Academic literature on the topic 'Perceptrons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perceptrons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perceptrons"
TOH, H. S. "WEIGHT CONFIGURATIONS OF TRAINED PERCEPTRONS." International Journal of Neural Systems 04, no. 03 (September 1993): 231–46. http://dx.doi.org/10.1142/s0129065793000195.
Full textBLATT, MARCELO, EYTAN DOMANY, and IDO KANTER. "ON THE EQUIVALENCE OF TWO-LAYERED PERCEPTRONS WITH BINARY NEURONS." International Journal of Neural Systems 06, no. 03 (September 1995): 225–31. http://dx.doi.org/10.1142/s0129065795000160.
Full textKUKOLJ, DRAGAN D., MIROSLAVA T. BERKO-PUSIC, and BRANISLAV ATLAGIC. "Experimental design of supervisory control functions based on multilayer perceptrons." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, no. 5 (November 2001): 425–31. http://dx.doi.org/10.1017/s0890060401155058.
Full textElizalde, E., and S. Gomez. "Multistate perceptrons: learning rule and perceptron of maximal stability." Journal of Physics A: Mathematical and General 25, no. 19 (October 7, 1992): 5039–45. http://dx.doi.org/10.1088/0305-4470/25/19/016.
Full textRacca, Robert. "Can periodic perceptrons replace multi-layer perceptrons?" Pattern Recognition Letters 21, no. 12 (November 2000): 1019–25. http://dx.doi.org/10.1016/s0167-8655(00)00057-x.
Full textCannas, Sergio A. "Arithmetic Perceptrons." Neural Computation 7, no. 1 (January 1995): 173–81. http://dx.doi.org/10.1162/neco.1995.7.1.173.
Full textFalkowski, Bernd-Jürgen. "Probabilistic perceptrons." Neural Networks 8, no. 4 (January 1995): 513–23. http://dx.doi.org/10.1016/0893-6080(94)00107-w.
Full textFalkowski, Bernd-Jürgen. "Perceptrons revisited." Information Processing Letters 36, no. 4 (November 1990): 207–13. http://dx.doi.org/10.1016/0020-0190(90)90075-9.
Full textLewenstein, M. "Quantum Perceptrons." Journal of Modern Optics 41, no. 12 (December 1994): 2491–501. http://dx.doi.org/10.1080/09500349414552331.
Full textRowcliffe, P., Jianfeng Feng, and H. Buxton. "Spiking perceptrons." IEEE Transactions on Neural Networks 17, no. 3 (May 2006): 803–7. http://dx.doi.org/10.1109/tnn.2006.873274.
Full textDissertations / Theses on the topic "Perceptrons"
Kallin, Westin Lena. "Preprocessing perceptrons." Doctoral thesis, Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-234.
Full textFilho, Osame Kinouchi. "Generalização ótima em perceptrons." Universidade de São Paulo, 1992. http://www.teses.usp.br/teses/disponiveis/54/54131/tde-07042015-165731/.
Full textThe perceptron has been studied in the contexto f statistical physics since the seminal work of Gardner and Derrida on the coupling space of this simple neural network. Recently, Opper and Haussler calculated, with the replica method, the theoretical optimal performance of the perceptron for learning a rule (generalization). In this work we found the optimal performance curve after the first presentation of the examples (first step of learning dynamics). In the limit of large number of examples the generalization error is only two times the error found by Opper and Haussler. We also calculated the optimal performance for the first step in the learning situation with selection of examples. We show that optimal selection occurs when the new example is choosen orthogonal to the perceptron coupling vector. The generalization error in this case decay exponentially with the number of examples. We also propose a new class of learning algorithms which aproximates very well the optimal performance curves. We study analytically the first step of the learning dynamics and numerically its behaviour for long times. We show that several known learning algorithms (Hebb, Perceptron, Adaline, Relaxation) can be seen as more or less reliable aproximations o four algorithm
Adharapurapu, Ratnasri Krishna. "Convergence properties of perceptrons." CSUSB ScholarWorks, 1995. https://scholarworks.lib.csusb.edu/etd-project/1034.
Full textFriess, Thilo-Thomas. "Perceptrons in kernel feature spaces." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327730.
Full textZhao, Lenny. "Uncertainty prediction with multi-layer perceptrons." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0018/MQ55733.pdf.
Full textMourao, Kira Margaret Thom. "Learning action representations using kernel perceptrons." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7717.
Full textBlack, Michael David. "Applying perceptrons to speculation in computer architecture." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6725.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Cairns, Graham Andrew. "Learning with analogue VLSI multi-layer perceptrons." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296901.
Full textGrandvalet, Yves. "Injection de bruit dans les perceptrons multicouches." Compiègne, 1995. http://www.theses.fr/1995COMPD802.
Full textOctavian, Stan. "New recursive algorithms for training feedforward multilayer perceptrons." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/13534.
Full textBooks on the topic "Perceptrons"
Murty, M. N., and Rashmi Raghava. Support Vector Machines and Perceptrons. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41063-0.
Full textMinsky, Marvin Lee. Perceptrons: An Introduction to Computational Geometry. Cambridge, Massachusetts: MIT Press, 1988.
Find full textGorelik, A. L. Sovremennoe sostoi͡a︡nie problemy raspoznavanii͡a︡: Nekotorye aspekty. Moskva: "Radio i svi͡a︡zʹ", 1985.
Find full textBielecki, Andrzej. Models of Neurons and Perceptrons: Selected Problems and Challenges. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-90140-4.
Full textNiemiro, Wojciech. Statystyczne własnosci metody minimalizacji perceptronowej funkcji kryterialnej w dyskryminacji liniowej. Warszawa: In-t Biocybernetyki i Inżynierii Biomedycznej, 2000.
Find full textMa, Zhe. Explanation by general rules extracted from trained multi-layer perceptrons. Sheffield: University of Sheffield, Dept. of Automatic Control & Systems Engineering, 1996.
Find full textInternational Conference on Information Acquisition (2004 Hefei Shi, China). ICIA 2004: Proceedings of 2004 International Conference on Information Acquisition : June 21-25, 2004, Hefei, China. Edited by Mei Tao and International Association of Information Acquisition. Piscataway, N.J: IEEE, 2004.
Find full textPeeling, S. M. Experiments in isolated digit recognition using the multi-layer perceptron. [London: HMSO, 1987.
Find full textP, Banks Stephen. Can Perceptrons find Lyapunov functions?: An algorithmic approach to systems stability. Sheffield: University of Sheffield, Dept. of Control Engineering, 1989.
Find full textGlaz, A. B. Parametricheskai͡a︡ i strukturnai͡a︡ adaptat͡s︡ii͡a︡ reshai͡u︡shchikh pravil v zadachakh raspoznavanii͡a︡. Riga: "Zinatne", 1988.
Find full textBook chapters on the topic "Perceptrons"
Du, Ke-Lin, and M. N. S. Swamy. "Perceptrons." In Neural Networks and Statistical Learning, 67–81. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5571-3_3.
Full textNauck, Detlef, Frank Klawonn, and Rudolf Kruse. "Perceptrons." In Neuronale Netze und Fuzzy-Systeme, 39–57. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-322-85993-8_4.
Full textDu, Ke-Lin, and M. N. S. Swamy. "Perceptrons." In Neural Networks and Statistical Learning, 81–95. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7452-3_4.
Full textSilaparasetty, Vinita. "Perceptrons." In Deep Learning Projects Using TensorFlow 2, 49–69. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5802-6_2.
Full textPeters, H. J. M. "Perceptrons." In Lecture Notes in Computer Science, 67–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0027023.
Full textPicton, Phil. "Perceptrons." In Introduction to Neural Networks, 25–45. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13530-1_3.
Full textNauck, Detlef, Frank Klawonn, and Rudolf Kruse. "Perceptrons." In Neuronale Netze und Fuzzy-Systeme, 39–57. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-10898-6_4.
Full textNauck, Detlef, Frank Klawonn, and Rudolf Kruse. "Multilayer-Perceptrons." In Neuronale Netze und Fuzzy-Systeme, 71–94. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-322-85993-8_6.
Full textGarcía, Daniel, Ana González, and José R. Dorronsoro. "Convex Perceptrons." In Intelligent Data Engineering and Automated Learning – IDEAL 2006, 578–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11875581_70.
Full textKruse, Rudolf, Christian Borgelt, Christian Braune, Sanaz Mostaghim, and Matthias Steinbrecher. "Multilayer Perceptrons." In Texts in Computer Science, 47–92. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7296-3_5.
Full textConference papers on the topic "Perceptrons"
Saromo, Daniel, Elizabeth Villota, and Edwin Villanueva. "Auto-Rotating Perceptrons." In LatinX in AI at Neural Information Processing Systems Conference 2019. Journal of LatinX in AI Research, 2019. http://dx.doi.org/10.52591/lxai2019120826.
Full textBueno, Felipe Roberto, and Peter Sussner. "FUZZY MORPHOLOGICAL PERCEPTRONS AND HYBRID FUZZY MORPHOLOGICAL/LINEAR PERCEPTRONS." In The 11th International FLINS Conference (FLINS 2014). WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814619998_0120.
Full textXiang, Xuyan, Yingchun Deng, and Xiangqun Yang. "Spike-Rate Perceptrons." In 2008 Fourth International Conference on Natural Computation. IEEE, 2008. http://dx.doi.org/10.1109/icnc.2008.556.
Full textVucetic, Slobodan, Vladimir Coric, and Zhuang Wang. "Compressed Kernel Perceptrons." In 2009 Data Compression Conference (DCC). IEEE, 2009. http://dx.doi.org/10.1109/dcc.2009.75.
Full textOu, Jun, and Yujian Li. "Two-Dimensional Perceptrons." In the 2018 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3297156.3297213.
Full textMcDonnell, John R., and Donald E. Waagen. "Evolving recurrent perceptrons." In Optical Engineering and Photonics in Aerospace Sensing, edited by Dennis W. Ruck. SPIE, 1993. http://dx.doi.org/10.1117/12.152634.
Full textKou-Yuan Huang. "Sequential classification by perceptrons and application to net pruning of multilayer perceptron." In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94). IEEE, 1994. http://dx.doi.org/10.1109/icnn.1994.374226.
Full textJain, Brijnesh. "Margin Perceptrons for Graphs." In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.661.
Full textChung-Nim Lee and Seung-Cheol Goh. "Perceptrons for image recognition." In 1991 IEEE International Joint Conference on Neural Networks. IEEE, 1991. http://dx.doi.org/10.1109/ijcnn.1991.170677.
Full textXiang, Xuyan, Yingchun Deng, and Xiangqun Yang. "Extended Spike-Rate Perceptrons." In 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, 2009. http://dx.doi.org/10.1109/csie.2009.470.
Full textReports on the topic "Perceptrons"
Chen, B., T. Hickling, M. Krnjajic, W. Hanley, G. Clark, J. Nitao, D. Knapp, L. Hiller, and M. Mugge. Multi-Layer Perceptrons and Support Vector Machines for Detection Problems with Low False Alarm Requirements: an Eight-Month Progress Report. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/922310.
Full textVurkaç, Mehmet. Prestructuring Multilayer Perceptrons based on Information-Theoretic Modeling of a Partido-Alto-based Grammar for Afro-Brazilian Music: Enhanced Generalization and Principles of Parsimony, including an Investigation of Statistical Paradigms. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.384.
Full textRaychev, Nikolay. Mathematical foundations of neural networks. Implementing a perceptron from scratch. Web of Open Science, August 2020. http://dx.doi.org/10.37686/nsr.v1i1.74.
Full textKirichek, Galina, Vladyslav Harkusha, Artur Timenko, and Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3743.
Full textAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, December 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full textRivera-Casillas, Peter, and Ian Dettwiller. Neural Ordinary Differential Equations for rotorcraft aerodynamics. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48420.
Full textOgunbire, Abimbola, Panick Kalambay, Hardik Gajera, and Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, December 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Full textArhin, Stephen, Babin Manandhar, Hamdiat Baba Adam, and Adam Gatiba. Predicting Bus Travel Times in Washington, DC Using Artificial Neural Networks (ANNs). Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1943.
Full text