Academic literature on the topic 'Peptides of innate immunity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peptides of innate immunity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Peptides of innate immunity"
Easton, Donna M., Shuhua Ma, Neeloffer Mookherjee, Pamela Hamill, David Lynn, Jennifer Gardy, Sarah Mullaly, et al. "Immunomodulatory activity of synthetic innate defence regulators (IDRs) (134.45)." Journal of Immunology 182, no. 1_Supplement (April 1, 2009): 134.45. http://dx.doi.org/10.4049/jimmunol.182.supp.134.45.
Full textCederlund, Andreas, Gudmundur H. Gudmundsson, and Birgitta Agerberth. "Antimicrobial peptides important in innate immunity." FEBS Journal 278, no. 20 (September 19, 2011): 3942–51. http://dx.doi.org/10.1111/j.1742-4658.2011.08302.x.
Full textGanz, Tomas. "Defensins: antimicrobial peptides of innate immunity." Nature Reviews Immunology 3, no. 9 (September 2003): 710–20. http://dx.doi.org/10.1038/nri1180.
Full textMoser, Christian, Daniel J. Weiner, Elena Lysenko, Robert Bals, Jeffrey N. Weiser, and James M. Wilson. "β-Defensin 1 Contributes to Pulmonary Innate Immunity in Mice." Infection and Immunity 70, no. 6 (June 2002): 3068–72. http://dx.doi.org/10.1128/iai.70.6.3068-3072.2002.
Full textBoulanger, Nathalie, Rebecca J. L. Munks, Joanne V. Hamilton, Françoise Vovelle, Reto Brun, Mike J. Lehane, and Philippe Bulet. "Epithelial Innate Immunity." Journal of Biological Chemistry 277, no. 51 (October 7, 2002): 49921–26. http://dx.doi.org/10.1074/jbc.m206296200.
Full textShandala, Tetyana, and Doug A. Brooks. "Innate immunity and exocytosis of antimicrobial peptides." Communicative & Integrative Biology 5, no. 2 (March 2012): 214–16. http://dx.doi.org/10.4161/cib.19018.
Full textShin, Dong-Min, and Eun-Kyeong Jo. "Antimicrobial Peptides in Innate Immunity against Mycobacteria." Immune Network 11, no. 5 (2011): 245. http://dx.doi.org/10.4110/in.2011.11.5.245.
Full textMoosova, Z., O. Adamovsky, M. Pekarova, L. Svihalkova Sindlerova, L. Kubala, and L. Blaha. "Innate immunity response to selected cyanobacterial peptides." Toxicology Letters 238, no. 2 (October 2015): S223. http://dx.doi.org/10.1016/j.toxlet.2015.08.659.
Full textZasloff, Michael. "Antibiotic peptides as mediators of innate immunity." Current Biology 2, no. 3 (March 1992): 133. http://dx.doi.org/10.1016/0960-9822(92)90251-5.
Full textZanetti, Margherita. "Cathelicidins, multifunctional peptides of the innate immunity." Journal of Leukocyte Biology 75, no. 1 (July 22, 2003): 39–48. http://dx.doi.org/10.1189/jlb.0403147.
Full textDissertations / Theses on the topic "Peptides of innate immunity"
Sang, Yongming. "Porcine innate antiviral immunity : host defense peptides and toll-like receptors." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/960.
Full textTollin, Maria. "Antimicrobial peptides and proteins in innate immunity : emphasis on isolation, characterization and gene regulation /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-270-5/.
Full textBarassé, Valentine. "Etude de peptides de venin de fourmis : diversité moléculaire et lien avec la fonction immunitaire." Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0111.
Full textAnimal venoms are natural libraries of bioactive compounds, called toxins, which have been finetuned through the course of evolution. However, numerous venomous organisms are still neglected, especially venomous insects. Several studies of ant venoms revealed that they were peptide-rich. Furthermore, the characterization of the ant Tetramorium bicarinatum venom peptidome revealed that, despite the diversity of mature peptides, they belonged to 3 superfamilies of precursors, some of which have already been described in other aculeate hymenoptera. This study also observed that genes encoding some of them were expressed outside the venom apparatus. These results raise questions about the mechanisms involved in the diversification of peptide toxins from ant venoms, as well as their role apart from the venomous function. To address these issues, the first part of this thesis work consisted in the characterization via proteotranscriptomics approaches of 7 venoms from ants belonging to the different phylogenetic tribes of the Myrmicinae subfamily, and of the venom of one species. belonging to a close subfamily, the Pseudomyrmecinae. A total of 100 peptide toxins with various structures were thus identified and classified into 8 precursor superfamilies. The second part explored the link between peptide toxins of T. bicarinatum venom and its innate immunity via molecular and cellular biology methods. The presence of transcripts encoding certain peptides have been verified in organs which are involved in innate immunity of insects (i.e. fat bodies, digestive tracts). The expression of the genes encoding them has also been evaluated following a bacterial infection. It has thus been shown that the transcripts encoding the selected venom peptides are present in the organs tested, and that some are produced in fat bodies in response to a bacterial infection. These results confirm the existence of a link between the venom peptides and the innate immunity of the ant T. bicarinatum, although further studies are needed
Bergsson, Gudmundur. "Antimicrobial polypeptides and lipids as a part of innate defense mechanism of fish and human fetus /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-546-1/.
Full textEdfeldt, Kristina. "Innate immunity in atherosclerosis : signaling pattern recognition receptors and an antimicrobial peptide /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-299-3/.
Full textSonthi, Molruedee. "Structure, polymorphisme et régulation de l'expression de la mytimycine, peptide antifongique de la moule Mytilus." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20105/document.
Full textAntimicrobial peptides are crucial elements of the innate immune mechanisms developed to fight microorganisms. Among them are antifungal peptides from which one, named mytimycin (MytM), had been partially reported in the blue mussel, Mytilus edulis. The purposes of this thesis were to fully characterize MytM in M. edulis and M. galloprovincialis and to understand how this peptide participates in mussel immunity. Results showed (i) the diversity of MytM mRNA and translated amino acid sequences according to geographic origin of mussels, probably resulting from adaptation to their environments; (ii) that 2 different MytM genes are simultaneously present in the genome of the same individual mussel; (iii) that expression level of MytM gene depends on the nature of the challenge, suggesting specific recognition processes; and (iv) MytM expression level was different from one mussel to another. In conclusion, MytM appeared to play a prominent and specific role in mussels. The advancement of our works added new data to the knowledge of innate immunity in invertebrates
Varma, Disha [Verfasser]. "Role of antimicrobial peptides in metabolism and innate immunity in Drosophila melanogaster / Disha Varma." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1058400495/34.
Full textVladimer, Gregory I. "Inflammasomes and the Innate Immune Response Against Yersinia Pestis: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/649.
Full textVladimer, Gregory I. "Inflammasomes and the Innate Immune Response Against Yersinia Pestis: A Dissertation." eScholarship@UMMS, 2001. http://escholarship.umassmed.edu/gsbs_diss/649.
Full textAl, souhail Qasim Mohammed. "Characterization, regulation and biophysical studies of immune-related peptides from Manduca sexta." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32618.
Full textBiochemistry and Molecular Biophysics Interdepartmental Program
Michael Kanost
Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC₅₀ of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta. Biophysical analysis showed that diapausin-1 binds to the β-1,3 glucan component of the S. cerevisiae cell wall. A second insect peptide investigated in this project was M.sexta stress-response peptide 1(SRP1), an immune-related peptide upregulated under different stress conditions including immune-challenge. Preliminary results for NMR structure determination are presented. Most of the amino acid residue spin systems were assigned, and we determined the connectivities of many amino residues as a first step to solve the NMR structure. The circular dichroism spectrum of SRP1 indicates that the peptide lacks alpha-helical structure and may contain beta strands and turns.
Books on the topic "Peptides of innate immunity"
Hiemstra, Pieter S., and Sebastian A. J. Zaat, eds. Antimicrobial Peptides and Innate Immunity. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0541-4.
Full text-D, Hesch R., and Atkinson M. J, eds. Peptide hormones as mediators in immunology and oncology. New York: Raven Press, 1985.
Find full textEzekowitz, R. Alan B., and Jules A. Hoffmann. Innate Immunity. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592593208.
Full textEwbank, Jonathan, and Eric Vivier, eds. Innate Immunity. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-570-1.
Full textJonathan, Ewbank, and Vivier E, eds. Innate immunity. Totowa, N.J: Humana Press, 2008.
Find full textB, Ezekowitz R. Alan, and Hoffmann J. 1941-, eds. Innate immunity. Totowa, NJ: Humana Press, 2003.
Find full textEzekowitz, R. Alan B., and Jules A. Hoffmann, eds. Innate Immunity. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0.
Full textGassmann, Walter, ed. Plant Innate Immunity. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9458-8.
Full textMossman, Karen, ed. Innate Antiviral Immunity. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7237-1.
Full textLoon, L. C. van. Plant innate immunity. Edited by Wiley online library. Amsterdam: Elsevier Academic Press, 2009.
Find full textBook chapters on the topic "Peptides of innate immunity"
Ganz, Tomas, and Robert I. Lehrer. "Antimicrobial Peptides." In Innate Immunity, 287–303. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0_16.
Full textBulet, Philippe, Maurice Charlet, and Charles Hetru. "Antimicrobial Peptides in Insect Immunity." In Innate Immunity, 89–107. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0_5.
Full textSeiler, Frederik, Robert Bals, and Christoph Beisswenger. "Function of Antimicrobial Peptides in Lung Innate Immunity." In Antimicrobial Peptides, 33–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_3.
Full textZasloff, Michael. "Antimicrobial Peptides: Effectors of Innate Immunity." In The Innate Immune Response to Infection, 313–43. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817671.ch17.
Full textBartlett, Jennifer A., and Paul B. McCray. "Cystic Fibrosis and Defective Airway Innate Immunity." In Antimicrobial Peptides and Innate Immunity, 275–306. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_11.
Full textPaiva, Aline Dias, and Eefjan Breukink. "Antimicrobial Peptides Produced by Microorganisms." In Antimicrobial Peptides and Innate Immunity, 53–95. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_3.
Full textStåhle, Mona. "Wound Repair and Antimicrobial Peptides." In Antimicrobial Peptides and Innate Immunity, 123–39. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_5.
Full textHof, Wim van ’t, Menno J. Oudhoff, and Enno C. I. Veerman. "Histatins: Multifunctional Salivary Antimicrobial Peptides." In Antimicrobial Peptides and Innate Immunity, 167–81. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_7.
Full textStotz, H. U., F. Waller, and K. Wang. "Innate Immunity in Plants: The Role of Antimicrobial Peptides." In Antimicrobial Peptides and Innate Immunity, 29–51. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_2.
Full textJäger, Simon, Eduard F. Stange, and Jan Wehkamp. "Antimicrobial Peptides and Inflammatory Bowel Disease." In Antimicrobial Peptides and Innate Immunity, 255–73. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_10.
Full textConference papers on the topic "Peptides of innate immunity"
JAWAD, Israa, Adian Abd Alrazak DAKL, and Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW." In VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Full textKamareddine, Layla, Hoda Najjar, Abeer Mohbeddin, Nawar Haj Ahmed, and Paula Watnick. "Between Immunity, Metabolism, and Development: A story of a Fly Gut!" In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0141.
Full textKovach, Melissa A., Fu-Shin Yu, Michael W. Newstead, Xianyng Zeng, Richard Gallo, and Theodore J. Standiford. "Role Of Cathelicidin Related Antimicrobial Peptide In Lung Innate Mucosal Immunity." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5648.
Full textRakityanskaya, Irina Anisimovna, Tatiana Sergeevna Ryabova, Usmonali Adgaralievich Tajibaev, and Anastasia Andreevna Kalashnikova. "NEW APPROACHES IN THE TREATMENT OF CHRONIC VIRAL EPSTEIN-BARR INFECTION." In Themed collection of papers from Foreign intemational scientific conference «Joint innovation - joint development». Medical sciences . Part 2. Ьу НNRI «National development» in cooperation with PS of UA. June 2023. Crossref, 2023. http://dx.doi.org/10.37539/230629.2023.23.77.016.
Full textLipatov Igor, Stanislavovich, Yuri Vladimirovich Tezikov, and Marina Alekseevna Ovchinnikova. "EFFICIENCY OF GESTATIONAL AND PERINATAL PATHOLOGY PREVENTION WITH A CYTOKINE-LIKE PEPTIDE IN FREQUENTLY RECURRING HERPES AT THE PREGRAVID STAGE." In Themed collection of papers from Foreign intemational scientific conference «Joint innovation - joint development». Medical sciences . Part 2. Ьу НNRI «National development» in cooperation with PS of UA. June 2023. Crossref, 2023. http://dx.doi.org/10.37539/230629.2023.74.84.017.
Full textMohbeddin, Abeer, Nawar Haj Ahmed, and Layla Kamareddine. "The use of Drosophila Melanogaster as a Model Organism to study the effect of Innate Immunity on Metabolism." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0224.
Full textAgarwal, Veena, John MacDougall, shubhendu Trivedi, Dimple Bhatia, Zeenia Jagga, Hemant Banga, Diane Healy, Sreenivas Adurthi, and Vince O'Neill. "Abstract 962: The dipeptidyl peptidase inhibitor BXCL701 activates innate immunity followed by adaptive immunity on a molecular and cellular level in a mouse model of pancreatic cancer." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-962.
Full textLimaye, Arati, Rania Bassiouni, Jeremiah Oyer, Robert W. Igarashi, Orielyz Flores, J. Manuel Perez, Alijca Copik, and Annette R. Khaled. "Abstract A47: Use of a cytotoxic peptide that induces immunogenic cell death to engage innate immunity in the treatment of metastatic breast cancer." In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-a47.
Full textHoffmann, Jules. "Innate immunity: From insects to humans." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.116886.
Full textLam, M., S. Murphy, D. Kokkinaki, and N. S. Mangalmurti. "Nucleic Acid-Sensing Erythrocytes Trigger Innate Immunity." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a6498.
Full textReports on the topic "Peptides of innate immunity"
Alexandrea (Lexi) Duscher, Alexandrea (Lexi) Duscher. Squid in Space: Symbiosis and Innate Immunity. Experiment, August 2017. http://dx.doi.org/10.18258/9855.
Full textUmland, Timothy C. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012633.
Full textCahill, Jesse. A targeted opsonization platform for programming innate immunity against rapidly evolving novel viruses. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1820519.
Full textWeilhammer, D. R. Investigating the role of innate immunity in viral encephalitis caused by Rift Valley fever virus. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573140.
Full textBarber, Glen. Identifying a Defective Pathway in Innate Immunity as an Immunoescape Mechanism for Breast Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada566916.
Full textBaszler, Timothy, Igor Savitsky, Christopher Davies, Lauren Staska, and Varda Shkap. Identification of bovine Neospora caninum cytotoxic T-lymphocyte epitopes for development of peptide-based vaccine. United States Department of Agriculture, March 2006. http://dx.doi.org/10.32747/2006.7695592.bard.
Full textAlfano, James, Isaac Barash, Thomas Clemente, Paul E. Staswick, Guido Sessa, and Shulamit Manulis. Elucidating the Functions of Type III Effectors from Necrogenic and Tumorigenic Bacterial Pathogens. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592638.bard.
Full textEvans, Donald L., Avigdor Eldar, Liliana Jaso-Friedmann, and Herve Bercovier. Streptococcus Iniae Infection in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Towards the Pathogen and Vaccine Formulation. United States Department of Agriculture, February 2005. http://dx.doi.org/10.32747/2005.7586538.bard.
Full textAvni, Adi, and Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600030.bard.
Full textNoga, Edward J., Angelo Colorni, Michael G. Levy, and Ramy Avtalion. Importance of Endobiotics in Defense against Protozoan Ectoparasites of Fish. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7586463.bard.
Full text