Academic literature on the topic 'Percutaneous electrical nerve stimulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Percutaneous electrical nerve stimulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Percutaneous electrical nerve stimulation"

1

Ahmed, Hesham E., William F. Craig, Paul F. White, El-Sayed A. Ghoname, Mohamed A. Hamza, Noor M. Gajraj, and Stephen M. Taylor. "Percutaneous Electrical Nerve Stimulation." Anesthesia & Analgesia 87, no. 4 (October 1998): 911–14. http://dx.doi.org/10.1097/00000539-199810000-00031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Hesham E., William F. Craig, Paul F. White, El-Sayed A. Ghoname, Mohamed A. Hamza, Noor M. Gajraj, and Stephen M. Taylor. "Percutaneous Electrical Nerve Stimulation." Anesthesia & Analgesia 87, no. 4 (October 1998): 911–14. http://dx.doi.org/10.1213/00000539-199810000-00031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghoname, E. A., W. F. Craig, P. F. White, H. E. Ahmed, &NA; Hamza, and &NA; Noe. "PERCUTANEOUS ELECTRICAL NERVE STIMULATION (PENS)." Anesthesia & Analgesia 88, Supplement (February 1999): 209S. http://dx.doi.org/10.1097/00000539-199902001-00208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghoname, E. A., W. F. Craig, P. F. White, H. E. Ahmed, M. A. Hamza, B. N. Henderson, N. M. Gajraj, P. J. Huber, and R. J. Gatchel. "PERCUTANEOUS ELECTRICAL NERVE STIMULATION (PENS)." Anesthesiology 89, Supplement (September 1998): 1100A. http://dx.doi.org/10.1097/00000542-199809190-00029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pinsker, M. Craig. "Percutaneous Electrical Nerve Stimulation or Acupuncture." Anesthesia & Analgesia 89, no. 4 (October 1999): 1065. http://dx.doi.org/10.1213/00000539-199910000-00050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

White, Paul F., and William F. Craig. "Percutaneous Electrical Nerve Stimulation or Acupuncture." Anesthesia & Analgesia 89, no. 4 (October 1999): 1065. http://dx.doi.org/10.1213/00000539-199910000-00051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pinsker, M. Craig. "Percutaneous Electrical Nerve Stimulation or Acupuncture." Anesthesia & Analgesia 89, no. 4 (October 1999): 1065. http://dx.doi.org/10.1097/00000539-199910000-00050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

White, Paul F., and William F. Craig. "Percutaneous Electrical Nerve Stimulation or Acupuncture." Anesthesia & Analgesia 89, no. 4 (October 1999): 1065. http://dx.doi.org/10.1097/00000539-199910000-00051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamza, Mohamed A., El-sayed A. Ghoname, Paul F. White, William F. Craig, Hesham E. Ahmed, Noor M. Gajraj, Akshay S. Vakharia, and Carl E. Noe. "Effect of the Duration of Electrical Stimulation on the Analgesic Response in Patients with Low Back Pain." Anesthesiology 91, no. 6 (December 1, 1999): 1622. http://dx.doi.org/10.1097/00000542-199912000-00012.

Full text
Abstract:
Background Electrical stimulation of peripheral nerves produces acute analgesic effects. This randomized, sham-controlled, crossover study was designed to evaluate the effect of differing durations of electrical stimulation on the analgesic response to percutaneous electrical nerve stimulation in 75 consenting patients with low back pain. Methods All patients received electrical stimulation for four different time intervals (0, 15, 30, and 45 min) in a random sequence over the course of an 11-week study period. All active percutaneous electrical nerve stimulation treatments were administered using alternating frequencies of 15 and 30 Hz three times per week for 2 consecutive weeks. The prestudy assessments included the health status survey short form questionnaire and 10-cm visual analog scale scores for pain, physical activity, and quality of sleep, with 0 being the best and 10 being the worst. The pain scoring was repeated 5-10 min after each 60-min study session and 24 h after the last treatment session with each of the four methods. The daily oral analgesic requirements were assessed during each of the four treatment blocks. At the end of each 2-week treatment block, the questionnaire was repeated. Results Electrical stimulation using percutaneously placed needles produced short-term improvements in the visual analog scale pain, physical activity, and quality of sleep scores, and a reduction in the oral analgesic requirements. The 30-min and 45-min durations of electrical stimulation produced similar hypoalgesic effects (48+/-21% and 46+/-19%, respectively) and were significantly more effective than either 15 min (21+/-17%) or 0 min (10+/-11%). The 30- and 45-min treatments were also more effective in improving physical activity and sleep scores over the course of the 2-week treatment period. In contrast to the sham treatment (0 min), the health status survey short form revealed that electrical stimulation for 15 to 45 min three times per week for 2 weeks improved patient function. Conclusion The recommended duration of electrical stimulation with percutaneous electrical nerve stimulation therapy is 30 min.
APA, Harvard, Vancouver, ISO, and other styles
10

Friedman, Michael, Vytenis Grybauskas, Dean M. Toriumi, and Edward L. Applebaum. "Treatment of Spastic Dysphonia without Nerve Section." Annals of Otology, Rhinology & Laryngology 96, no. 5 (September 1987): 590–96. http://dx.doi.org/10.1177/000348948709600522.

Full text
Abstract:
Spastic dysphonia is a disorder characterized by strained, constricted phonation with excessively adducted vocal cords. Despite initial success with recurrent laryngeal nerve section, the search for other treatment continues. Our clinical study involved inserting a needle electrode percutaneously into the region of the recurrent laryngeal nerve in five patients with spastic dysphonia. Electrical stimulation resulted in dramatic improvement in three patients and minimal improvement in two. Our experimental study was designed to create an animal model for an implantable nerve stimulator to be used on a long-term basis. A Medtronic spinal cord stimulation system was implanted into a dog, and a cuff electrode was positioned around the recurrent laryngeal nerve. Vocal cord position could be altered by varying the stimulus frequency. Long-term stimulation of the recurrent laryngeal nerve was relatively safe and effective. Eventually, we plan to implant nerve stimulators into spastic dysphonia patients who respond well to percutaneous stimulation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Percutaneous electrical nerve stimulation"

1

Colard, Julian. "Caractérisation des réponses neurophysiologiques aiguës et chroniques à l’exercice excentrique : influence de la longueur musculaire." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU1027.

Full text
Abstract:
Les contractions excentriques engendrent un contrôle nerveux distinct par rapport aux contractions isométriques et concentriques. Bien que certains mécanismes postsynaptiques, tels que l'inhibition récurrente, aient été identifiés comme jouant un rôle dans cette commande spécifique, l'implication des mécanismes présynaptiques reste à démontrer. Comme les contraintes mécaniques augmentent particulièrement en phase finale des contractions excentriques, les variations de longueur musculaire peuvent entraîner des retours afférents (Ia et II) différents vers la moelle épinière, affectant alors l’activité du motoneurone. L’objectif de cette thèse était d’explorer (i) les caractéristiques du système nerveux pendant les contractions excentriques, (ii) d’évaluer l’influence de la longueur musculaire sur le contrôle nerveux lors d’allongements musculaires passifs et actifs (contractions excentriques), et (iii) de déterminer si la longueur musculaire peut moduler les réponses adaptatives à long terme observées après un entraînement excentrique. Quatre études ont contribué à ce travail de thèse. Ces études ont mesuré des paramètres mécaniques, tels que le moment de force et la longueur des faisceaux musculaires, ainsi que des paramètres nerveux, incluant l’excitabilité corticospinale, l’efficacité de la transmission de l’influx nerveux entre les fibres afférentes Ia et les motoneurones α, le gain réflexe, les mécanismes régulateurs sous-jacents et l'activité électromyographique des muscles. Les résultats montrent que les mécanismes présynaptiques constituent un facteur déterminant dans le contrôle nerveux des contractions excentriques. Les variations de longueur musculaire, notamment lors des phases à grande longueur, influencent distinctement l’activité des mécanismes inhibiteurs spinaux durant les allongements passifs et actifs. Enfin, la longueur musculaire pourrait favoriser la plasticité neurale à long terme, en optimisant plus efficacement les mécanismes sous-jacents pour des contractions sous-maximales. Cependant, pour des contractions maximales, le système nerveux semble limiter les adaptations, reflétant peut-être un mécanisme protecteur
Eccentric contractions induce distinct neural control compared to isometric and concentric contractions. Although some postsynaptic mechanisms, such as recurrent inhibition, have been identified as playing a role in this specific control, the involvement of presynaptic mechanisms remains to be demonstrated. As mechanical constraints increase particularly in the final phase of eccentric contractions, variations in muscle length may lead to different afferent feedback (Ia and II) to the spinal cord, thereby affecting motoneuron activity. The aim of this thesis was to explore (i) the characteristics of the nervous system during eccentric contractions, (ii) to assess the influence of muscle length on neural control during passive and active (eccentric contractions) muscle elongations, and (iii) to determine whether muscle length can modulate the long-term adaptive responses observed following eccentric training. Four studies contributed to this thesis. These studies measured mechanical parameters, such as torque and muscle fascicle length, as well as neural parameters, including corticospinal excitability, the efficiency of synaptic transmission between Ia afferent fibres and α- motoneurons, reflex gain, underlying regulatory mechanisms, and electromyographic activity of the muscles. The results indicate that presynaptic mechanisms play a crucial role in the neural control of eccentric contractions. Variations in muscle length, particularly during phases at long length, distinctly influence the activity of spinal inhibitory mechanisms during both passive and active elongations. Finally, muscle length may promote long-term neural plasticity by more effectively optimising the underlying mechanisms for submaximal contractions. However, for maximal contractions, the nervous system appears to limit adaptations, potentially reflecting a protective mechanism
APA, Harvard, Vancouver, ISO, and other styles
2

Filin, Tex, and Victor Pierce. "Elektroakupunktur som behandlingsmetod vid ländryggssmärta : En litteraturstudie." Thesis, Luleå tekniska universitet, Institutionen för hälsovetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63632.

Full text
Abstract:
Bakgrund: Akupunktur är en gammal behandlingsmetod, beräknad ungefär 4100 år gammal och kommer från Kina. Elektroakupunktur är en något nyare behandlingsmetod där man för ström mellan nålarna. Denna behandlingsmetod används främst av fysioterapeuter. Behandlingarna som fysioterapeuten utför kräver ett vetenskapligt stöd, därför finns ett behov att granska den litteratur som behandlingsmetoden grundas på. Inom forskning och verksamhet använder man olika namn för denna metod, både “electroacupuncture” och “percutaneouselectricalnervestimulation” (PENS). Ryggsmärta är ett vanligt problem bland världens befolkning, det är beräknat att upptill 70% av befolkningen kommer någon gång i sitt liv uppleva ryggssmärta. Det är även beräknat att vara den vanligaste smärtförekomsten. Om elektroakupunktur fungerar mot ländryggssmärta kan terapeuter använda denna behandlingsmetod. Syfte: Syftet med denna studie var att undersöka vilket vetenskapligt stöd det finns för elektroakupunktur som behandlingsmetod vid ländryggssmärta. Metod: En systematisk sökning utfördes i databaserna CinAHL, PubMed, PEDro, Scopus och Web of Science angående elektroakupunktur och ländryggssmärta. Sökorden som användes var “electroacupuncture”, “lowback pain ”, “percuteaneous electricalnervestimulation” och “randomized controlled trial”. Resultat: Sammanlagt 15 RCT – studier inkluderades i denna studie. Sammanlagt 11 av 15 studier fann signifikanta skillnader i resultat. 8 studier behandlade kronisk ländryggssmärta, 4 behandlade diskogena besvär och resterande 3 behandlade andra ryggdiagnoser. Elektroakupunktur har visat ge en smärtlindring vid ländryggssmärta. Konklusion: Samtliga inkluderade studier fann smärtlindring av behandlingen, dock visade inte alla signifikanta skillnader. Det finns även metodologiska brister i den befintliga litteraturen vilket innebär att bör se resultaten kritiskt. Mer forskning inom området behövs.
APA, Harvard, Vancouver, ISO, and other styles
3

Honhold, Nick. "Paracetamol, percutaneous electrical stimulation and rat spinal neurones." Thesis, Royal Veterinary College (University of London), 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moen, Lars Lyse. "An Implantable Device for Electrical Nerve Stimulation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26850.

Full text
Abstract:
Neural stimulation is currently subject to heavy research for the control of obesity using Vagus Nerve Stimulation (VNS). The available devices for such research is however developed for human use only, causing unnecessary complications when testing in smaller animals models due to the physical size of the device. A device for use in small animal models based on commercially available components would serve as a low-cost and more optimal solution to VNS research and similar disciplines.The design of an small electrical nerve stimulator was developed based on a comprehensive literature study combined with a detailed analysis of the requirements given by the end user. The system is described using a modular architecture with explicit interfaces, supporting easy verification and reproduction of the essential parts of the system.The result is a prototype design for an implantable electrical nerve stimulator with the ability to be miniaturized into 1/4 of the size of similar stimulating systems. The design meets the requirements from the end user, but must be miniaturized and encapsulated together with a connector for the electrode pin to be ready for implementation in animals.This thesis describes a novel prototype design of an implantable stimulator with a primary use in VNS applications, compatible with the bipolar 304 leads from Cyberonics Inc. The stimulator is designed with commercially available components resulting in a low-cost and portable solution. A modular architecture describes the system with respect to specifications given by end user and limitations from a literature study.
APA, Harvard, Vancouver, ISO, and other styles
5

Woodcock, Alan. "Electrical stimulation of chronically denervated muscle." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mercadal, Cavaller Borja. "Electroporation and peripheral nerve stimulation." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/667854.

Full text
Abstract:
This thesis aimed at addressing questions within the fields of electroporation and peripheral nerve stimulation and, in particular, those that arise from the interaction between the two phenomenona. On the one hand, electroporation can have various direct and indirect effects in the neuronal functions. This thesis investigates the possible role of electroporation in pulsed radiofrequency treatments for chronic pain. On the other hand, during electroporation based treatments, electrical stimulation of peripheral nerves appears as an unwanted effect causing muscle contractions and acute pain. This thesis analyzes the rationale behind the use of bipolar pulses to mitigate this effect and the implications of such approach in irreversible electroporation treatments. In addition, this thesis provides a theoretical framework to explain a series of results that were in apparent contradiction with the common knowledge of the electroporation phenomenon. Finally, this thesis presents a neuromuscular model to study the recruitment patterns in intramuscular electrical stimulation.
Aquesta tesi té com a objectiu resoldre qüestions en els camps de l’electroporació i l’estimulació dels nervis perifèrics, i sobretot, aquelles que es deriven de l’interacció entre els dos fenòmens. L’electroporació pot tenir diversos efectes directes o indirectes en les funcions neuronals. En aquesta tesi s’investiga el possible paper de l’electroporació en els tractaments de radiofreqüència polsada. D’altra banda, durant els tractaments basats en l’electroporació, l’estimulació elèctrica dels nervis perifèrics apareix com a efecte secundari causant contraccions musculars i dolor. En aquesta tesi s’analitza com l’ús de polsos bipolar pot mitigar aquests efectes i quines implicacions té aquesta estratègia en els tractaments d’electroporació irreversible. En aquesta tesi també es presenta un marc teòric per explicar una sèrie de resultats que entren en aparent contradicció amb els nostres coneixements sobre l’electroporació. Finalment, es presenta un model neuromuscular que permet estudiar la resposta d’un múscul quan és estimulat mitjançant elèctrodes intramusculars.
APA, Harvard, Vancouver, ISO, and other styles
7

Hale, Janet L. "Transcutaneous electrical nerve stimulation in the management of spasticity." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vance, Carol Grace T. "Examination of parameters in transcutaneous electrical nerve stimulation effectiveness." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4779.

Full text
Abstract:
Pain is the oldest medical condition and has been referenced through the ages. TENS is a non-invasive treatment for pain. Despite conflicting reports of treatment outcomes, TENS has enjoyed widespread clinical utilization. Seminal work by Sluka and colleagues reported low frequency TENS produces anti-hyperalgesia through µ-opioid receptors and high frequency TENS produces anti-hyperalgesia through ä-opioid receptors in an animal model of inflammation. The experimental results suggested that pain can be reduced by both high and low frequency TENS but by differing opioid receptors. These important findings require translational experiments to be conducted in humans. Providing an adequate placebo for experimental investigation of any physical intervention presents as a challenge. An improvement in the placebo intervention is critical to ascertain the true effects of TENS on painful conditions. Clinical TENS experiments often only examine a single outcome - resting pain. Recent work suggests TENS is less effective on resting pain as compared to movement pain. Investigation to determine which outcome measures (pain at rest, movement pain, pain sensitivity, and function) are most likely to be affected by TENS in human subjects with pain are critical to inform the design of future studies. The least investigated parameter for application of TENS electrode site determination. One method of selection employs a technique of finding points on the skin with suspected lower impedance. To date, no literature exists to determine the effectiveness of this clinical practice and speculation has existed for decades regarding the existence of distinct electrical properties associated with specific points on the body. This series of experiments accomplishes the goals of improving the TENS placebo, testing established parameters from basic science experiments in a patient population, testing multiple outcome measures to direct future investigation; and examined the effect of electrode site selection in TENS analgesia. These experiments were the first to establish a placebo that can 100% blind the TENS examiner, to test this placebo in a patient population, and to show that although there are differences in impedance between optimal and sham sites, that this difference had no effect in the amount of analgesia produced by TENS.
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, Yuanming. "Assessment of diaphragm electrical activity using electrical and magnetic phrenic nerve stimulation." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Majed, Abdulhakeem A. "Promoting peripheral nerve regeneration, functional electrical stimulation and pharmacological approaches." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0009/NQ59560.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Percutaneous electrical nerve stimulation"

1

Rattay, Frank. Electrical Nerve Stimulation. Vienna: Springer Vienna, 1990. http://dx.doi.org/10.1007/978-3-7091-3271-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tapio, David. New frontiers in TENS (transcutaneous electrical nerve stimulation). Minnetonka, Minn: LecTec Corp., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tapio, David. New frontiers in TENS (transcutaneous electrical nerve stimulation). Minnetonka, Minn: LecTec Corp., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ottoson, David, and Thomas Lundeberg. Pain Treatment by Transcutaneous Electrical Nerve Stimulation (TENS). Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73624-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paula, Corabian, Reeve Janis, and Canadian Coordinating Office for Health Technology Assessment., eds. Transcutaneous electrical nerve stimulation (TENS) and pain management. [Ottawa, Ont.]: Canadian Coordinating Office for Health Technology Assessment, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sjölund, Bengt. Relief of pain by TENS: Transcutaneous electrical nerve stimulation. Chichester: Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

H, Sjölund Bengt, ed. Relief of pain by TENS: Transcutaneous electrical nerve stimulation. Chichester: Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1953-, Lundeberg T., ed. Pain treatment by TENS, transcutaneous electrical nerve stimulation: A practical manual. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ottoson, David. Pain treatment by TENS: Transcutaneous electrical nerve stimulation : a practical manual. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

B, Myklebust Joel, ed. Neural stimulation. Boca Raton, Fla: CRC Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Percutaneous electrical nerve stimulation"

1

Capitanucci, Maria Luisa, Giovanni Mosiello, and Mario De Gennaro. "Percutaneous Tibial Nerve Stimulation (PTNS) and Transcutaneous Electrical Nerve Stimulation (TENS)." In Urodynamics, Neurourology and Pelvic Floor Dysfunctions, 319–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42193-3_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perotti, L., M. Allegri, A. Matteazzi, and P. Grossi. "Electrical Nerve Stimulation and Percutaneous Identification of the Target." In Anesthesia of the Upper Limb, 45–54. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5418-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aló, Kenneth M., Marina V. Abramova, and Erich O. Richter. "Percutaneous Peripheral Nerve Stimulation." In Peripheral Nerve Stimulation, 41–57. Basel: KARGER, 2011. http://dx.doi.org/10.1159/000323023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hunter, Corey W., and Dipan Patel. "Percutaneous Sacral Nerve Stimulation." In Deer's Treatment of Pain, 589–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12281-2_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sigmon, Carter H., and Erik Davila-Moriel. "Electrical Nerve Stimulation." In Pain Medicine, 99–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43133-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsui, Ban C. H. "Electrical Nerve Stimulation." In Atlas of Ultrasound and Nerve Stimulation-Guided Regional Anesthesia, 9–18. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-68159-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krivoborodov, Grigory. "Percutaneous/Transcutaneous Tibial Nerve Stimulation." In Neurourology, 285–89. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-017-7509-0_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krivoborodov, Grigory. "Percutaneous/Transcutaneous Tibial Nerve Stimulation." In Handbook of Neurourology, 395–400. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1659-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krivoborodov, Grigory. "Percutaneous/Transcutaneous Tibial Nerve Stimulation." In Handbook of Neurourology, 1–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-7939-1_32-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rattay, Frank. "Functional Electrical Nerve Stimulation: A Way to Restore Lost Functions." In Electrical Nerve Stimulation, 9–29. Vienna: Springer Vienna, 1990. http://dx.doi.org/10.1007/978-3-7091-3271-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Percutaneous electrical nerve stimulation"

1

Halim, Ricky Gustian, and Steven Setiono. "Percutaneous Tibial Nerve Stimulation with Modified Electrical Stimulator as Therapy for Overactive Bladder Syndrome: A Serial Case Report." In The 11th National Congress and The 18th Annual Scientific Meeting of Indonesian Physical Medicine and Rehabilitation Association. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0009087601770180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Samoudi, Amine M., Tom Van de Steene, Emmeric Tanghe, Luc Martens, and Wout Joseph. "Assessment of nerve cathodal block for the percutaneous auricular vagus nerve stimulation." In 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med). IEEE, 2018. http://dx.doi.org/10.23919/emf-med.2018.8526068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aoyama, K. "Percutaneous Electrical Stimulation for Virtual Reality." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.c-4-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elder, Christopher W., and Paul B. Yoo. "Co-activation of saphenous nerve fibers: A potential therapeutic mechanism of percutaneous tibial nerve stimulation?" In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kampusch, Stefan, Eugenijus Kaniusas, and Jozsef C. Szeles. "New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve." In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6695922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gomez-Tames, Jose, and Wenwei Yu. "Assessment of nerve morphology in nerve activation during electrical stimulation." In 2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES. AIP, 2013. http://dx.doi.org/10.1063/1.4825030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ravichandran, S., U. H. Narayanan, and U. N. Sujatha. "Transcutaneous electrical nerve stimulation in pain management." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, K. W. E. "Power supplies for transcutaneous electrical nerve stimulation." In Proceedings of 5th International Conference on Power Electronics and Variable-Speed Drives. IEE, 1994. http://dx.doi.org/10.1049/cp:19941047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Razlighi, Babak Dabiri, Stefan Kampusch, Stefan H. Geyer, Van Hoang Le, Florian Thurk, Simon Brenner, Jozsef Constantin Szeles, Wolfgang J. Weninger, and Eugenijus Kaniusas. "In-Silico Ear Model Based on Episcopic Images for Percutaneous Auricular Vagus Nerve Stimulation." In 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med). IEEE, 2018. http://dx.doi.org/10.23919/emf-med.2018.8526013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kent, D., and Y. Li. "Percutaneous Approaches to Hypoglossal Nerve Stimulation: A Pilot Study During Drug-Induced Sleep Endoscopy." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Percutaneous electrical nerve stimulation"

1

Nunes, Isadora, Katia Sá, Mônica Rios, Yossi Zana, and Abrahão Baptista. Non-invasive Brain Stimulation in the Management of COVID-19: Protocol for a Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0033.

Full text
Abstract:
Review question / Objective: What is the efficacy or effectiveness of NIBS techniques, specifically repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcutaneous auricular vagus nerve stimulation (taVNS), percutaneous auricular vagus nerve stimulation (paVNS), and neck vagus nerve stimulation (nVNS), in the control of outcomes associated with COVID-19 in the acute or post-COVID persistent syndrome? Eligibility criteria: Included clinical studies assessed participants with acute or persistent post-COVID-19 syndrome submitted to NIBS interventions, namely transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), transcranial magnetic stimulation (TMS), repetitive transcranial magnetic stimulation (rTMS), theta burst (cTBS or iTBS). Studies that used peripheral and spinal cord stimulation techniques were also included. Those included vagus nerve stimulation (VNS), such as transcutaneous auricular (taVNS), percutaneous auricular (paVNS), transcranial random noise stimulation (tRNS) trans-spinal direct current stimulation (tsDCS) and other peripheral electrical stimulation (PES) techniques. Scientific communication, protocol studies, reviews and non-English papers were excluded.
APA, Harvard, Vancouver, ISO, and other styles
2

Hasiba-Pappas, Sophie, Lars-Peter Kamolz, Hanna Luze, Sebastian P. Nischwitz, Judith CJ Holzer-Geissler, Alexandru Christian Tuca, Theresa Rienmüller, Mathias Polz, Daniel Ziesel, and Raimund Winter. Does Electrical Stimulation Through Nerve Conduits Improve Peripheral Nerve Regeneration ? - A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2023. http://dx.doi.org/10.37766/inplasy2023.2.0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Menghua, Zhongyu Jian, Yucheng Ma, Xi Jin, Hong Li, and Kunjie Wang. Percutaneous tibial nerve stimulation for overactive bladder syndrome: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2020. http://dx.doi.org/10.37766/inplasy2020.5.0091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Jiapeng, Chunlan Yang, Kehong Zhao, Ziqi Zhao, Yin Chen, Tingting Wang, and Yun Qu. Transcutaneous Electrical Nerve Stimulation in Rodent Models of Neuropathic Pain: A Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2021. http://dx.doi.org/10.37766/inplasy2021.11.0104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Peng, Hong Zhou, Huanxin Zhang, Lunzhong Zhang, Yunlong Sui, and Zhen Zhang. The efficacy of median nerve electrical stimulation on recovery of patients with consciousness disorders - a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2021. http://dx.doi.org/10.37766/inplasy2021.7.0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, xianfeng, shanshan Lv, Jing Zheng, and fangfang Lv. Meta-analysis of the effect of percutaneous acupoint electrical stimulation on cognitive function in elderly patients after surgery. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2023. http://dx.doi.org/10.37766/inplasy2023.5.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Jiao, Sha Zhao, Guixing Xu, Fanrong Liang, and Ling Zhao. Effectiveness and safety of transcutaneous electrical nerve stimulation (TENS) for pain relief in labour: a protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2020. http://dx.doi.org/10.37766/inplasy2020.7.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goeckeritz, Joel, Nathan Schank, Ryan L Wood, Beverly L Roeder, and Alonzo D Cook. Use of Urinary Bladder Matrix Conduits in a Rat Model of Sciatic Nerve Regeneration after Nerve Transection Injury. Science Repository, December 2022. http://dx.doi.org/10.31487/j.rgm.2022.03.01.

Full text
Abstract:
Previous research has demonstrated the use of single-channel porcine-derived urinary bladder matrix (UBM) conduits in segmental-loss, peripheral nerve repairs as comparable to criterion-standard nerve autografts. This study aimed to replicate and expand upon this research with additional novel UBM conduits and coupled therapies. Fifty-four Wistar Albino rats were divided into 6 groups, and each underwent a surgical neurectomy to remove a 7-millimeter section of the sciatic nerve. Bridging of this nerve gap and treatment for each group was as follows: i) reverse autograft—the segmented nerve was reversed 180 degrees and used to reconnect the proximal and distal nerve stumps; ii) the nerve gap was bridged via a silicone conduit; iii) a single-channel UBM conduit; iv) a multi-channel UBM conduit; v) a single-channel UBM conduit identical to group 3 coupled with fortnightly transcutaneous electrical nerve stimulation (TENS); vi) or, a multi-channel UBM conduit identical to group 4 coupled with fortnightly TENS. The extent of nerve recovery was assessed by behavioural parameters: foot fault asymmetry scoring measured weekly for six weeks; electrophysiological parameters: compound muscle action potential (CMAP) amplitudes, measured at weeks 0 and 6; and morphological parameters: total fascicle areas, myelinated fiber counts, fiber densities, and fiber sizes measured at week 6. All the above parameters demonstrated recovery of the test groups (3-6) as being either comparable or less than that of reverse autograft, but none were shown to outperform reverse autograft. As such, UBM conduits may yet prove to be an effective treatment to repair relatively short segmental peripheral nerve injuries, but further research is required to demonstrate greater efficacy over nerve autografts.
APA, Harvard, Vancouver, ISO, and other styles
9

Goeckeritz, Joel, Nathan Schank, Ryan L Wood, Beverly L Roeder, and Alonzo D Cook. Use of Urinary Bladder Matrix Conduits in a Rat Model of Sciatic Nerve Regeneration after Nerve Transection Injury. Science Repository, December 2022. http://dx.doi.org/10.31487/j.rgm.2022.03.01.sup.

Full text
Abstract:
Previous research has demonstrated the use of single-channel porcine-derived urinary bladder matrix (UBM) conduits in segmental-loss, peripheral nerve repairs as comparable to criterion-standard nerve autografts. This study aimed to replicate and expand upon this research with additional novel UBM conduits and coupled therapies. Fifty-four Wistar Albino rats were divided into 6 groups, and each underwent a surgical neurectomy to remove a 7-millimeter section of the sciatic nerve. Bridging of this nerve gap and treatment for each group was as follows: i) reverse autograft—the segmented nerve was reversed 180 degrees and used to reconnect the proximal and distal nerve stumps; ii) the nerve gap was bridged via a silicone conduit; iii) a single-channel UBM conduit; iv) a multi-channel UBM conduit; v) a single-channel UBM conduit identical to group 3 coupled with fortnightly transcutaneous electrical nerve stimulation (TENS); vi) or, a multi-channel UBM conduit identical to group 4 coupled with fortnightly TENS. The extent of nerve recovery was assessed by behavioural parameters: foot fault asymmetry scoring measured weekly for six weeks; electrophysiological parameters: compound muscle action potential (CMAP) amplitudes, measured at weeks 0 and 6; and morphological parameters: total fascicle areas, myelinated fiber counts, fiber densities, and fiber sizes measured at week 6. All the above parameters demonstrated recovery of the test groups (3-6) as being either comparable or less than that of reverse autograft, but none were shown to outperform reverse autograft. As such, UBM conduits may yet prove to be an effective treatment to repair relatively short segmental peripheral nerve injuries, but further research is required to demonstrate greater efficacy over nerve autografts.
APA, Harvard, Vancouver, ISO, and other styles
10

Halker Singh, Rashmi B., Juliana H. VanderPluym, Allison S. Morrow, Meritxell Urtecho, Tarek Nayfeh, Victor D. Torres Roldan, Magdoleen H. Farah, et al. Acute Treatments for Episodic Migraine. Agency for Healthcare Research and Quality (AHRQ), December 2020. http://dx.doi.org/10.23970/ahrqepccer239.

Full text
Abstract:
Objectives. To evaluate the effectiveness and comparative effectiveness of pharmacologic and nonpharmacologic therapies for the acute treatment of episodic migraine in adults. Data sources. MEDLINE®, Embase®, Cochrane Central Registrar of Controlled Trials, Cochrane Database of Systematic Reviews, PsycINFO®, Scopus, and various grey literature sources from database inception to July 24, 2020. Comparative effectiveness evidence about triptans and nonsteroidal anti-inflammatory drugs (NSAIDs) was extracted from existing systematic reviews. Review methods. We included randomized controlled trials (RCTs) and comparative observational studies that enrolled adults who received an intervention to acutely treat episodic migraine. Pairs of independent reviewers selected and appraised studies. Results. Data on triptans were derived from 186 RCTs summarized in nine systematic reviews (101,276 patients; most studied was sumatriptan, followed by zolmitriptan, eletriptan, naratriptan, almotriptan, rizatriptan, and frovatriptan). Compared with placebo, triptans resolved pain at 2 hours and 1 day, and increased the risk of mild and transient adverse events (high strength of the body of evidence [SOE]). Data on NSAIDs were derived from five systematic reviews (13,214 patients; most studied was ibuprofen, followed by diclofenac and ketorolac). Compared with placebo, NSAIDs probably resolved pain at 2 hours and 1 day, and increased the risk of mild and transient adverse events (moderate SOE). For other interventions, we included 135 RCTs and 6 comparative observational studies (37,653 patients). Compared with placebo, antiemetics (low SOE), dihydroergotamine (moderate to high SOE), ergotamine plus caffeine (moderate SOE), and acetaminophen (moderate SOE) reduced acute pain. Opioids were evaluated in 15 studies (2,208 patients).Butorphanol, meperidine, morphine, hydromorphone, and tramadol in combination with acetaminophen may reduce pain at 2 hours and 1 day, compared with placebo (low SOE). Some opioids may be less effective than some antiemetics or dexamethasone (low SOE). No studies evaluated instruments for predicting risk of opioid misuse, opioid use disorder, or overdose, or evaluated risk mitigation strategies to be used when prescribing opioids for the acute treatment of episodic migraine. Calcitonin gene-related peptide (CGRP) receptor antagonists improved headache relief at 2 hours and increased the likelihood of being headache-free at 2 hours, at 1 day, and at 1 week (low to high SOE). Lasmiditan (the first approved 5-HT1F receptor agonist) restored function at 2 hours and resolved pain at 2 hours, 1 day, and 1 week (moderate to high SOE). Sparse and low SOE suggested possible effectiveness of dexamethasone, dipyrone, magnesium sulfate, and octreotide. Compared with placebo, several nonpharmacologic treatments may improve various measures of pain, including remote electrical neuromodulation (moderate SOE), magnetic stimulation (low SOE), acupuncture (low SOE), chamomile oil (low SOE), external trigeminal nerve stimulation (low SOE), and eye movement desensitization re-processing (low SOE). However, these interventions, including the noninvasive neuromodulation devices, have been evaluated only by single or very few trials. Conclusions. A number of acute treatments for episodic migraine exist with varying degrees of evidence for effectiveness and harms. Use of triptans, NSAIDs, antiemetics, dihydroergotamine, CGRP antagonists, and lasmiditan is associated with improved pain and function. The evidence base for many other interventions for acute treatment, including opioids, remains limited.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography