Academic literature on the topic 'Peregrine Soliton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peregrine Soliton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Peregrine Soliton"

1

Van Gorder, Robert A. "Orbital Instability of the Peregrine Soliton." Journal of the Physical Society of Japan 83, no. 5 (May 15, 2014): 054005. http://dx.doi.org/10.7566/jpsj.83.054005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kibler, B., K. Hammani, J. Fatome, G. Millot, C. Finot, G. Genty, M. Erkintalo, et al. "The Peregrine Soliton Observed At Last." Optics and Photonics News 22, no. 12 (December 1, 2011): 30. http://dx.doi.org/10.1364/opn.22.12.000030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kibler, B., J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley. "The Peregrine soliton in nonlinear fibre optics." Nature Physics 6, no. 10 (August 22, 2010): 790–95. http://dx.doi.org/10.1038/nphys1740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al Khawaja, U., H. Bahlouli, M. Asad-uz-zaman, and S. M. Al-Marzoug. "Modulational instability analysis of the Peregrine soliton." Communications in Nonlinear Science and Numerical Simulation 19, no. 8 (August 2014): 2706–14. http://dx.doi.org/10.1016/j.cnsns.2014.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hennig, Dirk, Nikos I. Karachalios, and Jesús Cuevas-Maraver. "The closeness of localized structures between the Ablowitz–Ladik lattice and discrete nonlinear Schrödinger equations: Generalized AL and DNLS systems." Journal of Mathematical Physics 63, no. 4 (April 1, 2022): 042701. http://dx.doi.org/10.1063/5.0072391.

Full text
Abstract:
The Ablowitz–Ladik system, being one of the few integrable nonlinear lattices, admits a wide class of analytical solutions, ranging from exact spatially localized solitons to rational solutions in the form of the spatiotemporally localized discrete Peregrine soliton. Proving a closeness result between the solutions of the Ablowitz–Ladik system and a wide class of Discrete Nonlinear Schrödinger systems in a sense of a continuous dependence on their initial data, we establish that such small amplitude waveforms may be supported in nonintegrable lattices for significantly large times. Nonintegrable systems exhibiting such behavior include a generalization of the Ablowitz–Ladik system with power-law nonlinearity and the discrete nonlinear Schrödinger equation with power-law and saturable nonlinearities. The outcome of numerical simulations illustrates, in excellent agreement with the analytical results, the persistence of small amplitude Ablowitz–Ladik analytical solutions in all the nonintegrable systems considered in this work, with the most striking example being that of the Peregine soliton.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Shihua, and Lian-Yan Song. "Peregrine solitons and algebraic soliton pairs in Kerr media considering space–time correction." Physics Letters A 378, no. 18-19 (March 2014): 1228–32. http://dx.doi.org/10.1016/j.physleta.2014.02.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yurova, Alla. "A hidden life of Peregrine's soliton: Rouge waves in the oceanic depths." International Journal of Geometric Methods in Modern Physics 11, no. 06 (July 2014): 1450057. http://dx.doi.org/10.1142/s0219887814500571.

Full text
Abstract:
Although the Peregrine-type solutions of the nonlinear Schrödinger (NLS) equation have long been associated mainly with the infamous "rouge waves" on the surface of the ocean, they might have a much more interesting role in the oceanic depths; in this paper we show that these solutions play an important role in the evolution of the intrathermocline eddies, also known as the "oceanic lenses". In particular, we show that the collapse of a lens is determined by the particular generalization of the Peregrine soliton — the so-called exultons — of the NLS equation. In addition, we introduce a new mathematical method of construction of a vortical filament (a frontal zone of a lens) from a known one by the Darboux transformation.
APA, Harvard, Vancouver, ISO, and other styles
8

Hammani, Kamal, Bertrand Kibler, Christophe Finot, Philippe Morin, Julien Fatome, John M. Dudley, and Guy Millot. "Peregrine soliton generation and breakup in standard telecommunications fiber." Optics Letters 36, no. 2 (January 5, 2011): 112. http://dx.doi.org/10.1364/ol.36.000112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Lehui, Ping Chen, and Jinshou Tian. "Peregrine combs and rogue waves on a bright soliton background." Optik 227 (February 2021): 165455. http://dx.doi.org/10.1016/j.ijleo.2020.165455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hussain, Akhtar, Hassan Ali, M. Usman, F. D. Zaman, and Choonkil Park. "Some New Families of Exact Solitary Wave Solutions for Pseudo-Parabolic Type Nonlinear Models." Journal of Mathematics 2024 (March 31, 2024): 1–19. http://dx.doi.org/10.1155/2024/5762147.

Full text
Abstract:
The objective of the current study is to provide a variety of families of soliton solutions to pseudo-parabolic equations that arise in nonsteady flows, hydrostatics, and seepage of fluid through fissured material. We investigate a class of such equations, including the one-dimensional Oskolkov (1D OSK), the Benjamin-Bona-Mahony (BBM), and the Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation. The Exp (-ϕξ)-expansion method is used for new hyperbolic, trigonometric, rational, exponential, and polynomial function-based solutions. These solutions of the pseudo-parabolic class of partial differential equations (PDEs) studied here are new and novel and have not been reported in the literature. These solutions depict the hydrodynamics of various soliton shapes that can be utilized to study the nature of traveling wave solutions of other nonlinear PDE’s.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Peregrine Soliton"

1

Demiquel, Antoine. "Control of nonlinear modulated waves in flexible mechanical metamaterials." Electronic Thesis or Diss., Le Mans, 2024. https://cyberdoc-int.univ-lemans.fr/Theses/2024/2024LEMA1015.pdf.

Full text
Abstract:
Ce travail est consacré à l'étude des ondes modulées se propageant le long de métamatériaux mécaniques flexibles nonlinéaires (FlexMM). Ces structures sont des matériaux architecturés constitués d'éléments souples très déformables connectés à des éléments plus rigides. Leur capacité à subir de grandes déformations locales favorise l'apparition de phénomènes d'ondes non linéaires. En utilisant une approche par éléments discrets, nous formulons des équations discrètes non linéaires qui décrivent les déplacements longitudinaux et rotationnels de chaque cellule unitaire et leur couplage mutuel. Une analyse multi-échelles est employée afin d'obtenir une équation de Schrödinger non linéaire (NLS) effective décrivant les ondes modulées pour le degré de liberté rotationnel du FlexMM. En nous appuyant sur l'équation NLS, nous identifions divers types de phénomènes d'ondes non linéaires dans le FlexMM. En particulier, nous avons observé que des ondes planes faiblement non linéaires peuvent être modulationellement stables ou instables en fonction des paramètres du système et de l'excitation utilisée. De plus, nous avons trouvé que les FlexMMs supportent des solitons-enveloppe vectoriels où le degré de liberté rotationnel des unités peut prendre la forme de solitons dits "bright" ou "dark" et, en raison du couplage, le degré de liberté de déplacement longitudinal présente un comportement de type "kink". Enfin, nous abordons le phénomène de "catastrophe de gradient", qui prédit l'émergence de structures similaires aux solitons de Peregrine dans la limite semi-classique de l'équation NLS, dans la structure FlexMM. Grâce à nos prédictions analytiques et à l'utilisation de simulations numériques, nous pouvons déterminer les conditions requises et les valeurs des paramètres physiques pour observer ces phénomènes dans les FlexMMs
This work is dedicated to the investigation of modulated waves propagating along nonlinear flexible mechanical metamaterials (FlexMM). These structures are architected materials consisting of highly deformable soft elements connected to stiffer ones. Their capacity to undergo large local deformations promotes the occurrence of nonlinear wave phenomena. Using a lump element approach, we formulate nonlinear discrete equations that describe the longitudinal land rotational displacements of each unit cell and their mutual coupling. A multiple scales analysis is employed in order to derive an effective nonlinear Schrödinger (NLS) equation describing envelope waves for the rotational degree of freedom of FlexMM. Leveraging on the NLS equation we identify various type of nonlinear waves phenomena in FlexMM. In particular we observed that weakly nonlinear plane waves can be modulationally stable or unstable depending of the system and excitation parameters. Moreover we have found that the FlexMMs support envelope vector solitons where the units rotational degree of freedom might take the form of bright or dark soliton and due to coupling, the longitudinal displacement degree of freedom has a kink-like behavior. Finally, we address the phenomenon of "gradient catastrophe", which predicts the emergence of Peregrine soliton-like structures in the semiclassical limit of the NLS equation, in FlexMM. Through our analytical predictions and by using numerical simulations, we can determine the required conditions and the values of the physical parameters in order to observe these phenomena in FlexMMs
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Peregrine Soliton"

1

Kibler, Bertrand, Amin Chabchoub, and Heremba Bailung, eds. Peregrine Soliton and Breathers in Wave Physics: Achievements and Perspectives. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-111-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Peregrine Soliton"

1

Chen, Shihua, and Fabio Baronio. "Peregrine soliton dynamics and optical rogue waves." In Advances in Nonlinear Photonics, 149–76. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-32-398384-6.00013-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Peregrine Soliton"

1

Marcucci, Giulia, Robert Boyd, and Claudio Conti. "Quantum Peregrine Soliton Generation." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/iprsn.2020.jm2e.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Billet, C., A. Tikan, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, et al. "Universal peregrine soliton structure in optical fibre soliton compression." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kibler, Bertrand, Kamal Hammani, Julien Fatome, Christophe Finot, Guy Millot, Frederic Dias, Goery Genty, Nail Akhmediev, and John M. Dudley. "Peregrine soliton in optical fiber-based systems." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qff1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hammani, Kamal, Bertrand Kibler, Christophe Finot, Julien Fatome, John M. Dudley, and Guy Millot. "Optical peregrine soliton generation in standard telecommunication fibers." In 2011 13th International Conference on Transparent Optical Networks (ICTON). IEEE, 2011. http://dx.doi.org/10.1109/icton.2011.5970919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Gang, Kamal Hammani, Amin Chabchoub, John M. Dudley, Bertrand Kibler, and Christophe Finot. "Phase Evolution of Peregrine-Like Solitons in Nonlinear Fiber Optics." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8871677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography