Dissertations / Theses on the topic 'Perceptrons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Perceptrons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kallin, Westin Lena. "Preprocessing perceptrons." Doctoral thesis, Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-234.
Full textFilho, Osame Kinouchi. "Generalização ótima em perceptrons." Universidade de São Paulo, 1992. http://www.teses.usp.br/teses/disponiveis/54/54131/tde-07042015-165731/.
Full textThe perceptron has been studied in the contexto f statistical physics since the seminal work of Gardner and Derrida on the coupling space of this simple neural network. Recently, Opper and Haussler calculated, with the replica method, the theoretical optimal performance of the perceptron for learning a rule (generalization). In this work we found the optimal performance curve after the first presentation of the examples (first step of learning dynamics). In the limit of large number of examples the generalization error is only two times the error found by Opper and Haussler. We also calculated the optimal performance for the first step in the learning situation with selection of examples. We show that optimal selection occurs when the new example is choosen orthogonal to the perceptron coupling vector. The generalization error in this case decay exponentially with the number of examples. We also propose a new class of learning algorithms which aproximates very well the optimal performance curves. We study analytically the first step of the learning dynamics and numerically its behaviour for long times. We show that several known learning algorithms (Hebb, Perceptron, Adaline, Relaxation) can be seen as more or less reliable aproximations o four algorithm
Adharapurapu, Ratnasri Krishna. "Convergence properties of perceptrons." CSUSB ScholarWorks, 1995. https://scholarworks.lib.csusb.edu/etd-project/1034.
Full textFriess, Thilo-Thomas. "Perceptrons in kernel feature spaces." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327730.
Full textZhao, Lenny. "Uncertainty prediction with multi-layer perceptrons." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0018/MQ55733.pdf.
Full textMourao, Kira Margaret Thom. "Learning action representations using kernel perceptrons." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7717.
Full textBlack, Michael David. "Applying perceptrons to speculation in computer architecture." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6725.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Cairns, Graham Andrew. "Learning with analogue VLSI multi-layer perceptrons." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296901.
Full textGrandvalet, Yves. "Injection de bruit dans les perceptrons multicouches." Compiègne, 1995. http://www.theses.fr/1995COMPD802.
Full textOctavian, Stan. "New recursive algorithms for training feedforward multilayer perceptrons." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/13534.
Full textBarbato, Daniela Maria Lemos. "Estudo analítico do efeito da diluição em perceptrons." Universidade de São Paulo, 1998. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-05052008-172548/.
Full textPerceptrons are layered, feed-forward neural networks. In this work we consider a perceptron composed of one input layer with N sensor neurons Si = 1; i = 1,..., N which are connected to a single motor neuron a through the synaptic weights Ji; i = 1,..., N. Using the Statistical Mechanics formalism developed by Gardner and co-workers, we study the effects of eliminating a fraction of synaptic weights (dilution) on the learning and generalization capabilities of the two types of perceptrons, namely, the linear perceptron and the Boolean perceptron. In the linear perceptron we compare the performances of networks damaged by different types of dilution, which may occur either during or after the learning stage. The comparison between the effects of the different types of dilution, shows that the strategy of minimizing the training error does not yield the best generalization performance. Moreover, this comparison also shows that, depending on the size of the training set and on the level of noise corrupting the training data, the smaller weights may became the determinant factors in the good functioning of the network. In the Boolean perceptron we investigate the effect of dilution after learning on the generalization ability when this network is trained with noise examples. We present a thorough comparison between the relative performances of five learning rules or algorithms: the Hebb rule, the pseudo-inverse rule, the Gibbs algorithm, the optimal stability algorithm and the Bayes algorithm. In particular, we show that the effect of dilution is always deleterious, and that the Bayes algorithm always gives the lest generalization performance.
Karouia, Mohamed. "Initialisation et détermination de l'architecture des perceptrons multicouches." Compiègne, 1996. http://www.theses.fr/1996COMPD879.
Full textMarchi, Rodrigo Andreoli de. "Aplicação do perceptron de múltiplas camadas no controle direto de potência do gerador de indução duplamente alimentado." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258919.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-18T01:48:41Z (GMT). No. of bitstreams: 1 Marchi_RodrigoAndreolide_M.pdf: 5160130 bytes, checksum: 8e043b48f5cd0e86cc078b3adc27f74b (MD5) Previous issue date: 2011
Resumo: Neste trabalho é apresentada a estratégia de Controle Direto de Potência para o Gerador de Indução Duplamente Alimentado utilizando um controlador Perceptron de Múltiplas Camadas. O controlador tem a função de gerar os sinais das componentes de eixo direto e quadratura da tensão do rotor, sem a necessidade de controladores de corrente. A estratégia de controle apresentada permite operar o conversor de potência, conectado aos terminais do rotor, com frequência de chaveamento constante. A rede neural foi treinada off-line, a partir de um algoritmo de otimização de segunda ordem baseado no gradiente conjugado estendido, utilizando um conjunto de amostras obtido por meio da simulação digital de uma máquina de rotor bobinado de potência igual a 2 MW. Resultados de simulação digital com os dados dessa máquina, operando no modo gerador e com dupla alimentação, são apresentados para vários valores de potência ativa e reativa, e para velocidades fixas e variáveis, compreendidas na faixa de -15% a +15% da velocidade síncrona. Com o controlador implementado por uma rede neural artificial e treinada para uma máquina de 2 MW, testes de simulação digital e experimentais para uma máquina de 2,2 kW, operando na velocidade subsíncrona, são apresentados para validar a proposta
Abstract: This work presents a direct power control strategy for the doubly fed induction generator using a controller artificial neural networks, more specifically a multilayer perceptron. The controller has the role of generating the direct and quadrature-axis component signals of the rotor voltage, without the need of current controllers. The proposed control strategy allows to operate the converter, connected to the rotor terminals, with a fixed switching frequency. The multilayer perceptron was subject to an off-line training procedure using a second order algorithm based on an extend version of the conjugate gradient algorithm, using a set of samples produced by a 2 MW machine's digital simulation. Results of digital simulation for this machine are presented for several values of active and reactive power, with the generator operating on fixed and variable speed, in the range of -15% and +15% of the synchronous speed, considering the parameters of 2 MW machine. With the artificial neural network controller designed for this machine, digital simulation tests and experimental tests for a 2,2 kW machine, operating in a sub-synchronous speed, arc presented to validate the proposal
Mestrado
Energia Eletrica
Mestre em Engenharia Elétrica
Bartz, Michael. "Soft decision decoding of block codes using multilayer perceptrons." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/15391.
Full textBueno, Felipe Roberto 1985. "Perceptrons híbridos lineares/morfológicos fuzzy com aplicações em classificação." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306338.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T15:06:30Z (GMT). No. of bitstreams: 1 Bueno_FelipeRoberto_M.pdf: 1499339 bytes, checksum: 85b58d8b856fafa47974349e80c1729e (MD5) Previous issue date: 2015
Resumo: Perceptrons morfológicos (MPs) pertencem à classe de redes neurais morfológicas (MNNs). Estas redes representam uma classe de redes neurais artificiais que executam operações de morfologia matemática (MM) em cada nó, possivelmente seguido pela aplicação de uma função de ativação. Vale ressaltar que a morfologia matemática foi concebida como uma teoria para processamento e análise de objetos (imagens ou sinais), por meio de outros objetos chamados elementos estruturantes. Embora inicialmente desenvolvida para o processamento de imagens binárias e posteriormente estendida para o processamento de imagens em tons de cinza, a morfologia matemática pode ser conduzida de modo mais geral em uma estrutura de reticulados completos. Originalmente, as redes neurais morfológicas empregavam somente determinadas operações da morfologia matemática em tons de cinza, denominadas de erosão e dilatação em tons de cinza, segundo a abordagem umbra. Estas operações podem ser expressas em termos de produtos máximo aditivo e mínimo aditivo, definidos por meio de operações entre vetores ou matrizes, da álgebra minimax. Recentemente, as operações da morfologia matemática fuzzy surgiram como funções de agregação das redes neurais morfológicas. Neste caso, falamos em redes neurais morfológicas fuzzy. Perceptrons híbridos lineares/morfológicos fuzzy foram inicialmente projetados como uma generalização dos perceptrons lineares/morfológicos existentes, ou seja, os perceptrons lineares/morfológicos fuzzy podem ser definidos por uma combinação convexa de uma parte morfológica fuzzy e uma parte linear. Nesta dissertação de mestrado, introduzimos uma rede neural artificial alimentada adiante, representando um perceptron híbrido linear/morfológico fuzzy chamado F-DELP (do inglês fuzzy dilation/erosion/linear perceptron), que ainda não foi considerado na literatura de redes neurais. Seguindo as ideias de Pessoa e Maragos, aplicamos uma suavização adequada para superar a não-diferenciabilidade dos operadores de dilatação e erosão fuzzy utilizados no modelo F-DELP. Em seguida, o treinamento é realizado por intermédio de um algoritmo de retropropagação de erro tradicional. Desta forma, aplicamos o modelo F-DELP em alguns problemas de classificação conhecidos e comparamos seus resultados com os produzidos por outros classificadores
Abstract: Morphological perceptrons (MPs) belong to the class of morphological neural networks (MNNs). These MNNs represent a class of artificial neural networks that perform operations of mathematical morphology (MM) at every node, possibly followed by the application of an activation function. Recall that mathematical morphology was conceived as a theory for processing and analyzing objects (images or signals), by means of other objects called structuring elements. Although initially developed for binary image processing and later extended to gray-scale image processing, mathematical morphology can be conducted very generally in a complete lattice setting. Originally, morphological neural networks only employed certain operations of gray-scale mathematical morphology, namely gray-scale erosion and dilation according to the umbra approach. These operations can be expressed in terms of (additive maximum and additive minimum) matrix-vector products in minimax algebra. It was not until recently that operations of fuzzy mathematical morphology emerged as aggregation functions of morphological neural networks. In this case, we speak of fuzzy morphological neural networks. Hybrid fuzzy morphological/linear perceptrons was initially designed by generalizing existing morphological/linear perceptrons, in other words, fuzzy morphological/linear perceptrons can be defined by a convex combination of a fuzzy morphological part and a linear part. In this master's thesis, we introduce a feedforward artificial neural network representing a hybrid fuzzy morphological/linear perceptron called fuzzy dilation/erosion/linear perceptron (F-DELP), which has not yet been considered in the literature. Following Pessoa's and Maragos' ideas, we apply an appropriate smoothing to overcome the non-differentiability of the fuzzy dilation and erosion operators employed in the proposed F-DELP models. Then, training is achieved using a traditional backpropagation algorithm. Finally, we apply the F-DELP model to some well-known classification problems and compare the results with the ones produced by other classifiers
Mestrado
Matematica Aplicada
Mestre em Matemática Aplicada
Goosen, Johannes Christiaan. "Comparing generalized additive neural networks with multilayer perceptrons / Johannes Christiaan Goosen." Thesis, North-West University, 2011. http://hdl.handle.net/10394/5552.
Full textThesis (M.Sc. (Computer Science))--North-West University, Potchefstroom Campus, 2011.
Devouge, Claire. "Quelques aspects mathématiques de l'auto-organisation neuronale et des perceptrons multicouches." Paris 11, 1992. http://www.theses.fr/1992PA112268.
Full textPERROTTA, DOMENICO. "Apports de l'analyse bayesienne aux methodes d'apprentissage des perceptrons multi-couches." Lyon, École normale supérieure (sciences), 1997. http://www.theses.fr/1997ENSL0042.
Full textPapadopoulos, Georgios. "Theoretical issues and practical considerations concerning confidence measures for multi-layer perceptrons." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/12753.
Full textCarlsson, Leo. "Using Multilayer Perceptrons asmeans to predict the end-pointtemperature in an Electric ArcFurnace." Thesis, KTH, Materialens processteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182288.
Full textCardoso, Maria Eduarda de Araújo. "Segmentação automática de Expressões Faciais Gramaticais com Multilayer Perceptrons e Misturas de Especialistas." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112018-203224/.
Full textThe recognition of facial expressions is an area of interest in computer science and has been an attraction for researchers in different fields since it has potential for development of different types of applications. Automatically recognizing these expressions has become a goal primarily in the area of human behavior analysis. Especially for the study of sign languages, the analysis of facial expressions represents an important factor for the interpretation of discourse, since it is the element that allows expressing prosodic information, supports the development of the grammatical and semantic structure of the language, and eliminates ambiguities between similar signs. In this context, facial expressions are called grammatical facial expressions. These expressions collaborate in the semantic composition of the sentences. Among the lines of study that explore this theme is the one that intends to implement the automatic analysis of sign language. For applications aiming to interpret signal languages in an automated way, it is necessary that such expressions be identified in the course of a signaling, and that task is called \"segmentation of grammatical facial expressions\'\'. For this area, it is useful to develop an architecture capable of performing the identification of such expressions in a sentence, segmenting it according to each different type of expression used in its construction. Given the need to develop this architecture, this research presents: a review of studies already carried out in the area; the implementation of pattern recognition algorithms using Multilayer Perceptron and mixtures of experts to solve the facial expression recognition problem; the comparison of these algorithms as recognizers of grammatical facial expressions used in the conception of sentences in the Brazilian Language of Signs (Libras). The implementation and tests carried out with such algorithms showed that the automatic segmentation of grammatical facial expressions is practicable in user-dependent contexts. Regarding user-independent contexts, this is a challenge which demands the organization of a learning environment structured on datasets bigger and more diversified than those current available
Lehalle, Charles-Albert. "Contrôle non linéaire et Réseaux de neurones formels : les Perceptrons Affines Par morceaux." Paris 6, 2005. https://tel.archives-ouvertes.fr/tel-00009592.
Full textARAÚJO, Ricardo de Andrade. "Proposta de uma Classe de Perceptrons Híbridos com Aprendizagem baseada em Gradiente Descendente." Universidade Federal de Pernambuco, 2012. https://repositorio.ufpe.br/handle/123456789/2842.
Full textEste trabalho apresenta uma classe de perceptrons híbridos baseado nos princípios da morfologia matemática (mathematical morphology, MM) no contexto de teoria de reticulados (lattice theory). O modelo proposto, chamado de perceptron de dilatação-erosão-linear (dilationerosion- linear perceptron, DELP), consiste de uma combinação linear entre operadores nãolineares (do tipo morfológicos no contexto de teoria de reticulados) e um operador linear (do tipo resposta finita ao impulso), sendo desenvolvido na tentativa de superar o dilema do passeio aleatório (random walk dilemma, RWD) no problema de previsão de séries temporais financeiras. Para projetar o DELP (processo de aprendizagem), foi apresentado um método de gradiente descendente utilizando ideias do algoritmo de retropropagação do erro (back propagation, BP) e uma abordagem sistemática para superar o problema da não-diferenciabilidade das operações morfológicas de dilatação e erosão. Também, no processo de aprendizagem do DELP, foi incluída uma etapa adicional para ajustar distorções de fase temporais que ocorrem na reconstrução do espaço de fase de fenômenos temporais provenientes do mercado financeiro. Uma análise experimental foi conduzida utilizando um conjunto de séries temporais financeiras: Índice da Bolsa de Valores de São Paulo, Índice Dow Jones Industrial Average, Índice National Association of Securities Dealers Automated Quotation, Índice Financial Times and London Stock Exchange 100, Preço das ações do Bradesco PN, Preço das ações da Gol PN, Preço das ações do Itaú Unibanco PN, Preço das ações da Petrobras PN, Preço das ações da Usiminas PNA e Preço das ações da Vale PNA. Nestes experimentos, foram utilizadas cinco métricas e uma função de avaliação para mensurar o desempenho preditivo do modelo proposto, e os resultados alcançados superaram aqueles obtidos utilizando técnicas consolidadas na literatura
Diouf, Daouda. "Méthode mixte d'inversion neuro-variationnelle d'images de la couleur de l'océan : Application aux signaux SeaWIFS au large de l'Afrique de l'Ouest." Paris 6, 2012. http://www.theses.fr/2012PA066181.
Full textOptical sensors, used to observe the ocean from space, measure the solar radiation reflected back to space by the ocean-atmosphere system. The marine reflectance interesting for the analysis of the ocean represents an average at most 10% of the total light received by the sensor and is obtained at the end of an atmospheric correction process. The inversion of this marine signal provides geophysical parameters interesting for the study of the ocean, such as the chlorophyll-a concentration, a major pigment of phytoplankton. In general the difficulty of standard atmospheric correction algorithms lies in quantifying the impact of aerosols in the atmosphere on the signal measured by the sensor especially when they are absorbing. We present adapted statistical and mathematical methodologies to determine atmospheric aerosols types and their optical thickness and then retrieve the ocean color. This methodology which is a combination of several neural network algorithms and a variational optimization is called SOM-NV and was applied to thirteen years of SeaWiFS observations off West Africa. The aerosols optical thickness and Angström coefficients measured in-situ (AERONET measurements) were respectively used to validate the aerosols optical thickness and aerosols types obtained by SOM-NV. Furthermore the method is also able to detect absorbing aerosols such as Saharan dust and gives accurate results for optical thickness values greater than 0. 35, which is not the case for SeaWiFS standard product
Rountree, Nathan, and n/a. "Initialising neural networks with prior knowledge." University of Otago. Department of Computer Science, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070510.135442.
Full textSatravaha, Nuttavudh. "Tone classification of syllable-segmented Thai speech based on multilayer perceptron." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2280.
Full textTitle from document title page. Document formatted into pages; contains v, 130 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 107-118).
Lehalle, Charles-Albert. "Le contrôle non linéaire par réseaux de neurones formels: les perceptrons affines par morceaux." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00009592.
Full textDimopoulos, Ioannis. "La mise en oeuvre des modèles statistiques linéaires et non linéaires en sciences de l'environnement." Toulouse 3, 1997. http://www.theses.fr/1997TOU30096.
Full textShepherd, Adrian John. "Novel second-order techniques and global optimisation methods for supervised training of multi-layer perceptrons." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321662.
Full textSEPULVEDA, EDUARDO. "Etude de la generalisation dans les perceptrons multi-couche : application a la reconnaissance des formes." Paris 6, 1994. http://www.theses.fr/1994PA066442.
Full textRouleau, Christian. "Perceptron sous forme duale tronquée et variantes." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24492/24492.pdf.
Full textMachine Learning is a part of the artificial intelligence and is used in many fields in science. It is divided into three categories : supervised, not supervised and by reinforcement. This master’s paper will relate only the supervised learning and more precisely the classification of datas. One of the first algorithms in classification, the perceptron, was proposed in the Sixties. We propose an alternative of this algorithm, which we call the truncated dual perceptron, which allows the stop of the algorithm according to a new criterion. We will compare this new alternative with other alternatives of the perceptron. Moreover, we will use the truncated dual perceptron to build more complex classifiers like the «Bayes Point Machines».
Bengio, Yoshua. "Connectionist models applied to automatic speech recognition." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63920.
Full textEnes, Karen Braga. "Uma abordagem baseada em Perceptrons balanceados para geração de ensembles e redução do espaço de versões." Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/4883.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-24T13:13:01Z (GMT) No. of bitstreams: 1 karenbragaenes.pdf: 607859 bytes, checksum: f7907cc35c012dd829a223c7d46a7e6b (MD5)
Made available in DSpace on 2017-06-24T13:13:01Z (GMT). No. of bitstreams: 1 karenbragaenes.pdf: 607859 bytes, checksum: f7907cc35c012dd829a223c7d46a7e6b (MD5) Previous issue date: 2016-01-08
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Recentemente, abordagens baseadas em ensemble de classificadores têm sido bastante exploradas por serem uma alternativa eficaz para a construção de classificadores mais acurados. A melhoria da capacidade de generalização de um ensemble está diretamente relacionada à acurácia individual e à diversidade de seus componentes. Este trabalho apresenta duas contribuições principais: um método ensemble gerado pela combinação de Perceptrons balanceados e um método para geração de uma hipótese equivalente ao voto majoritário de um ensemble. Para o método ensemble, os componentes são selecionados por medidas de diversidade, que inclui a introdução de uma medida de dissimilaridade, e avaliados segundo a média e o voto majoritário das soluções. No caso de voto majoritário, o teste de novas amostras deve ser realizado perante todas as hipóteses geradas. O método para geração da hipótese equivalente é utilizado para reduzir o custo desse teste. Essa hipótese é obtida a partir de uma estratégia iterativa de redução do espaço de versões. Um estudo experimental foi conduzido para avaliação dos métodos propostos. Os resultados mostram que os métodos propostos são capazes de superar, na maior parte dos casos, outros algoritmos testados como o SVM e o AdaBoost. Ao avaliar o método de redução do espaço de versões, os resultados obtidos mostram a equivalência da hipótese gerada com a votação de um ensemble de Perceptrons balanceados.
Recently, ensemble learning theory has received much attention in the machine learning community, since it has been demonstrated as a great alternative to generate more accurate predictors with higher generalization abilities. The improvement of generalization performance of an ensemble is directly related to the diversity and accuracy of the individual classifiers. In this work, we present two main contribuitions: we propose an ensemble method by combining Balanced Perceptrons and we also propose a method for generating a hypothesis equivalent to the majority voting of an ensemble. Considering the ensemble method, we select the components by using some diversity strategies, which include a dissimilarity measure. We also apply two strategies in view of combining the individual classifiers decisions: majority unweighted vote and the average of all components. Considering the majority vote strategy, the set of unseen samples must be evaluate towards the generated hypotheses. The method for generating a hypothesis equivalent to the majority voting of an ensemble is applied in order to reduce the costs of the test phase. The hypothesis is obtained by successive reductions of the version space. We conduct a experimental study to evaluate the proposed methods. Reported results show that our methods outperforms, on most cases, other classifiers such as SVM and AdaBoost. From the results of the reduction of the version space, we observe that the genareted hypothesis is, in fact, equivalent to the majority voting of an ensemble.
Béal, Sylvain. "Jeux de machines et réseaux sociaux." Saint-Etienne, 2005. http://www.theses.fr/2005STETT073.
Full textA social dilemma is a non-cooperative game that has a single inefficient Nash equilibrium in which players obtain their minmax payoff. This thesis aims at solving a social dilemma by finitely repeating it and by restricting players' abilities to implement strategies. Precisely, we assume that players must choose strategies which can be played by a machine. The automaton is one such machine. For two-player games, we investigate the finitely repeated prisoner's dilemma. When the size of automata available to players is enough restricted, we characterize the payoffs and the structure of automata at equilibrium. In particular, the cooperative outcome is reachable. For n-player games, we consider a network formation game with consent. A social dilemma appears when the cost of creating a link is larger than its direct benefit. We repeat this game for finitely many stages and assume that players choose strategies that can be played by automata. We characterize the sequences of equilibrium networks and the sequences of efficient networks. Lastly, we introduce another machine, the perceptron. We show that the perceptron and the automaton have different abilities to implement strategies. In the finitely repeated prisoner's dilemma, we assume that players choose strategies that can be played by an automaton and a perceptron respectively. We give conditions which allow for an efficient equilibrium outcome
Thomas, Philippe. "Contribution à l'identification de systèmes non linéaires par réseaux de neurones." Nancy 1, 1997. http://docnum.univ-lorraine.fr/public/SCD_T_1997_0030_THOMAS.pdf.
Full textThis thesis deals with the idenlificalion of dynamical non-linear ISO and MlSO systems with multilayer feedforward neural networks. Firstly, a short presentation of the non-linear identification methods is proposed and the neural network are reviewed. Secondly, the general architecture of the neural network used is more precisely defined. Some methods are presented to adapt this architecture to a particular case. These methods give the regressors and the number of neurons in the hidden layer. The relationships between neural identification and the most classical non-Iinear models are then shown. The validation criteria of non-linear models usable for the neural identification are presented. Three difficulties encountered in neural identification are investigated in the sequel. The first one is due to the initialisation of the parameters of the network. A bad choice of these initial parameters can lead to local minima very far from of the global minimum, to saturation of the hidden neurons, or to slow convergence. Two new algorithms are proposed to solve this problem and compared with others on three different examples. The slow convergence can be the result of the learning algorithm used. One algorithm is proposed to deal with this second difficulty. This algorithm is compared with the more classical RPE algorithm. This study is ends with the third studied problem which is posed by the presence of outliers in the identification data set. Lndeed, outliers can produce biases on estimated parameters. Three robust criteria are then proposed and are compared with the classical quadratic criterion on a simulation example and on a real industrial data set
Barbosa, Itamar Magno. "Estudo das dispersões metrológicas em redes neurais artificiais do tipo Multilayer Perceptrons através da aplicação em curvas de calibração." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-12082010-113757/.
Full textThe present study investigates metrological dispersions in fitting partially or totally unknown functions. An alternative method is the application of a multilayer perceptron neural network used here to fit functions. The fitting functions are calibration curves from calibration indications of measurement systems or instruments. These curves hold metrological properties and establish a link between elements of Metrological theory and elements of Computing Intelligence theory: the Multilayer Perceptrons. An external balance of aerodynamic forces and moments and an electronic tongue applied in the measurement of cation concentrations were the measurement systems used to apply the concepts of this alternative methodology. This thesis proposes improvements in the accuracy of fitting calibration curves considering the following factors: influence quantities, uncertainties about target values, tendency of hidden or not solved systematic errors and metrological performance functions. The measurement quality indicator or the laboratory metrological competence indicator is established by uncertainty values and the calibration curve is the starting point for the calculation of these values. The establishment of this curve is one of the difficulties in assessing uncertainties and the curve itself is an uncertainty source. Therefore, a careful and meticulous methodology is necessary in curve approximation, which explains the strategic importance of this work. Metrological dispersions have connotation of uncertainty in measurements and are the basis for calculating their numerical values, the performance functions can represent metrological dispersions and the opposite is also true: the standard uncertainty can be a performance function. Making a synthesis, this thesis demonstrates how computing intelligence theory takes into account the metrological theory and vice versa, in the elements of these theories that were discussed in the present study.
Villa-Vialaneix, Nathalie. "Eléments d'apprentissage en statistique fonctionnelle : classification et régression fonctionnelles par réseaux de neurones et Support Vector Machine." Toulouse 2, 2005. http://www.theses.fr/2005TOU20089.
Full textIn this thesis, we first present the results of an interdisciplinary project in which we use the approximation abilities of multilayer perceptrons in order to predict land cover maps. Subsequently, we focus on the extension of the neural networks and of the SVM for functional data analysis. Our purpose is to build non linear tools for functional data. A part of our work is based on a semi-parametric approach which uses a functional inverse regression method. Then, we present another approach which allows us to build kernels for SVM in order to take into account the functional nature of the data. In this work, the statistical learning theory plays a central role and we apply ourselves to give consistency results for our methods, as much as possible
Harkouss, Youssef. "Application de réseaux de neurones à la modélisation de composants et de dispositifs microondes non linéaires." Limoges, 1998. http://www.theses.fr/1998LIMO0040.
Full textDjupfeldt, Petter. "Dr. Polopoly - IntelligentSystem Monitoring : An Experimental and Comparative Study ofMultilayer Perceptrons and Random Forests ForError Diagnosis In A Network of Servers." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191557.
Full textDenna uppsats utforskar potentialen i att använda maskininlärning föratt övervaka och diagnostisera ett datorsystem genom att jämföra hureffektivt Multilayer Perceptron (MLP) respektive Random Forest (RF)gör detta i en kontrollerad miljö. Grunden för jämförelsen är främst hurträffsäkra MLP och RF är i sina klassifieringar, men viss tanke ges ocksååt hur kostnadseffektiva de är med hänseende till tid. Systemet som används är ett “content management system” (CMS)vid namn Polopoly. Uppsatsen beskriver hur träningsdatan samlades invia Java proxys, som injicerades i Polopoly systemet för att mäta hurlång tid metodanrop mellan servrarna tar. Fel i systemet simulerades genomatt begränsa enskilda servrars bandbredd, och normalt användandesimulerades med verktyget Grinder. Uppsatsen går sedan in på hur de två algoritmerna användes ochhur deras parametrar sattes, innan den fortsätter med att jämföra detvå slutgiltiga implementationerna baserat på deras träffsäkerhet. Detnoteras att träffsäkerheten är undermålig; både MLP:n och RF:n gissarrätt i ca 20% av fallen. En diskussion förs om det ändå finns en användningför algoritmerna med denna nivå av träffsäkerhet. Slutsatsen drasatt det inte finns någon signifikant skillnad (p 0.05) mellan MLP:nsoch RF:ns träffsäkerhet, och avslutningsvis så föreslås det att framtidaarbete borde fokusera antingen på att jämföra de två algoritmerna ellerpå att försöka förbättra feldiagnosiseringen i Polopoly.
Collobert, Ronan. "Algorithmes d'Apprentissage pour grandes bases de données." Paris 6, 2004. http://www.theses.fr/2004PA066063.
Full textFerronato, Giuliano. "Intervalos de predição para redes neurais artificiais via regressão não linear." Florianópolis, SC, 2008. http://repositorio.ufsc.br/xmlui/handle/123456789/91675.
Full textMade available in DSpace on 2012-10-24T01:24:51Z (GMT). No. of bitstreams: 1 258459.pdf: 252997 bytes, checksum: a0457bb78b352c0aab2bb1f48ab79985 (MD5)
Este trabalho descreve a aplicação de uma técnica de regressão não linear (mínimos quadrados) para obter predições intervalares em redes neurais artificiais (RNA#s). Através de uma simulação de Monte Carlo é mostrada uma maneira de escolher um ajuste de parâmetros (pesos) para uma rede neural, de acordo com um critério de seleção que é baseado na magnitude dos intervalos de predição fornecidos pela rede. Com esta técnica foi possível obter as predições intervalares com amplitude desejada e com probabilidade de cobertura conhecida, de acordo com um grau de confiança escolhido. Os resultados e as discussões associadas indicam ser possível e factível a obtenção destes intervalos, fazendo com que a resposta das redes seja mais informativa e consequentemente aumentando sua aplicabilidade. A implementação computacional está disponível em www.inf.ufsc.br/~dandrade. This work describes the application of a nonlinear regression technique (least squares) to create prediction intervals on artificial neural networks (ANN´s). Through Monte Carlo#s simulations it is shown a way of choosing the set of parameters (weights) to a neural network, according to a selection criteria based on the magnitude of the prediction intervals provided by the net. With this technique it is possible to obtain the prediction intervals with the desired amplitude and with known coverage probability, according to the chosen confidence level. The associated results and discussions indicate to be possible and feasible to obtain these intervals, thus making the network response more informative and consequently increasing its applicability. The computational implementation is available in www.inf.ufsc.br/~dandrade.
Silva, Carlos Alberto de Albuquerque. "Implementa??o de uma matriz de neur?nios dinamicamente reconfigur?vel para descri??o de topologias de redes neurais artificiais multilayer perceptrons." Universidade Federal do Rio Grande do Norte, 2015. http://repositorio.ufrn.br/handle/123456789/21138.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-08-10T23:15:49Z (GMT) No. of bitstreams: 1 CarlosAlbertoDeAlbuquerqueSilva_TESE.pdf: 4568486 bytes, checksum: 5ddf18d55603ffd49ea2899025e1615f (MD5)
Made available in DSpace on 2016-08-10T23:15:49Z (GMT). No. of bitstreams: 1 CarlosAlbertoDeAlbuquerqueSilva_TESE.pdf: 4568486 bytes, checksum: 5ddf18d55603ffd49ea2899025e1615f (MD5) Previous issue date: 2015-09-04
Ag?ncia Nacional do Petr?leo - ANP
As Redes Neurais Artificiais (RNAs), que constituem uma das ramifica??es da Intelig?ncia Artificial (IA), est?o sendo empregadas como solu??o para v?rios problemas complexos, existentes nas mais diversas ?reas. Para a solu??o destes problemas torna-se indispens?vel que sua implementa??o seja feita em hardware. Em meio as estrat?gias a serem adotadas e satisfeitas durante a fase de projeto e implementa??o das RNAs em hardware, as conex?es entre os neur?nios s?o as que necessitam de maior aten??o. Recentemente, encontram-se RNAs implementadas tanto em circuitos integrados de aplica??o espec?fica (Application Specific Integrated Circuits - ASIC) quanto em circuitos integrados, configurados pelo usu?rio, a exemplo dos Field Programmable Gate Array (FPGAs), que possuem a capacidade de serem reconfigurados parcialmente, em tempo de execu??o, formando, portanto, um Sistema Parcialmente Reconfigur?vel (SPR), cujo emprego proporciona diversas vantagens, tais como: flexibilidade na implementa??o e redu??o de custos. Tem-se observado um aumento considerado no uso destes dispositivos para a implementa??o de RNAs. Diante do exposto, prop?e-se a implementa??o de uma matriz de neur?nios dinamicamente reconfigur?vel no FPGA Virtex 6 da Xilinx, descrita em linguagem de hardware e que possa absorver projetos baseados em plataforma de sistemas embarcados, dedicados ao controle distribu?do de equipamentos normalmente utilizados na ind?stria. Prop?e-se ainda, que a configura??o das topologias das RNAs que possam vir a ser formadas, seja realizada via software.
The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.
Silva, William de Medeiros. "Redes neurais artificiais como ferramenta para prognose de crescimento e melhoramento genético florestal /." Jaboticabal, 2019. http://hdl.handle.net/11449/190673.
Full textResumo: RESUMO – O eucalipto é a cultura de maior destaque para o setor florestal brasileiro. No entanto, a expansão do setor para áreas com condições climáticas limitantes ao desenvolvimento da cultura e a instabilidade climática atual, são alguns dos fatores que têm comprometido o desenvolvimento desta cultura no país nos últimos anos. Assim, é importante a busca contínua por ferramentas que possibilitem a prognose de crescimento, a seleção de indivíduos e famílias e a análise do comportamento de genótipos de eucalipto frente às variações ambientais de forma cada vez mais acurada. Desta forma, o objetivo geral deste trabalho foi testar o desempenho das Redes Neurais Artificiais (RNA) na modelagem de crescimento de clones de eucalipto, na predição de valores genéticos de indivíduos e famílias, e na seleção quanto à produtividade, estabilidade e adaptabilidade de progênies de Eucalyptus sp. Para a prognose de crescimento foram utilizados dados de 18 clones comerciais de Eucalyptus em diferentes estados do Brasil, e para a estimação de valor genético e análise de produtividade, estabilidade e adaptabilidade foram utilizados dados de testes de progênies de Eucalyptus grandis. Neste trabalho foram testadas diferentes arquiteturas de RNA do tipo múltiplas camadas com o algoritmo de aprendizado de retropropagação do erro e função de ativação do tipo tangente hiperbólica. O modelo desenvolvido para prognose do diâmetro à altura do peito (DAP) de árvores individuais em um local foi capaz de... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: ABSTRACT – Eucalyptus is the most important crop of the most important for the Brazilian forest sector. However, the expansion of the sector to areas with climatic conditions limiting the development of the crop and current climate instability are some of the factors that have compromised the development of this culture in the country in recent years. Thus, it is important to continuously search for tools that allow the prognosis of growth, the selection of individuals and families and the analysis of the behavior of eucalyptus genotypes in the face of environmental changes in an increasingly accurate way. Thus, the general objective of this work was to test the performance of artificial neural networks (ANN) in the modeling of growth of eucalyptus clones, prediction of genetic values of individuals and families, and selection of productivity, stability and adaptability of progenies of Eucalyptus sp. For the prognosis of growth, data from 18 commercial Eucalyptus clones were used in different states of Brazil, and for genetic value estimation and productivity, stability and adaptability analysis data from Eucalyptus grandis progenies were used. In this work, different ANN architectures of the multilayer type were tested with the backpropagation error algorithm and hyperbolic tangent activation function. The model developed for prognosis of the diameter at breast height (DBH) individual trees in one place was able to maintain good accuracy when applied at other sites. The thre... (Complete abstract click electronic access below)
Doutor
Coughlin, Michael J., and n/a. "Calibration of Two Dimensional Saccadic Electro-Oculograms Using Artificial Neural Networks." Griffith University. School of Applied Psychology, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030409.110949.
Full textCoughlin, Michael J. "Calibration of Two Dimensional Saccadic Electro-Oculograms Using Artificial Neural Networks." Thesis, Griffith University, 2003. http://hdl.handle.net/10072/365854.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Applied Psychology
Griffith Health
Full Text
Shao, Hang. "A Fast MLP-based Learning Method and its Application to Mine Countermeasure Missions." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23512.
Full textIgnatavičienė, Ieva. "Tiesioginio sklidimo neuroninių tinklų sistemų lyginamoji analizė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120801_133809-03141.
Full textThe main aim – to perform a comparative analysis of several feedforward neural system networks in order to identify its functionality. The work presents both: biological and artificial neural models, also classification of neural networks, according to connections’ construction (of feedforward and recurrent neural networks), studying strategies of artificial neural networks (with a trainer, without a trainer, hybrid). The main methods of feedforward neural networks: one-layer perceptron, multilayer perceptron, implemented upon “error feedback” algorithm, also a neural network of radial base functions have been considered. The work has included 14 different feedforward neural system networks, classified according its price, application of study methods of feedforward neural networks, also a customer’s possibility to change parameters before paying for the network and a technical evaluation of a program. The programs have been evaluated from 1 point to 10 points according to the following: variety of training systems, possibility to change parameters, stability, quality and ratio of price and quality. The highest evaluation has been awarded to “Matlab” (10 points), the lowest – to “Sharky NN” (2 points). Four programs (”Matlab“, “DTREG“, “PathFinder“,”Cortex“) have been selected for a detail analysis. The best evaluated programs have been able to train feedforward neural networks using multilayer perceptron method, also at least two radial base function networks. “Matlab“ and... [to full text]
Tang, Zibin. "A new design approach for numeric-to-symbolic conversion using neural networks." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4242.
Full textLouche, Ugo. "From confusion noise to active learning : playing on label availability in linear classification problems." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4025/document.
Full textThe works presented in this thesis fall within the general framework of linear classification, that is the problem of categorizing data into two or more classes based on on a training set of labelled data. In practice though acquiring labeled examples might prove challenging and/or costly as data are inherently easier to obtain than to label. Dealing with label scarceness have been a motivational goal in the machine learning literature and this work discuss two settings related to this problem: learning in the presence of noise and active learning
Rashidi, Abbas. "Evaluating the performance of machine-learning techniques for recognizing construction materials in digital images." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49122.
Full text