 ± 119.7 mmHg at baseline, compared with 357.0 ± 108.5 mmHg after 3 h of EVLP. The mean oxygenation capacity of the lungs improved slightly over the first 3 h of EVLP-246.1 ± 35.1, 257.9 ± 48.9, and 288.8 ± 120.5 mmHg after 1, 2, and 3 h, respectively-without significant differences among the time points (p = 0.508). The mean static compliance was 63.0 ± 18.7 mmHg, 75.6 ± 25.4 mmHg, and 70.4 ± 28.0 mmHg after 1, 2, and 3 h, respectively, with a significant improvement from hour 1 to hour 2 (p = 0.029) but not from hour 2 to hour 3 (p = 0.059). Pulmonary vascular resistance remained stable during EVLP, with no differences among time points (p = 0.284). Conclusions: Although the lungs evaluated remained under physiological conditions, the EVLP protocol did not effectively improve lung function, thus precluding transplantation.
APA, Harvard, Vancouver, ISO, and other styles
3

Scharffenberg, Martin, Anne Naumann, Thomas Bluth, Marcelo de Abreu, Jörg Kotzerke, and Anja Braune. "Comparison of 68Ga- and fluorescence-labeled microspheres for measurement of relative pulmonary perfusion in anesthetized pigs." Nuklearmedizin 57, no. 03 (June 2018): 100–107. http://dx.doi.org/10.3413/nukmed-0970-18-04.

Full text
Abstract:
Summary Aim: We compared 68Gallium (68Ga)- and fluorescence-labeled microspheres for measurement of pulmonary perfusion distribution in anesthetized pigs without lung injury. Methods: In two mechanically ventilated pigs, the distribution of pulmonary perfusion was marked in vivo with 68Ga- and fluorescence-labeled microspheres in supine and prone position. After each injection, the distribution of 68Ga-labeled microspheres was measured in vivo with positron emission tomography/ computed tomography (PET/CT) in the position in which microspheres were injected and vice versa. The distribution of fluorescence-labeled microspheres was measured ex vivo. Perfusion distributions were compared between methods and postures within four lung regions and along the ventro-dorsal gradient. After each injection of 68Ga-labeled microspheres, changes in ventro-dorsal perfusion gradients induced by repositioning were compared for volume- and mass-normalized PET/CT measurements. Results: Regional and gradient analyses of in vivo and ex vivo measurements, respectively, consistently revealed higher pulmonary perfusion in dorsal than ventral regions in supine positioned animals. Both methods showed more pronounced perfusion gradients in supine compared to prone position. Changes in animal position were associated with alterations in the ventro-dorsal perfusion gradient when volume-, but not mass-normalization was conducted for PET/CT data. Conclusions: Ex vivo fluorescence- and in vivo 68Ga-labeled microspheres measurements revealed similar perfusion distributions. Mass-normalized perfusion measurements by 68Ga-labeled microspheres and PET/CT were not affected by positioning artifacts.
APA, Harvard, Vancouver, ISO, and other styles
4

Olbertz, Carolin, Nikolaus Pizanis, Hagen Bäumker, Simon Becker, Clemens Aigner, Ursula Rauen, Ingo Nolte, Markus Kamler, and Achim Koch. "Effects of immediate versus delayed ex-vivo lung perfusion in a porcine cardiac arrest donation model." International Journal of Artificial Organs 42, no. 7 (June 25, 2019): 362–69. http://dx.doi.org/10.1177/0391398819841618.

Full text
Abstract:
Objective:Ex-vivo lung perfusion is a promising tool to evaluate and recondition marginal donor lungs usually after a cold static preservation. The concept of continuous organ perfusion is supposed to reduce ischemic damage; however, the optimal perfusion protocol has not been established yet. The aim of this study was to compare immediate ex-vivo lung perfusion (I-EVLP) to delayed ex-vivo lung perfusion (D-EVLP) after a certain cold static preservation period on lung function in a large animal model.Methods:In a porcine model, lungs were procured after circulatory death and 60 min of no-touch warm ischemia. Lungs were preserved with single-flush cold low potassium dextran solution and prepared either for I-EVLP (n = 8) or stored cold for 9 h with subsequent D-EVLP (n = 8). Functional outcomes and morphology were compared during 4 h of ex-vivo lung perfusion, using STEEN SolutionTMas perfusion solution.Results:Pulmonary functional data, perfusate activities of lactate dehydrogenase, alkaline phosphatase, and products of lipid peroxidation did not differ significantly. There was a trend toward lower wet–dry ratio (I-EVLP: 13.4 ± 2.9; D-EVLP: 9.1 ± 2.5) and higher ΔpO2in D-EVLP group (I-EVLP: 209 ± 51.6 mmHg; D-EVLP: 236.3 ± 47.3 mmHg).Conclusion:In this donation-after-circulatory-death model, 9 h of cold static preservation followed by ex-vivo lung perfusion results in comparable pulmonary function to I-EVLP as indicated by oxygenation capacities and wet–dry ratio. Our findings indicate that prolonged cold static preservation prior to ex-vivo lung perfusion is as safe and effective as I-EVLP in the procurement of donor lungs.
APA, Harvard, Vancouver, ISO, and other styles
5

Guest, Bruce, Luis Arroyo, Laurent Viel, Carolyn Kerr, and John Runciman. "EX VIVO EQUINE HEART AND LUNG PERFUSION SYSTEM." Biomedical Engineering: Applications, Basis and Communications 27, no. 05 (October 2015): 1550045. http://dx.doi.org/10.4015/s1016237215500453.

Full text
Abstract:
An ex vivo heart lung perfusion system (EVHLPS) was designed and constructed in order to facilitate the study of hemodynamic and mechanical phenomena associated with the equine pulmonary vascular system. Fresh en bloc heart and lung preparations collected from adult horses were placed in an enclosed chamber in normal anatomic orientation and perfused with isotonic phosphate buffered saline (PBS) via a closed loop, pulsatile perfusion system. Pulmonary artery (PA) pressure, left atrial pressure and perfusate temperature were regulated. Lungs were ventilated by static lung inflation and dynamic positive pressure ventilation (PPV). Instrumentation was introduced into the pulmonary arterial system via an instrument chamber incorporated in the perfusate flow piping upstream from the cranial vena cava. Key physiologic parameters (mean [SD]); PA flow (1.57 [0.61] L/min); systolic pressure (SAP) (42.5 [6.83] mmHg); diastolic pressure (DAP) (30.3 [3.86] mmHg); and perfusate temperature (37.1 [0.46]°C) were observed with en bloc heart and lung preparations (n = 5). PA pulse wave velocity (PWV) was found to vary from 1.72 to 12.50 m/s (n = 2) and appeared to have directly proportional relationships with mean arterial pressure (MAP) and distance within the PA.
APA, Harvard, Vancouver, ISO, and other styles
6

Warnecke, Gregor. "Normotherme maschinelle Ex-vivo-Perfusion von Spenderlungen." Zeitschrift für Herz-,Thorax- und Gefäßchirurgie 35, no. 4 (July 16, 2021): 242–47. http://dx.doi.org/10.1007/s00398-021-00442-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Denlinger, Chadrick E. "Commentary: Ex vivo perfusion with green tea." Journal of Thoracic and Cardiovascular Surgery 161, no. 1 (January 2021): e79. http://dx.doi.org/10.1016/j.jtcvs.2020.01.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garza, G., A. Wang, J. Yune, Y. Zhang, J. Montagne, G. Loesch Siebiger, K. Yamanashi, et al. "Membraneless Perfusion - A Novel Technique for Ex Vivo Lung Perfusion." Journal of Heart and Lung Transplantation 43, no. 4 (April 2024): S79. http://dx.doi.org/10.1016/j.healun.2024.02.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakajima, Daisuke, and Hiroshi Date. "Ex vivo lung perfusion in lung transplantation." General Thoracic and Cardiovascular Surgery 69, no. 4 (March 8, 2021): 625–30. http://dx.doi.org/10.1007/s11748-021-01609-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Wolf, Julien, Philippe Puyo, Pierre Bonnette, Antoine Roux, Morgan Le Guen, François Parquin, Alain Chapelier, and Edouard Sage. "Logistic ex Vivo Lung Perfusion for Hyperimmunized Patients." Annals of Thoracic Surgery 102, no. 3 (September 2016): e205-e206. http://dx.doi.org/10.1016/j.athoracsur.2016.01.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Perfusion pulmonaire ex vivo"

1

Olland, Anne. "Intérêt des microparticules pour l'étude de l'ischémie reperfusion en tranplantation pulmonaire basé sur un modèle de perfusion ventilation pulmonaire ex vivo chez le rat." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ035.

Full text
Abstract:
L’ischémie reperfusion pulmonaire et sa traduction clinique la dysfonction primaire du greffon sont responsables d’une morbi-mortalité importante en transplantation pulmonaire aussi bien à court terme qu’à long terme. Nous avons voulu faire la démonstration de la pertinence des microparticules comme marqueur de l’ischémie reperfusion pulmonaire. Nous avons reproduit et validé la stabilité d’un modèle de perfusion ventilation ex vivo de poumon de rat aussi bien en conditions normales (pas d’ischémie pulmonaire avant reperfusion) qu’en conditions extrêmes (1 h d’ischémie chaude avant reperfusion pulmonaire). Nous avons étudié la génération de microparticules par des poumons soumis à des conditions variables d’ischémie froide et d’ischémie chaude. Les poumons soumis à de fortes conditions d’ischémie froide (20h) produisent un pic précoce de microparticules d’origine épithéliale alvéolaire, leucocytaire et endothéliale. Nous en concluons que le modèle de perfusion ventilation ex vivo de poumons de rats est un modèle pertinent pour l’étude des réactions d’ischémie reperfusion. Les microparticules apparaissent comme un marqueur précoce des lésions d’ischémie reperfusion pulmonaires dans ce modèle
Lung ischemia reperfusion and its clinical expression as primary graft dysfunction are provider of immediate and long term morbidity and mortality for patients. We aimed at demonstrating the usefulness and relevance of microparticles as biomarkers for lung ischemia reperfusion injury. We first reproduced an ex vivo rat lung perfusion and ventilation experimental model. Stability of the model was validated for normal conditions (no ischemia before reperfusion) as well as for extreme conditions (1 hour warm ischemia before reperfusion). The generation of microparticles was studied in that model for variable conditions of cold ischemia and for warm ischemia. Lung submitted to strong ischemic injury (20hours cold ischemia) generate an early pike of microparticles originated from leukocyes, endothelial cells, and epithelial alveolar cells. We may conclude the ex vivo model of rat lung perfusion and ventilation is relevant for the study of lung ischemia reperfusion injury. Microparticles are relevant markers of rat lung ischemia reperfusion injury in our model
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, Julien de. "Remise en question de la procédure de perfusion pulmonaire ex vivo par modification du liquide de perfusion avec dialyse continue dans un modèle porcin." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL086.

Full text
Abstract:
La Perfusion Pulmonaire Ex Vivo (PPEV) est une technique innovante permettant d'améliorer la fonction des poumons de donneurs à critères élargis, augmentant ainsi le nombre d'organes disponibles pour la transplantation. En ventilant et perfusant les poumons en normothermie, cette méthode permet de récupérer des poumons de qualité incertaine et de les rendre aptes à la transplantation. Cependant, la PPEV prolongée peut entraîner œdème, réponses inflammatoires et accumulation de déchets métaboliques. Pour pallier ces limitations, mes travaux de thèse ont exploré l'effet de l'intégration d'un hémodialyseur dans le circuit de PPEV afin de réguler la composition du liquide de perfusion et maintenir la viabilité pulmonaire, en évaluant les effets biologiques sur 6 et 12 heures dans un modèle porcin.Méthodes Les expérimentations ont été menées conformément aux directives de l'UE et aux réglementations françaises, approuvées par le comité éthique COMETHEA. Seize porcs ont été répartis en quatre groupes de PPEV : sans changement de liquide de perfusion, remplacement partiel horaire (protocole TORONTO), dialyse pédiatrique et dialyse adulte. La dialyse pédiatrique utilisait une membrane avec une surface efficace de 0,2 m² et un seuil de filtration de 30 kDa, tandis que la dialyse adulte utilisait une membrane avec une surface efficace de 1,8 m² et un seuil de filtration de 40 kDa. La première étude a été réalisée sur une durée de 6 heures avec les 4 groupes, et la seconde sur 12 heures avec les groupes remplacement partiel horaire et dialyse pédiatrique.Les paramètres physiologiques et métaboliques ont été mesurés, les cytokines ont été dosées par Luminex/Multiplex, et les profils d'expression génique ont été évalués par séquençage d'ARN.Résultats L'analyse des paramètres physiologiques a montré une stabilité de la compliance pulmonaire, de la pression artérielle pulmonaire et des échanges gazeux sans distinction significative entre les groupes. Les procédures de dialyse ont corrigé les déséquilibres électrolytiques et métaboliques, stabilisant les concentrations de lactate et de glucose. Cependant, les cytokines inflammatoires (TNFα, IL-6, IL-8, IL-10) ont montré une augmentation après trois heures, avec des niveaux plus élevés dans le groupe de dialyse pédiatrique.Les analyses d'expression génique ont révélé que la PPEV est associée, quelque soit le groupe, à l'activation des voies inflammatoires, de la survie cellulaire, et de la prolifération. Par contre, la dialyse pédiatrique a induit des profils d'expression prédictifs d'une plus forte activation endothéliale et d'une plus forte signalisation cytokinique par rapport au remplacement partiel horaire.Conclusion L'ajout d'un circuit de dialyse au protocole de PPEV permet un meilleur équilibre des électrolytes et du métabolisme du liquide de perfusion. Cependant, cette approche est associée à une augmentation des cytokines inflammatoires, ce qui pourrait avoir des implications négatives pour la transplantation pulmonaire. Malgré des perspectives prometteuses, des évaluations supplémentaires et des améliorations sont nécessaires avant une application clinique, notamment l'utilisation de membranes d'adsorption améliorées et l'ajout de nutriments pour optimiser le système de perfusion. Ces résultats soulignent l'importance des analyses génomiques fonctionnelles pour comprendre la réponse biologique à la PPEV et guider les améliorations futures
Ex Vivo Lung Perfusion (EVLP) is an innovative technique that enhances the function of donor lungs with extended criteria, thus increasing the number of organs available for transplantation. By ventilating and perfusing the lungs at normothermia, this method allows for the recovery of lungs of uncertain quality and makes them suitable for transplantation. However, prolonged EVLP can lead to edema, inflammatory responses, and the accumulation of metabolic waste. To address these limitations, my thesis work explored the effect of integrating a hemodialyzer into the EVLP circuit to regulate the composition of the perfusion fluid and maintain lung viability, evaluating the biological effects over 6 and 12 hours in a porcine model.MethodsThe experiments were conducted in accordance with EU guidelines and French regulations, approved by the COMETHEA ethics committee. Sixteen pigs were divided into four EVLP groups: without perfusion fluid change, hourly partial replacement (TORONTO protocol), pediatric dialysis, and adult dialysis. Pediatric dialysis used a membrane with an effective surface area of 0.2 m² and a filtration threshold of 30 kDa, while adult dialysis used a membrane with an effective surface area of 1.8 m² and a filtration threshold of 40 kDa. The first study was conducted over 6 hours with all four groups, and the second over 12 hours with the hourly partial replacement and pediatric dialysis groups.Physiological and metabolic parameters were measured, cytokines were assayed by Luminex/Multiplex, and gene expression profiles were evaluated by RNA sequencing.ResultsAnalysis of physiological parameters showed stability in lung compliance, pulmonary arterial pressure, and gas exchange without significant differences between groups. The dialysis procedures corrected electrolyte and metabolic imbalances, stabilizing lactate and glucose concentrations. However, inflammatory cytokines (TNFα, IL-6, IL-8, IL-10) increased after three hours, with higher levels in the pediatric dialysis group.Gene expression analyses revealed that EVLP is associated, regardless of group, with the activation of inflammatory pathways, cell survival, and proliferation. In contrast, pediatric dialysis induced expression profiles predictive of stronger endothelial activation and cytokine signaling compared to hourly partial replacement.ConclusionThe addition of a dialysis circuit to the EVLP protocol allows for better electrolyte and metabolic balance in the perfusion fluid. However, this approach is associated with an increase in inflammatory cytokines, which could have negative implications for lung transplantation. Despite promising prospects, further evaluations and improvements are necessary before clinical application, including the use of enhanced adsorption membranes and the addition of nutrients to optimize the perfusion system. These results highlight the importance of functional genomic analyses to understand the biological response to EVLP and guide future improvements
APA, Harvard, Vancouver, ISO, and other styles
3

Brenckmann, Vivien. "Monitorage de l'inflammation pulmonaire par le monoxyde de carbone endogène exhalé dans un modèle de poumons humains : Application lors d'optimisation de greffons en perfusion pulmonaire Ex-Vivo avant transplantation pulmonaire. Étude BreathDiag-COe." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALS006.

Full text
Abstract:
Pour pallier au manque de greffons pulmonaires, des techniques de perfusion pulmonaire ex-vivo (PPEV) ont été développées. Les critères d’évaluation sont basés sur les paramètres physiologiques comme la qualité des échanges gazeux, les résistances vasculaires pulmonaires, la formation d'œdème, et l’aspect général des poumons.La production endogène de monoxyde de carbone (CO) est influencée par les phénomènes inflammatoires et est plus particulièrement en lien avec les mécanismes d'ischémie-reperfusion.La mesure du CO exhalé (COe) est possible grâce à un spectromètre laser (ProCeas®). Cet appareil est précis (concentrations inférieures au Ppmv) et rapide permettant un monitorage cycle à cycle, en temps réel.Le but de l'étude était d’évaluer le taux de COe des greffons pulmonaires humains en cours de procédure de PPEV et de le comparer à l’acceptation des greffons, aux autres paramètres testés et au devenir à court terme des receveurs.Matériel et méthodeDes greffons pulmonaires ont été optimisés et évalués en PPEV normothermique. Les poumons étaient progressivement réchauffés, perfusés et ventilés. S'en suivait une phase d'évaluation (incluant des manœuvres de recrutement) durant deux à quatre heures.Le ProCeas® était connecté en dérivation sur le circuit ventilatoire. La production de CO était moyennée sur cinq minutes à la fin de chaque phase de recrutement.En fin de procédure de PPEV, la décision de transplanter les poumons était prise selon les critères habituels de l'équipe chirurgicale sans avoir connaissance des valeurs de COe .Résultats et Discussion21 procédures de PPEV ont eu lieux à l’hôpital Foch de Suresnes de Décembre 2018 à Juillet 2019, dont 13 greffons à « critères élargis » (CE) et 8 issus de donneurs après arrêt cardiaque (de la catégorie III de Maastricht) (DDAC-M3).La présence de sang dans les voies aériennes faussait les résultats de COe, ainsi trois procédures ont été exclues.Il n’y avait pas de différence de COe en fonction de l’origine CE ou DDAC-M3 des poumons.Sur les 18 greffons, deux ont été définitivement récusés à la greffe. Il y avait une tendance à un COe plus élevé pour les poumons récusés (p=0,068). Cette tendance était présente dès le début des procédures.Concernant les paramètres physiologiques testés lors des procédures de PPEV, le COe était corrélé à la consommation de glucose (r=0,64 ; p=0,04) et à la production de lactates (r=0,53 ; p= 0,025). Il y avait une relation non significative avec les résistances vasculaires (p = 0,062). Il n’y avait pas de lien entre COe et formation d’œdème ni avec le rapport PaO2/FiO2 per PPEV.Concernant les données post-opératoires, en séparant les greffons en 2 groupes (COe bas Vs COe élevé, limite fixée à 0,235 Ppmv), il y avait une tendance à de meilleures capacités d’hématose (PaO2/FiO2) à 24h (p=0,052) pour ceux ayant un taux de COe bas. Tous les poumons avec taux de COe élevé ont présenté un score DPG à 3 dans les 72h (p=0,088). Il y avait également une tendance à es durées plus longues de réanimation (6 jours (+-3,25) Vs 15 jours (+-3,83), p=0,06) et de durée totale en unité de soins continus (réanimation + soins intensifs) (14,5 jours (+-2,34) vs 19 jours (+-3,4) (p=0,07)) pour les greffons avec un taux de COe élevé.ConclusionLe taux de COe per PPEV pourrait être une aide supplémentaire et précoce dans l’évaluation des poumons. Il semble pouvoir également apporter une aide pronostique pour anticiper les soins de réanimation post opératoires
To compensate the lack of pulmonary grafts, ex-vivo lung perfusion techniques (EVLP) have been developed. The evaluation criteria are based on physiological parameters such as the quality of gas exchange, pulmonary vascular resistance, edema formation, and the general appearance of the lungs. The endogenous production of carbon monoxide (CO) is influenced by inflammatory phenomena and is more particularly linked to the mechanisms of ischemia-reperfusion.The measurement of exhaled CO (eCO) is possible thanks to a laser spectrometer (ProCeas®). This device is precise (concentrations lower than Ppmv) and fast allowing cycle-to-cycle monitoring, in real time.The aim of the study was to assess the eCO level of human lung grafts during the EVLP procedure and to compare it with the acceptance of the grafts, the other parameters tested and the short-term outcome of the recipients.Material and methodLung grafts have been optimized and evaluated in normothermic EVLP. The lungs were gradually warmed, perfused and ventilated. This was followed by an evaluation phase (including recruitment maneuvers) lasting two to four hours.The ProCeas® was connected in bypass to the ventilation circuit. CO production was averaged over five minutes at the end of each recruitment procedure.At the end of the EVLP procedure, the decision to transplant the lungs was taken according to the usual criteria of the surgical team without knowing the value of eCO.Results and discussion21 procedures took place at Foch Hospital in Suresnes from December 2018 to July 2019, including 13 grafts with extended criteria (EC) and 8 from donors after cardiac arrest (Category III of Maastricht) (DDCA-M3).The presence of blood in the airways distorted the eCO results, so three procedures were excluded.There was no difference in eCO based on the EC or DDCA-M3 origin of the lungs.Of the 18 grafts, two were definitively rejected at the graft. There was a tendency for higher eCO for the recused lungs (p=0.068). This trend was present from the start of the procedures.Regarding the physiological parameters tested during EVLP procedures, eCO was correlated with glucose consumption (r=0.64; p=0.04) and lactate production (r=0.53; p=0.025). There was a non-significant relationship with vascular resistance (p = 0.062). There was no link between eCO and edema formation or the PaO2/FiO2 relationship per PPEV.Concerning the post-operative data, by separating the grafts into 2 groups (low eCO Vs high eCO, limit fixed at 0,235 Ppmv), there was a tendency to better capacities of hemostasis (PaO2/FiO2) at 24h (p=0.052) for those with a low eCO level. All lungs with high eCO levels presented a PGD score of 3 within 72 hours (p=0.088). There was also a tendency for longer durations of resuscitation (6 days (+-3.25) vs 15 days (+-3.83), p = 0.06) and total duration in the continuing care unit (resuscitation + intensive care) (14.5 days (+-2.34) vs 19 days (+-3.4) (p = 0.07)) for grafts with a high COe level.ConclusionThe eCO level per EVLP could be an additional and early aid in the evaluation of the lungs.It also seems to be able to provide prognostic help to anticipate post-operative resuscitation care
APA, Harvard, Vancouver, ISO, and other styles
4

Maciel, Miriam Beatriz de Tolledo. "Estruturação administrativa do processo de perfusão pulmonar ex vivo em normotermia para transplante em um hospital." Universidade do Vale do Rio dos Sinos, 2017. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6462.

Full text
Abstract:
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-08-02T13:58:19Z No. of bitstreams: 1 Miriam Beatriz de Tolledo Maciel_.pdf: 900476 bytes, checksum: 09fa98d98671b59cf6eed18f049d34a4 (MD5)
Made available in DSpace on 2017-08-02T13:58:19Z (GMT). No. of bitstreams: 1 Miriam Beatriz de Tolledo Maciel_.pdf: 900476 bytes, checksum: 09fa98d98671b59cf6eed18f049d34a4 (MD5) Previous issue date: 2017-05-08
Nenhuma
Muitos pacientes aguardam em lista de espera por um transplante de pulmão. A perspectiva de aumentar o número de transplantes através de nova tecnologia que proporcione a utilização de órgãos não viáveis para transplante aumenta a esperança de realização do transplante. A implantação de novas tecnologias em busca de melhores resultados ou do aumento de oportunidades aos pacientes de recuperação de sua saúde é cada vez mais frequente no segmento hospitalar. Objetivo: estruturar o processo administrativo de implantação de perfusão pulmonar ex vivo em normotermia para transplantes no Hospital Dom Vicente Scherer da Santa Casa de Misericórdia de Porto Alegre. Método: foram utilizadas as ferramentas do ciclo do PDCA (Plan – Do – Check – Action) e a matriz GUT (Gravidade – Urgência – Tendência) para desenhar o fluxo do processo de implantação de perfusão pulmonar ex vivo em normotermia para transplantes. Resultados: os problemas levantados na matriz GUT foram tratados observando-se o ciclo PDCA conforme a média crítica de cada um. O limite de tratamento do problema através do plano de ação até a média critica de 20 foi definido considerando-se que, abaixo dessa média, os problemas identificados não teriam influência na implementação do processo. O projeto teve êxito em seu objetivo, sendo efetivada a estruturação do processo administrativo de perfusão pulmonar ex vivo para transplante confirmada pela execução do processo administrativo mediante simulação de todo o processo. Como resultado secundário, foi elaborado o desenho do fluxo de implementação de novas tecnologias na instituição em que foi realizado o projeto. Conclusão: Uma vez identificados e tratados os problemas, além de permitir estruturar a parte administrativa da implementação da preservação pulmonar normotérmica ex vivo, a construção do processo possibilitou elaborar uma proposta de fluxo de implementação de novas tecnologias na instituição.
Many patients are waiting on a list for a lung transplant. The prospect of increasing the number of transplants through new technology that provides the use of non-viable organs for transplantation increases the hope of transplantation. The implantation of new technologies searching for better results or to increase patients’ opportunities for recovering their health ocurrs more frequently in hospitals. Objective: To structure the administrative process of implantation of pulmonary perfusion ex vivo in normotermia for transplants at Dom Vicente Scherer Hospital of Santa Casa de Misericórdia in Porto Alegre. Method: PDCA cycle and GUT matrix’s tools were used to design the flow of the pulmonary perfusion implantation process ex vivo in normothermia for transplants. Results: The problems raised in the GUT matrix were approached by observing the PDCA cycle according to the critical average of each one. The limit for treating the problem using the action plan up to the critical average of 20 was defined, considering that below that average the problems identified would have no influence on the implementation of the process. The project achieved its goal and the structuring of the administrative process of ex vivo pulmonary perfusion for transplantation was carried out, confirmed by running the administrative process through a simulation of the whole process. As a secondary result, the design of the implementation flow of new technologies in the institution where the project was carried out was elaborated. Conclusion: Once the problems were identified and approached, besides allowing the administrative part of the implementation of normothermic pulmonary preservation ex vivo, the construction of the process made it possible to elaborate a proposal for the implementation of new technologies in the institution.
APA, Harvard, Vancouver, ISO, and other styles
5

Roman, Marius Andrei. "Examination of ex-vivo lung perfusion in porcine model." Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stone, John. "Assessing the impact of ex vivo perfusion on graft immunogenicity." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/assessing-the-impact-of-ex-vivo-perfusion-on-graft-immunogenicity(a8ad264a-8925-44ee-94c0-465d3ddd7e14).html.

Full text
Abstract:
Whilst the major caveat to the success of organ transplantation remains the severe lack of donor organs, rejection is still a primary confounding factor to transplant outcomes. This is an allospecific response that occurs when the recipient immune system recognises conserved proteins on donor-derived cells as 'non-self'. Currently, all immunosuppressive regimes target the recipient immune response, ignoring the large donor immune repertoire despite these cells playing a central role in acute rejection. This is likely as a result of a lack of understanding of the temporal migration of the donor compartment and its contribution to the inflammatory cascade that ensues. The development of ex vivo perfusion provides the opportunity to assess this in isolation, with no confounding factors. Furthermore, inducing the mobilisation of passenger leukocytes on an ex vivo circuit allows their removal prior to transplantation. Reducing the inflammatory burden of donor organs has the potential to impact on the clinical outcome of patients, manifesting as a reduction in the incidence or severity of acute rejection. The aim of this PhD thesis was to characterise the donor immune compartment of lungs and kidneys, to assess the impact of ex vivo perfusion on this, and determine the post-transplant impact of removing a proportion of these cells. For this purpose, donor lungs were perfused using ex vivo lung perfusion (EVLP) and the immune compartment characterised. A comparison of EVLP versus standard transplanted lungs was performed using a porcine transplant model. Clinical parameters were recorded and a histological assessment of cellular infiltration was performed to diagnose the incidence of acute rejection. To determine if these results were translatable to other organs, a porcine model of kidney ex vivo perfusion was established. In both models, a significant efflux of donor leukocytes was observed and inflammatory mediators detected. In a transplant model of EVLP, reducing the transfer of these passenger leukocytes translated into improved clinical outcomes, manifesting as a lower incidence of acute rejection, for animals receiving EVLP lungs compared to a standard transplant. Similar benefit is likely to occur following transplantation of perfused kidneys. This study describes for the first time the contribution of donor organs to the inflammatory processes that ensue following transplantation. It is clear that this untargeted population is of significant importance in clinical outcomes. Immunomodulatory strategies to alter the donor immune environment prior to transplantation therefore warrant development.
APA, Harvard, Vancouver, ISO, and other styles
7

Motoyama, Hideki. "Plasmin administration during ex vivo lung perfusion ameliorates lung ischemia-reperfusion injury." Kyoto University, 2015. http://hdl.handle.net/2433/200436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kondo, Takeshi. "β2-Adrenoreceptor Agonist Inhalation During Ex Vivo Lung Perfusion Attenuates Lung Injury." Kyoto University, 2016. http://hdl.handle.net/2433/215382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Izamis, Maria-Louisa 1979. "Ex vivo perfusion optimization of donor liver grafts for transplantation and cell isolation." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58298.

Full text
Abstract:
Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references.
There is a constant demand for enormous numbers of high quality hepatocytes in the fields of cell transplantation, pharmacotoxicology, tissue engineering, and bioartificial assist devices. The scarcity of viable hepatocytes necessitates the use of suboptimal sources including damaged donor organs that are not transplantable. Many of these organs have potentially reversible pathologies however, that could be treated via ex vivo perfusion thereby increasing their cell yield. With the intent to translate organ recovery by perfusion into the clinic, we engineered a very simple room temperature-operated ex vivo organ perfusion system to test a rat liver model of uncontrolled non-heart beating donors. Seventeen times as many hepatocytes were recovered from livers exposed to an hour of warm ischemia (WI, 34*C) compared to untreated WI livers in only 3 hours of perfusion. Further, fresh liver hepatocyte yields were also increased by 32% postperfusion, demonstrating that both damaged and healthy donor livers could benefit from this methodology. A linear correlation between cell yield and tissue ATP content was established. This enables an accurate prediction of cell recovery during preservation and can be used as a direct measure of organ viability and the trajectory of organ recovery during perfusion resuscitation. Further, a strong correlation between perfusion flow rate and cell yield was also established supporting the use of flow rates as low as possible without causing hypoperfusion or oxygen deprivation. Morphologically and functionally, perfusion-isolated hepatocytes generally performed comparably or better than fresh hepatocytes in cell suspension and plate culture. Cumulatively, these findings strongly support the ubiquitous use of organ perfusion systems in the clinic for optimal enhancement of donor grafts.
by Maria-Louisa Izamis.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

Raude, Emma. "Développement, validation et caractérisation d’un modèle ex vivo de peau humaine perfusé : FlowSkin." Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0015.

Full text
Abstract:
Les modèles organotypiques tels que les explants de peau humaine sont les modèles les plus complexes et parmi les plus représentatifs de la peau in vivo existants à ce jour pour tester l’efficacité ou l’innocuité de molécules d’intérêts thérapeutiques au stade des études pré-cliniques. Cependant, l’absence de circulation sanguine et lymphatique dans ces modèles reste une limite importante dans l’homéostasie du tissu, notamment pour prédire les réponses de la peau à un traitement. De plus, les échanges en nutriments et en oxygène n’étant possibles que par diffusion, la durée de vie de ces modèles reste limitée. Différentes stratégies ont été mises en place afin de contrôler les mécanismes de transports moléculaires au sein de tissus biologiques. La microfluidique offre un fort potentiel pour contrôler la convection et la diffusion permettant l’échange de composés dans ces modèles de peau.L’objectif de ce projet est de développer, caractériser et valider un modèle de peau humaine ex vivo perfusé. Le but de cette perfusion intra-tissulaire est de favoriser les échanges de nutriments, d’oxygène ou de médicaments, mais également d’améliorer l’élimination des déchets métaboliques.Le premier objectif de mes travaux a consisté à mettre en place un flux intra-tissulaire dans un explant de peau humaine, et à développer un procédé permettant de maintenir l’explant perfusé en culture pendant plusieurs jours. Pour cela, un dispositif poreux a été implanté dans le derme du modèle ex vivo de peau humaine NativeSkin, développé par la société Genoskin, puis relié à un système microfluidique permettant l’infusion de composés au sein du tissu.Le deuxième objectif a consisté à développer des méthodes d’analyse de la diffusion de composés dans des explants de peau. Quatre méthodes ont été développées : l’évaluation macroscopique et qualitative de la diffusion à l’aide d’un colorant, l’étude de la diffusion en temps réel par radiographie à rayons X, l’étude de la diffusion en trois dimensions par tomographie à rayons X, et enfin l’analyse de la diffusion de dextrans fluorescents de différents poids moléculaires, sur coupes histologiques. Un modèle numérique permettant de simuler la diffusion dans le modèle de peau a également été développé sur le logiciel COMSOL, permettant de prédire le profil de diffusion d’un composé.Le troisième et dernier objectif a consisté à déterminer les paramètres de perfusion permettant une bonne diffusion des composés dans l’explant de peau, sans toutefois endommager le tissu. Une première série d’expériences (8 donneurs) a été réalisée sur des modèles perfusés à flux constant (2,5µL/min) avec du milieu de culture, pendant 10 jours. Les résultats ont montré qu’à l’issue de la culture, les modèles de peau ne présentent pas d’altération de la viabilité cellulaire ni de l’intégrité du tissu, avec un maintien de la prolifération et du métabolisme cellulaire. Cependant, la caractérisation de la diffusion dans le modèle a démontré un manque de reproductibilité dans les expériences, avec d’importantes variabilités inter et intra-donneurs. De plus, la perfusion de dextrans de différents poids moléculaires a démontré que la diffusion de composés de hauts poids moléculaires était limitée. Afin de pallier ces limites, nous avons proposé une nouvelle méthode de perfusion basée sur une modulation de la pression au sein du dispositif. L’application d’une légère surpression au sein du dispositif poreux permet d’améliorer la reproductibilité et l’efficacité des échanges moléculaires au sein de l’explant.Les résultats obtenus positionnent le modèle FlowSkin ainsi développé comme un nouvel outil pertinent pour évaluer l’efficacité ou la toxicité de molécules administrées par voie intraveineuse, directement sur de la peau humaine. De plus, la perfusion de transporteurs d’oxygène via ce système pourrait permettre de prolonger la durée de vie et donc d’améliorer encore la pertinence du modèle de peau ex vivo
Organotypic models as human skin explants are the most complex and among the most representative of in vivo skin existing today to test the efficacy or the safety of molecules of therapeutic interest during preclinical studies. However, the loss of vascularization and lymphatic system in these models remains a major limitation in tissue homeostasis that impedes the prediction of skin responses to a treatment. In addition, exchanges of nutrients and oxygen being limited to diffusion, models lifetime is limited. Different strategies have been implemented to study and improve mass transport mechanism in such models. Microfluidics offers a great potential to control diffusion and convection mechanisms that permit molecular exchanges in skin models.The objective of this project is to develop, characterize and validate an ex vivo perfused human skin model. The purpose of this intra-tissue infusion is to promote the exchanges of nutrients, oxygen or drugs, but also to improve metabolic waste elimination.The first objective of my work consisted in implementing an intra-tissue flow in a human skin explant, and in setting up a process to maintain the perfused model in culture for several days. To this end, a porous device was implanted in the dermis of the ex vivo human skin model NativeSkin, developed by the company Genoskin. The implantable device is then connected to a microfluidic system allowing the infusion of compounds within the tissue.The second objective was to develop analysis methods of the diffusion of compounds in skin explants. Four methods have been developed: macroscopic and qualitative evaluation of the diffusion using a dye, the study of the diffusion in real time by X-ray radiography, the study of the diffusion in three dimensions by X-ray tomography, and finally the analysis of the diffusion of fluorescent dextrans of different molecular weights, on histological sections. A numerical model allowing to simulate the diffusion in the skin model has also been developed using COMSOL software, allowing to predict the diffusion profile of a compound.The third and last objective of my work was to determine perfusion parameters allowing efficient molecular exchanges of compounds in the skin explant, but without damaging the tissue. A first series of experiments (8 donors) was carried out on models perfused with a constant flow-rate (2.5 µL/min) with culture medium, for 10 days. The results showed that at the end of the culture, skin models did not show any alteration in cell viability or tissue integrity, with maintenance of cell proliferation and metabolism. However, diffusion characterization in the model demonstrated a lack of reproducibility in the experiments, with significant inter and intra-donor variability. In addition, the infusion of different molecular weights dextrans has demonstrated that the mass transport of high molecular weight compounds was limited through the implantable device. We demonstrated that the control of the fluid pressure is critical and that imposing a pulsatile injection with slight overpressures improves the efficiency and reproducibility of the molecular species delivery and collection in the explant.These results have shown the potential of the developed FlowSkin model as a new tool to study the efficacy or toxicity of intravenously administered drugs directly onto human skin. In addition, the combination of FlowSkin with perfusion of oxygen carriers offers unique opportunities to extend the lifetime and further improve the relevance of such ex vivo skin model
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Perfusion pulmonaire ex vivo"

1

Kiel, Universität, ed. Immunmodulation von Rattenherzen durch ex-vivo Perfusion mit monoklonalen anti-MHC-II-Antikörpern. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiel, Universität, ed. Bindung von Anti-MHC-II monoklonalen Antikörpern im Lungengewebe der Ratte nach Ex-vivo-Perfusion. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blaikley, John, and Andrew J. Fisher. Lung transplantation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780198702948.003.0011.

Full text
Abstract:
This chapter describes common issues along the transplantation journey from assessment to common conditions that are diagnosed post transplantation. Assessment for transplant suitability against several objective criteria is covered as well as the importance of optimizing techniques prior to this. Recent advances mean that some patients can now be bridged to transplant using extracorporeal membrane oxygenation (ECMO) when previously they would have been removed from the transplant list. Drawbacks to ECMO are discussed. Ex-vivo lung perfusion (EVLP) of a donor organ is covered. Follow-up is considered, especially in the early phase whilst being stabilized on their new medications as well as monitoring for the development of lung rejection (acute and chronic). These conditions often present when patients are being seen away from the transplant centre. CF patients have the best outcomes of the groups after lung transplantation, emphasising that lung transplantation should be considered in this specific group of patients.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Perfusion pulmonaire ex vivo"

1

Smith, Jason W., and Amy Fiedler. "Ex Vivo Perfusion." In Organ and Tissue Transplantation, 143–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-58054-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Jason W., and Amy Fiedler. "Ex Vivo Perfusion." In Organ and Tissue Transplantation, 1–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-33280-2_12-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pezzati, Daniele, Qiang Liu, and Cristiano Quintini. "Ex Vivo Normothermic Machine Perfusion." In Donation after Circulatory Death (DCD) Liver Transplantation, 217–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46470-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Noda, Kentaro, and Pablo G. Sanchez. "Ex Vivo Lung Perfusion: Promises and Reality." In Contemporary Lung Transplantation, 1–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-20788-9_23-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noda, Kentaro, and Pablo G. Sanchez. "Ex Vivo Lung Perfusion: Promises and Reality." In Organ and Tissue Transplantation, 287–312. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-030-36123-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Otte, K. E., D. Steinbruchel, and E. Kemp. "Ex Vivo Organ Perfusion Studies in Xenograft Research." In Xenotransplantation, 395–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97323-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zafar, M. Urooj, Carlos G. Santos-Gallego, Lina Badimon, and Juan J. Badimon. "Badimon Perfusion Chamber: An Ex Vivo Model of Thrombosis." In Methods in Molecular Biology, 161–71. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8597-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maas, Sanne L., Remco T. A. Megens, and Emiel P. C. van der Vorst. "Ex Vivo Perfusion System to Analyze Chemokine-Driven Leukocyte Adhesion." In Methods in Molecular Biology, 59–75. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2835-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mansour, Daniel, Sophia Roberts, Madonna Lee, Bassam Shukrallah, and Bryan A. Whitson. "The Role of Ex-vivo Lung Perfusion (EVLP) in Lung Transplantation." In Thoracic Surgery, 977–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40679-0_86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abdalla, A., K. Dhaliwal, and M. Shankar-Hari. "Ex Vivo Lung Perfusion Models to Explore the Pathobiology of ARDS." In Annual Update in Intensive Care and Emergency Medicine 2023, 111–19. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23005-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Perfusion pulmonaire ex vivo"

1

Nadybal, Ryan, Andrew Wang, and Paul A. Iaizzo. "DETECTING PULMONARY EDEMA THROUGHOUT EX VIVO LUNG PERFUSION." In 2023 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/dmd2023-4133.

Full text
Abstract:
Abstract Ex Vivo Lung Perfusion (EVLP) is now a powerful clinical technique that has facilitated the increase in successful human lung transplantation procedures. By having the abilities to assess marginal lungs, extend preservation times, and expand geographical distances for donations, EVLP has effectively both expanded the human lung transplantation donor pool and shortened times on the transplant waitlist. While clinical usage has expanded, preclinical research on EVLP has not. EVLP can be utilized as a preclinical research model, i.e., to investigate pharmacological responses (e.g., post-conditioning agents), organ preservation, device testing and/or methodology development. To facilitate the use of EVLP as a research tool, we have developed a low-cost testing system with ever increasing capabilities e.g., the use of a novel continuous weight sensor to evaluate lung edema. Real time tracking of edema allows us to hone in on potential causes of lung damage, and investigate techniques to rehabilitate and mitigate damage on a short time scale (&lt;8 hours). This system enhances our abilities to accurately test medical devices, lung physiology, and potential treatment impacts on lungs.
APA, Harvard, Vancouver, ISO, and other styles
2

Christofidou-Solomidou, M., K. Park, J. Q. Tao, R. Pietrofesa, T. Sielecki, and S. Chaterjee. "LGM2605 Reduces Inflammatory Phenotype of the Pulmonary Vasculature Following Ischemia/Reperfusion Using an Ex Vivo Mouse Lung Perfusion System." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boffa, M. C., B. Burke, and C. C. Haudenschild. "THROMBOMODULIN ON EXTRAVASCULAR MEMBRANES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643965.

Full text
Abstract:
The distribution of thrombomodulin (TM) antigen (Ag) was studied in the rabbit using an affinity-purified antibody raised against rabbit TM in a goat. Tissues were obtained from 8 New Zealand rabbits. Paraffin-embedded sections were prepared from various organs. Staining was performed using the avidin-biotin peroxi dase method. TM was found to be best and most consistently preserved after perfusion of the vasculature with fixative (buffered formalin) i.e. perfusion of the systemic vasculature via the ascending aorta and individual perfusion of the pulmonary, portal, coronary vasculature via the appropriate artery or vein. A positive reaction was observed on the entire endothelial surface of the vascular system: arteries, veins ahd capillaries. In contrast, parenchyma, secretory epithelia, connective tissue, cartilage, bone and nerve tissue were not stained.Interestingly, TM antigen was also found on the serosae: peritoneum, pericardium and epicardium and in the intralobular folds of the pleura, on the synovial membrane of the knee joint and on the entire surface of the spinal and cerebral arachnoid. The reaction was maximal on the intima of the large arteries, on the arachnoid and on the synovial membrane. The intensity of the reac tion did not depend on the organ examined but on the perfusion quality, except for arachnoidal and synovial membranes which were stained even without initial perfusion. The presence of TM on the membranes of body cavities was confirmed by the recovery of TM activity (as cofactor of protein C activation by thrombin in a chromogenic assay) in intraperitoneal lavage in vivo and in fluid used to rinse the brain arachnoidal surface ex vivo.These findings suggest the presence of potent anticoagulant mechanisms in the systems of slow circulating fluids such as the cerebrospinal and synovial fluids and in the virtual spaces of the serosae. While no thrombin is present there in physiological conditions, anticoagulant activity in these locations may be very important in case of even mild permeability changes, such as in inflammation. As anticoagulant systems assure the fluidity of blood in the vasculature, the TM(-PC) system on body cavities linings may assure free mobility and absence of adhesion of the membranes.
APA, Harvard, Vancouver, ISO, and other styles
4

Xin, Liming, Weiran Yao, Yan Peng, Naiming Qi, Mitesh Badiwala, and Yu Sun. "Automated Aortic Pressure Regulation in ex vivo Heart Perfusion." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Patrucco, Filippo, Elisa Clivati, Giulia Verri, Erika Simonato, Luisa Delsedime, Massimo Boffini, Davide Ricci, Mauro Rinaldi, Caterina Bucca, and Paolo Solidoro. "Ex Vivo Lung Perfusion biopsies and risk factors for early acute rejection." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa1547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nuster, Robert, Bettina Leber, Guenther Paltauf, and Philipp Stiegler. "Multimodal photoacoustic and ultrasound imaging of organs during ex-vivo machine perfusion." In Photons Plus Ultrasound: Imaging and Sensing 2023, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2023. http://dx.doi.org/10.1117/12.2655452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narayan, Raja R., Natalie E. Pancer, Brian W. Loeb, Kristi Oki, Andrew Crouch, Spencer Backus, Yusuf Chauhan, et al. "A novel device to preserve intestinal tissue Ex-Vivo by cold peristaltic perfusion." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banga, A., M. Sepulveda Tran, D. Miller, C. N. Wrenn, F. Torres, M. Wait, M. Jessen, and J. Murala. "Establishment of an Ex Vivo Lung Perfusion Program Managed by a Multidisciplinary Team." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turco, Simona, Christina Keravnou, Ruud J. G. van Sloun, Hessel Wijkstra, Mike Averkiou, and Massimo Mischi. "Effects of perfusion and vascular architecture on contrast dispersion: Validation in ex-vivo porcine liver under machine perfusion." In 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, 2016. http://dx.doi.org/10.1109/ultsym.2016.7728488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCormack, E., M. McCrytal, G. Hogan, G. F. Curley, K. Redmond, and P. McLoughlin. "Effect of a Novel High Viscosity Perfusion Solution on Oedema Formation in a Porcine Ex Vivo Lung Perfusion Model." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography