Academic literature on the topic 'Perfectly Matched Layers (PML)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perfectly Matched Layers (PML).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perfectly Matched Layers (PML)"
Zhang, Jianfeng, and Hongwei Gao. "Irregular perfectly matched layers for 3D elastic wave modeling." GEOPHYSICS 76, no. 2 (March 2011): T27—T36. http://dx.doi.org/10.1190/1.3533999.
Full textGe, Ju, Liping Gao, and Rengang Shi. "Well-Designed Termination Wall of Perfectly Matched Layers for ATS-FDTD Method." International Journal of Antennas and Propagation 2019 (June 2, 2019): 1–6. http://dx.doi.org/10.1155/2019/6343641.
Full textBunting, Gregory, Arun Prakash, Timothy Walsh, and Clark Dohrmann. "Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains." Journal of Theoretical and Computational Acoustics 26, no. 02 (June 2018): 1850015. http://dx.doi.org/10.1142/s2591728518500159.
Full textChen, Yong H., Weng Cho Chew, and Michael L. Oristaglio. "Application of perfectly matched layers to the transient modeling of subsurface EM problems." GEOPHYSICS 62, no. 6 (November 1997): 1730–36. http://dx.doi.org/10.1190/1.1444273.
Full textHe, Yanbin, Tianning Chen, Jinghuai Gao, and Zhaoqi Gao. "Superior performance of optimal perfectly matched layers for modeling wave propagation in elastic and poroelastic media." Journal of Geophysics and Engineering 19, no. 1 (February 2022): 106–19. http://dx.doi.org/10.1093/jge/gxac002.
Full textLei, Da, Liangyong Yang, Changmin Fu, Ruo Wang, and Zhongxing Wang. "The application of a novel perfectly matched layer in magnetotelluric simulations." GEOPHYSICS 87, no. 3 (March 29, 2022): E163—E175. http://dx.doi.org/10.1190/geo2020-0393.1.
Full textCHEW, W. C., and Q. H. LIU. "PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION." Journal of Computational Acoustics 04, no. 04 (December 1996): 341–59. http://dx.doi.org/10.1142/s0218396x96000118.
Full textBérenger, Jean-Pierre. "Perfectly Matched Layer (PML) for Computational Electromagnetics." Synthesis Lectures on Computational Electromagnetics 2, no. 1 (January 2007): 1–117. http://dx.doi.org/10.2200/s00030ed1v01y200605cem008.
Full textHervella-Nieto, Luis M., Andrés Prieto, and Sara Recondo. "Computation of Resonance Modes in Open Cavities with Perfectly Matched Layers." Proceedings 54, no. 1 (August 18, 2020): 2. http://dx.doi.org/10.3390/proceedings2020054002.
Full textCao, Da, Naohisa Inoue, and Tetsuya Sakuma. "Finite element analysis of bending waves in Mindlin plates with Perfectly Matched Layers." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, no. 5 (February 1, 2023): 2527–34. http://dx.doi.org/10.3397/in_2022_0355.
Full textDissertations / Theses on the topic "Perfectly Matched Layers (PML)"
Bao, Wentao. "A Simulation and Optimization Study of Spherical Perfectly Matched Layers." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494166698903702.
Full textErlandsson, Simon. "Evaluation, adaption and implementations of Perfectly Matched Layers in COMSOL Multiphysics." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280757.
Full textPerfectly matched layer (PML) är en metod som ofta används för vågabsorbering vid randen för problem med partiella differentialekvationer (PDE). I det här examensarbetet presenteras metoder som förenklar användingen av PMLer i COMSOL Multiphysics. Studien kollar på PMLer baserade på komplex-koordinatsträckning med fokus på Helmholtz ekvation och finita elementmetoden (FEM). För att en PML ska fungera måste den sättas upp på rätt sätt med parametrar anpassade efter det givna problemet. Att göra detta är inte alltid enkelt. Teori presenteras och experiment på PMLer görs. Flera metoder för optimisering och adaption av PMLer presenteras. I nuläget kräver appliceringen av PMLer i COMSOL Multiphysics att användaren sätter upp en geometri, ett beräkningsnät och väljer den komplexa koordinatsträckningen. Genom att använda COMSOLs implementation av extra dimensioner är det möjligt att applicera PMLer som randvilkor. I en sådan implementation kan geometri och beräkningsnät skötas av mjukvaran vilket underlättar för användaren.
Appelö, Daniel. "Absorbing Layers and Non-Reflecting Boundary Conditions for Wave Propagation Problems." Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-448.
Full textQC 20100830
Srinivasan, Harish. "FINITE ELEMENT ANALYSIS AND EXPERIMENTAL VERIFICATION OF SOI WAVEGUIDE LOSSES." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/485.
Full textLong, Zeyu. "Introduction of the Debye media to the filtered finite-difference time-domain method with complex-frequency-shifted perfectly matched layer absorbing boundary conditions." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/introduction-of-the-debye-media-to-the-filtered-finitedifference-timedomain-method-with-complexfrequencyshifted-perfectly-matched-layer-absorbing-boundary-conditions(441271dc-d4ea-4664-82e6-90bf93f5c2b7).html.
Full textTomezyk, Jérôme. "Résolution numérique de quelques problèmes du type Helmholtz avec conditions au bord d'impédance ou des couches absorbantes (PML)." Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0017/document.
Full textIn this thesis, we propose wavenumber explicit convergence analyses of some finite element methods for time-harmonic Maxwell's equations with impedance boundary condition and for the Helmholtz equation with Perfectly Matched Layer (PML). We first study the regularized formulation of time-harmonic Maxwell's equations with impedance boundary conditions (where we add a ∇ div-term to the original equation to have an elliptic problem) and keep the impedance boundary condition as an essential boundary condition. For a smooth domain, the wellposedness of this formulation is well-known. But the well-posedness for convex polyhedral domain has been not yet investigated. Hence, we start the first chapter with the proof of the well-posedness in this case, which is based on the fact that the variational space is embedded in H¹. In order to perform a wavenumber explicit error analysis of our problem, a wavenumber explicit stability estimate is mandatory. We then prove such an estimate for some particular configurations. In the second chapter, we describe the corner and edge singularities for such problem. Then we deduce the regularity of the solution of the original and the adjoint problem, thus we have all ingredients to propose a explicit wavenumber convergence analysis for h-FEM with Lagrange element. In the third chapter, we consider a non conforming hp-finite element approximation for domains with a smooth boundary. To perform a wavenumber explicit error analysis, we split the solution of the original problem (or its adjoint) into a regular but oscillating part and a rough component that behaves nicely for large frequencies. This result allows to prove convergence analysis for our FEM, again explicit in the wavenumber. The last chapter is dedicated to the Helmholtz equation with PML. The Helmholtz equation in full space is often used to model time harmonic acoustic scattering problems, with Sommerfeld radiation condition at infinity. Adding a PML is a way to reduce the infinite domain to a finite one. It corresponds to add an artificial absorbing layer surrounding a computational domain, in which scattered wave will decrease very quickly. We first propose a wavenumber explicit stability result for such problem. Then, we propose two numerical discretizations: an hp-FEM and a multiscale method based on local subspace correction. The stability result is used to relate the choice of the parameters in the numerical methods to the wavenumber. A priori error estimates are shown. At the end of each chapter, we perform numerical tests to confirm our theoritical results
Silberstein, Éric. "Généralisation de la méthode modale de Fourier aux problèmes de diffraction en optique intégrée : application aux convertisseurs modaux par ingénierie des modes de Bloch." Paris 6, 2002. https://pastel.archives-ouvertes.fr/tel-00003101.
Full textMétral, Jérôme. "Modélisation et simulation numérique de l'écoulement d'un plasma atmosphérique pour l'étude de l'activité électrique des plasmas sur avion." Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0868.
Full textA ionized gas (or plasma) has the ability of absorbing or reflecting electromagnetic (radar) waves if its ionization rate is high enough. This is particularly interesting for aeronautics. This study aims at predicting the electric and energetic characteristics of a weakly ionized air plasma in an atmospheric pressure flow. The plasma is described by a two-temperature model, coming from the non-equilibrium description of plasmas. Plasma flow is then described by a two-temperature hydrodynamic system coupled with a collisional model (energy exchanges rates) and a kinetic model (chemical reactions). An algorithm was built to simulate plasma flow in axisymetric geometry. The algorithm is a 2D Lagrange + Projection scheme. The projection step was adapted to multi-components advection, using a second order, non oscillating, and bidimensionnal scheme. This algorithm allows the simulation of experiments concerning atmospheric pressure plasma and then the validation of the model parameters. In a second part, we study the Perfectly Matched Layer (PML) which is a boundary condition to simulate wave propagation in open domains. This method is particularly efficient for electromagnetic problems, and we want to enlarge this approach to aeroacoutics problems (linearized Euler equations). We propose two solutions: a practical approach to avoid numerical oscillations of the solution and a more general approach which consists in a new absorbing layer formulation which leads to well-posed problems
Duru, Kenneth. "Perfectly matched layers for second order wave equations." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-124538.
Full textRamli, Khairun N. "Modelling and analysis of complex electromagnetic problems using FDTD subgridding in hybrid computational methods. Development of hybridised Method of Moments, Finite-Difference Time-Domain method and subgridded Finite-Difference Time-Domain method for precise computation of electromagnetic interaction with arbitrarily complex geometries." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5443.
Full textMinistry of Higher Education Malaysia and Universiti Tun Hussein Onn Malaysia (UTHM)
Books on the topic "Perfectly Matched Layers (PML)"
Bérenger, Jean-Pierre. Perfectly Matched Layer (PML) for Computational Electromagnetics. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7.
Full textBérenger, Jean-Pierre. Perfectly matched layer (PML) for computational electromagnetics. [San Rafael, Calif.]: Morgan & Claypool Publishers, 2007.
Find full textCenter, Langley Research, ed. The analysis and construction of perfectly matched layers for linearized Euler equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textL, Auriault, Cambuli F, and United States. National Aeronautics and Space Administration., eds. Perfectly matched layer for linearized Euler equations in open and ducted domains. Reston, Va: American Institute of Aeronautics and Astronautics, 1998.
Find full textBérenger, Jean-Pierre. Perfectly Matched Layer (PML) for Computational Electromagnetics. Springer International Publishing AG, 2007.
Find full textBérenger, Jean-Pierre. Perfectly Matched Layer (PML) for Computational Electromagnetics. Morgan & Claypool Publishers, 2007.
Find full textBerenger, Jean-Pierre. Perfect Matched Layer (PML) for Computational Electromagnetics (Synthesis Lectures on Computational Electromagnetics). Morgan and Claypool Publishers, 2007.
Find full textBook chapters on the topic "Perfectly Matched Layers (PML)"
Bérenger, Jean-Pierre. "The Two-Dimensional Perfectly Matched Layer." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 13–27. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_3.
Full textBérenger, Jean-Pierre. "Some Extensions of the PML ABC." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 107–9. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_8.
Full textGedney, Stephen D. "The Perfectly Matched Layer (PML) Absorbing Medium." In Introduction to the Finite-DifferenceTime-Domain (FDTD) Method for Electromagnetics, 113–35. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01712-4_6.
Full textBérenger, Jean-Pierre. "The PML ABC for the FDTD Method." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 63–88. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_6.
Full textBérenger, Jean-Pierre. "Time Domain Equations for the PML Medium." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 49–61. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_5.
Full textBérenger, Jean-Pierre. "Generalizations and Interpretations of the Perfectly Matched Layer." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 29–47. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_4.
Full textBérenger, Jean-Pierre. "Optmization of the PML ABC in Wave-Structure Interaction and Waveguide Problems." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 89–106. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_7.
Full textBérenger, Jean-Pierre. "The Requirements for the Simulation of Free Space and a Review of Existing Absorbing Boundary Conditions." In Perfectly Matched Layer (PML) for Computational Electromagnetics, 5–12. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-01696-7_2.
Full textLi, Jichun, and Yunqing Huang. "Perfectly Matched Layers." In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 215–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_8.
Full textHebermehl, G., F. K. Hübner, R. Schlundt, T. Tischler, H. Zscheile, and B. Heinrich. "Perfectly matched layers in transmission lines." In Numerical Mathematics and Advanced Applications, 281–90. Milano: Springer Milan, 2003. http://dx.doi.org/10.1007/978-88-470-2089-4_26.
Full textConference papers on the topic "Perfectly Matched Layers (PML)"
Jones, Simon. "Harmonic Response of a Layered Halfspace Using Reduced Finite Element Model With Perfectly-Matched Layer Boundaries." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65438.
Full textSmithe, David, and Lars Ludeking. "PML (Perfectly Matched Layer) Implementation in the Magic Software." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359396.
Full textRao Changwei, Tian Yu, Gao Bo, Chen Yan, and Tong Ling. "A new modified perfectly matched layer( PML) without split-field." In 2008 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2008. http://dx.doi.org/10.1109/icmmt.2008.4540507.
Full textJi, Jinzu, Peilin Huang, and Yunpeng Ma. "Auxiliary differential equation (ADE) implementation of complex-frequency shifted perfectly matched layer (CFS-PML)." In First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.42.
Full textMadsen, S., S. Krenk, and O. Hededal. "PERFECTLY MATCHED LAYER (PML) FOR TRANSIENT WAVE PROPAGATION IN A MOVING FRAME OF REFERENCE." In 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/120113.4819.c1228.
Full textHuang, W. P., C. L. Xu, W. W. Lui, and K. Yokoyama. "The Perfectly Matched Layer (PML) Boundary Condition for the Simulation of Guided-Wave Optical Devices." In Integrated Photonics Research. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ipr.1996.imb5.
Full textLi, YiFeng, Olivier Bou Matar, Vladimir Preobrazhensky, and Philippe Pernod. "Convolution-Perfectly Matched Layer (C-PML) absorbing boundary condition for wave propagation in piezoelectric solid." In 2008 IEEE Ultrasonics Symposium (IUS). IEEE, 2008. http://dx.doi.org/10.1109/ultsym.2008.0382.
Full textCipolla, Jeffrey L. "Design for a Hybrid Absorbing Element in the Time Domain Using PML and Infinite Element Concepts." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37159.
Full textLiu, J., S. J. Zhang, and Y. S. Chen. "Predictions of Radiative Properties of Patterned Silicon Wafers by Solving Maxwell’s Equations in the Time Domain." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47424.
Full textDey, Saikat, and Joseph J. Shirron. "Computation of Acoustic Transmission Loss Through Doubly-Periodic 3D Elastic Panels." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13713.
Full textReports on the topic "Perfectly Matched Layers (PML)"
Banks, H. T., and Brian L. Browning. Time Domain Electromagnetic Scattering Using Finite Elements and Perfectly Matched Layers. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada451435.
Full textMichler, C., L. Demkowicz, J. Kurtz, and D. Pardo. Improving the Performance of Perfectly Matched Layers by Means of hp-Adaptivity. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada457406.
Full textElson, J. M. Three Dimensional Finite-Difference Time- Domain Solution of Maxwell's Equations With Perfectly Matched Absorbing Layers. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada369016.
Full text