Academic literature on the topic 'Peptide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peptide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Peptide"
Zhang, Yuqi, and Michel F. Sanner. "AutoDock CrankPep: combining folding and docking to predict protein–peptide complexes." Bioinformatics 35, no. 24 (June 4, 2019): 5121–27. http://dx.doi.org/10.1093/bioinformatics/btz459.
Full textBlaszczyk, Maciej, Maciej Pawel Ciemny, Andrzej Kolinski, Mateusz Kurcinski, and Sebastian Kmiecik. "Protein–peptide docking using CABS-dock and contact information." Briefings in Bioinformatics 20, no. 6 (September 20, 2018): 2299–305. http://dx.doi.org/10.1093/bib/bby080.
Full textChan, Kiat Hwa, Jaehong Lim, Joo Eun Jee, Jia Hui Aw, and Su Seong Lee. "Peptide–Peptide Co-Assembly: A Design Strategy for Functional Detection of C-peptide, A Biomarker of Diabetic Neuropathy." International Journal of Molecular Sciences 21, no. 24 (December 18, 2020): 9671. http://dx.doi.org/10.3390/ijms21249671.
Full textRaymond, Danielle M., and Bradley L. Nilsson. "Multicomponent peptide assemblies." Chemical Society Reviews 47, no. 10 (2018): 3659–720. http://dx.doi.org/10.1039/c8cs00115d.
Full textAnusha, G., and M. Monisha. "Molecular modeling and screening of antiviral peptides for Influenza A virus Polymerase basic protein 2(PB2) protein using Hpepdock software for the therapy of Influenza A." CARDIOMETRY, no. 25 (February 14, 2023): 1693–701. http://dx.doi.org/10.18137/cardiometry.2022.25.16931701.
Full textJACKSON, I. M. D. "Peptide Biology: Regulatory Peptides." Science 246, no. 4928 (October 20, 1989): 389–90. http://dx.doi.org/10.1126/science.246.4928.389-a.
Full textErak, Miloš, Kathrin Bellmann-Sickert, Sylvia Els-Heindl, and Annette G. Beck-Sickinger. "Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics." Bioorganic & Medicinal Chemistry 26, no. 10 (June 2018): 2759–65. http://dx.doi.org/10.1016/j.bmc.2018.01.012.
Full textOjcius, D. M., J. P. Abastado, A. Casrouge, E. Mottez, L. Cabanie, and P. Kourilsky. "Dissociation of the peptide-MHC class I complex limits the binding rate of exogenous peptide." Journal of Immunology 151, no. 11 (December 1, 1993): 6020–26. http://dx.doi.org/10.4049/jimmunol.151.11.6020.
Full textEl-Sayed Amr, Abd El-Galil, Mohamed Abo-Ghalia, and Mohamed M. Abdalah. "Synthesis of Novel Macrocyclic Peptido-calix[4]arenes and Peptidopyridines as Precursors for Potential Molecular Metallacages, Chemosensors and Biologically Active Candidates." Zeitschrift für Naturforschung B 61, no. 11 (November 1, 2006): 1335–45. http://dx.doi.org/10.1515/znb-2006-1104.
Full textNegroni, Maria, and Lawrence Stern. "Unexpected side reaction of lysine and arginine side chains preceding a photocleavable group in MHC-II UV-cleavable peptides. (P5028)." Journal of Immunology 190, no. 1_Supplement (May 1, 2013): 41.15. http://dx.doi.org/10.4049/jimmunol.190.supp.41.15.
Full textDissertations / Theses on the topic "Peptide"
Zhang, Zhiwen. "Towards peptide-binding peptides." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037037.
Full textHowells, A. "Studies on peptides and peptide mimetics." Thesis, Swansea University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637318.
Full textWolf, Justine. "Biophysical investigations of the LAH4 family peptides : enhancer of gene delivery, from peptide-peptide interactions to peptide-membrane interactions." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF037/document.
Full textThe LAH4 family consists of cationic amphiphilic peptides with propensity to fold in α-helical secondary structures. They contain histidines allowing the modulation of their interactions in a pH dependent manner in the physiological range. In membranes, at neutral or acidic pH the peptide assumes a transmembrane or an in planar configuration, respectively.In the field of gene delivery systems, peptides like LAH4 are used. They are able to firstly interact with different cargoes in order to form stable complexes, then interact with the cell membrane, and finally, promote to escape from the endosome.This PhD has been divided into three parts in order to characterize, with biophysical methods, the interactions occurring during the delivery of these gene systems: peptide-peptide interactions with a focus on the study of VF1 fibre formation; peptide-membrane interactions: with the investigation of the effect of LAH4L1 in different membranes; and peptide-DNA interactions, where the interactions of LAH4L1 with a small DNA fragment were measured
Bezkorovaynaya, Olga [Verfasser]. "Coarse-grained peptide models: conformational sampling, peptide association and dynamical properties for peptides / Olga Bezkorovaynaya." Mainz : Universitätsbibliothek Mainz, 2011. http://d-nb.info/1026802253/34.
Full textChen, Fei. "Studies on aminoxy peptides and prebiotic peptide formation." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38534149.
Full textChen, Fei, and 陳飛. "Studies on aminoxy peptides and prebiotic peptide formation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38534149.
Full textGudlur, Sushanth. "Peptide nanovesicles: supramolecular assembly of branched amphiphilic peptides." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13445.
Full textDepartment of Biochemistry
John M. Tomich
Peptide-based delivery systems show great potential as safer drug delivery vehicles. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. We have designed and synthesized a set of 15 and 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. They undergo supramolecular self-assembly and form solvent-filled, bilayer delineated spheres with 50-150 nm diameters (confirmed by TEM and DLS). Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these structures are further stabilized by β-sheet hydrogen bonding and are stable at very low concentrations and even in the presence of SDS, urea and trypsin as confirmed by circular dichroism spectroscopy. Given sufficient time, they fuse together to form larger assemblies and trap compounds of different sizes within the enclosed space. They are prepared using a protocol that is similar to preparing lipid vesicles. We have shown that different concentrations of the fluorescent dye, 5(6)-Carboxyfluorescein can be encapsulated in these assemblies and delivered into human lens epithelial cells and MCF-7 cells grown on coverslips. Besides fluorescent dyes, we have delivered the plasmid (EGFP-N3, 4.7kb) into N/N 1003A lens epithelial cells and observed expression of EGFP (in the presence and absence of a selection media). In the case of large molecules like DNA, these assemblies act as nanoparticles and offer some protection to DNA against certain nucleases. Linear peptides that lacked a branching point and other branched peptides with their sequences randomized did not show any of the lipid-like properties exhibited by the branched peptides. The peptides can be chemically decorated with target specific sequences for use as DDS for targeted delivery.
Ruiz, Medina Tarik. "Plant cell bioreactors for peptide production." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670804.
Full textLa producción de proteínas recombinantes en plantas representa una oportunidad para su obtención y uso comercial. El objetivo principal de esta tesis industrial ha sido el desarrollo de sistemas vegetales de producción de proteínas, eficientes y competitivos a nivel económico, con posibilidades de llevarlas al mercado. Para ello hemos explorado dos sistemas: los cultivos celulares de Daucus carota y las hojas de Nicotiana benthamiana, cada uno con sus ventajas y limitaciones. Como prueba de concepto, ambos sistemas fueron utilizados para la producción de “'insulin-like growth factor 1” (IGF1), un péptido de alto valor añadido para las industrias cosmética y farmacéutica. Se ensayaron varias estrategias innovadoras para mejorar los rendimientos de producción aumentando la expresión génica y para reducir costes de purificación del producto. Además, la actividad biológica de IGF1 y sus derivados producidos en plantas se evaluó en comparación con péptidos sintéticos. Como primera estrategia se ensayaron supresores del silenciamiento de ARN de origen viral para incrementar la expresión génica. En ensayos de expresión transitoria con la proteína verde fluorescente como marcadora, seleccionamos la proteína P1b del ipomovirus Cucumber vein yellowing virus (CVYV). Nuestros resultados con líneas celulares de zanahoria sobreexpresoras de IGF1 o su péptido derivado CPP-IGF1 (variante diseñada para mejorar su penetración en células humanas) mostraron que en combinación con P1b alcanzaban rendimientos de producción 4 veces mayores que las líneas sin el supresor del silencing. Además, los péptidos fueron dirigidos al medio de cultivo para facilitar su aislamiento por simple clarificación. En ensayos de actividad, las fracciones obtenidas confirmaron ser capaces de incrementar la división de fibroblastos humanos. En relación a la estabilidad de la producción, se observó una reducción cercana al 33% después de veintiún ciclos de propagación sucesivos, por lo que se implementó la criopreservación de las líneas transgénicas para mantener los rendimientos de producción originales, y así establecer bancos de líneas celulares para usos futuros. También se desarrolló un sistema de producción transitoria de IGF1 y CPP-IGF1 en hojas de N. benthamiana utilizando un vector derivado del virus del mosaico del tabaco, Tobacco mosaic virus (TMV). Este sistema permitió reducir el tiempo de obtención del péptido activo, aunque en comparación con la producción en líneas celulares la obtención del producto no fue tan sencilla. Con el fin de facilitar la purificación de IGF1 desde matrices vegetales, aplicamos una estrategia innovadora basada en fusiones a oleosina para dirigir la producción a cuerpos lipídicos. Esta tecnología ya había sido utilizada en semillas, pero no en cultivos celulares, y escasamente en hojas. Nuestras observaciones mostraron la presencia de abundantes cuerpos lipídicos en numerosos cultivos celulares, incluyendo los de D. carota, con la excepción de las dos especies modelo analizadas, Nicotiana tabacum y Arabidopsis thaliana. Desafortunadamente, la expresión estable de fusiones a oleosina pareció afectar gravemente el crecimiento de los callos celulares, por lo que se exploró la alternativa de su aplicación a la producción en hojas. Para aumentar la cantidad de cuerpos lipídicos, la producción de las fusiones a oleosina se realizó simultáneamente con inductores de la acumulación de triacilgliceroles, usando elementos clave de su ruta biosintética en A. thaliana: la enzima DGAT1 y el factor de transcripción WRI1. Cuando ambos inductores fueron co-expresados en combinación con fusiones de oleosina e IGF1 en plantas de N. benthamiana, se obtuvo hasta 1 μg/g de IGF1 unida a los cuerpos lipídicos, fácilmente aislable y activo. Nuestro trabajo proporciona evidencias de que la utilización de supresores del silenciamiento de ARN, los vectores virales y la tecnología de oleosinas contribuyen al potencial de las matrices vegetales para la producción de proteínas de interés.
The production of proteins in plant cell cultures and whole plants represents great opportunities to develop products for commercial use. The main objective of this industrial thesis was to develop economic and efficient plant production systems to bring proteins of interest to the market. We explored two different systems, Daucus carota cell cultures and Nicotiana benthamiana leaves, each having advantages and drawbacks depending on the intended use of the products. As a proof of concept, both systems were applied in the production of the human insulin-like growth factor 1 (IGF1), a high value peptide for the cosmetic and therapeutic industries. Innovative strategies to enhance gene expression and to facilitate product purification were used to improve yields and to reduce costs. Moreover, the biological activity of the produced IGF1 and derivatives was evaluated and compared to the chemically synthesized peptides to demonstrate the usefulness of production systems. Our first approach to enhance gene expression and improve peptide yields was with RNA silencing suppressors (RSSs). Using transient expression assays and the green fluorescent protein (GFP) as reporter, we selected the P1b from the Cucumber vein yellowing virus (CVYV) Ipomovirus as the RSSs to enhance gene expression in carrot cell cultures. Our results demonstrated that transgenic lines overexpressing IGF1 or the derivative CPP-IGF1 (a variant tailored to enhance the delivery to human cells) reached up to 4-fold higher peptide yields in combination with P1b than without. The IGF1 or CPP-IGF1 was targeted to the culture media being easily purified by simple clarification of suspensions. Moreover, we found that the media containing the produced IGF1 or CPP-IGF1 stimulated the division of human fibroblasts. A cryopreservation process was applied to the transgenic lines to avoid the reduction in peptide production found over successive propagation cycles. This allowed us to recover the original yields, opening up the possibility of establishing master cell banks. We also developed a transient production system of IGF1 and CPP-IGF1 using N. benthamiana leaves and a derived tobacco mosaic virus vector. This system resulted in similar yields of active peptides to cell cultures with the main advantage of shortening production times, although requiring more complex downstream purification. Our innovative strategy to facilitate the purification of IGF1 from plant matrices was the use of oleosin fusion technology for lipid droplet (LDs) targeting. This technology has been previously used in LD-rich seeds, but unexplored in plant cell cultures or LD-poor tissues such as leaves. Our work showed that model cell cultures from Nicotiana tabacum or Arabidopsis thaliana were an exception, as many other plant cell cultures, including D. carota cells, do contain a large number of LDs and are susceptible to produce oleosin fusion proteins. However, as the stable expression of oleosin fusions severely affected callus cell growth, we tested the technology in transient expression in leaves. Due to the low level of LDs in leaves, oleosin fusion proteins production was in combination with triacylglycerol (TAG) induction to increase LD content simultaneously. For this purpose, key components of the TAG biosynthetic pathway, A. thaliana derived elements such as the enzyme DGAT1 and the regulatory factor WRI1 were co-expressed with the IGF1 oleosin fusion proteins in N. benthamiana leaves. Using this strategy, we obtained yields up to 1 μg/g of IGF1 bound to LDs, easily purified and fully active. Our work provides evidence of the potential of plant matrices to produce valuable peptides. Also, the oleosin technology, the use of RSSs and viral vectors explored will serve to overcome some of the known limitations of plant systems to produce active products of industrial interest.
Martari, Marco. "Structure-function relationships of bolaamphiphilic peptides and peptide hybrids." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/582.
Full textYiangou, Yiangos. "Studies on peptide-histidine isoleucine (PHI-27)-like peptides." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47318.
Full textBooks on the topic "Peptide"
Tam, James P., and Pravin T. P. Kaumaya, eds. Peptides Frontiers of Peptide Science. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46862-x.
Full textSāmī, Saʻīd, Mutt Viktor, and New York Academy of Sciences., eds. Vasoactive intestinal peptide and related peptides. New York, N.Y: New York Academy of Sciences, 1988.
Find full textNielsen, Peter E., and Daniel Appella. Peptide nucleic acids: Methods and protocols. New York: Humana Press, 2014.
Find full textWieland, Theodor. The world of peptides: A brief history of peptide chemistry. Berlin: Springer-Verlag, 1991.
Find full textD, Fricker Lloyd, ed. Peptide biosynthesis and processing. Boca Raton: CRC Press, 1991.
Find full textBailey, P. D. An introduction to peptide chemistry. Chichester [England]: Wiley, 1990.
Find full text1947-, Turner A. J., ed. Neuropeptides and their peptidases. Weinheim: VCH, 1987.
Find full textBjörklund, Anders, Remi Quirion, and Tomas Hökfelt. Peptide receptors. Amsterdam: Elsevier, 2003.
Find full textHussein, Waleed M., Rachel J. Stephenson, and Istvan Toth, eds. Peptide Conjugation. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1617-8.
Full textCoppock, Matthew B., and Alexander J. Winton, eds. Peptide Macrocycles. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1689-5.
Full textBook chapters on the topic "Peptide"
Yang, Zheng Rong. "Peptide Bioinformatics- Peptide Classification Using Peptide Machines." In Methods in Molecular Biology™, 155–79. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-101-1_9.
Full textStawikowski, Maciej J. "Peptoids and Peptide–Peptoid Hybrid Biopolymers as Peptidomimetics." In Methods in Molecular Biology, 47–60. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-652-8_4.
Full textKeck, Martin E., and Rainer Landgraf. "Peptide." In Handbuch der Psychopharmakotherapie, 197–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19844-1_19.
Full textLatscha, Hans Peter, and Helmut Alfons Klein. "Peptide." In Springer-Lehrbuch, 403–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85882-6_24.
Full textStorz, Ulrich, Wolfgang Flasche, and Johanna Driehaus. "Peptide Vaccines and Peptide Therapeutics." In Intellectual Property Issues, 17–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29526-3_2.
Full textGkika, Karmel S., David Cullinane, and Tia E. Keyes. "Metal peptide conjugates in cell and tissue imaging and biosensing." In Metal Ligand Chromophores for Bioassays, 27–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19863-2_2.
Full textSrinivasan, Ananth, and Michelle A. Schmidt. "Tri-t-butyl-DTPA: A versatile synthon for the preparation of DTPA-containing peptides by solid phase." In Peptides Frontiers of Peptide Science, 267–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46862-x_110.
Full textSt. Hilaire, Phaedria M., Morten Meldal, and Klaus Bock. "Analysis of O-and N-linked glycopeptide libraries by MALDI-TOF MS: Application in solid phase assays of carbohydrate-binding-proteins." In Peptides Frontiers of Peptide Science, 45–46. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46862-x_12.
Full textBianchi, Elisabetta, Andrea Urbani, Raffaele De Francesco, Christian Steinkühler, and Antonello Pessi. "Substrate specificity and mechanism of activation of hepatitis C virus protease." In Peptides Frontiers of Peptide Science, 396–97. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46862-x_168.
Full textLavigne, P., L. H. Kondejewski, M. E. Houston, R. S. Hodges, and C. M. Kay. "On the energetics of the heterodimerization of the Max and c-Myc leucine zippers." In Peptides Frontiers of Peptide Science, 467–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46862-x_203.
Full textConference papers on the topic "Peptide"
Mikheeva, N. A., E. P. Drozhdina, and N. A. Kurnosova. "Morphofunctional features of proliferating cells exposed to PSMA peptide." In VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-142-144.
Full textREYMOND, JEAN-LOUIS. "PEPTIDE DENDRIMERS AND POLYCYCLIC PEPTIDES." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0003.
Full textLiu, Dan-Xuan, Yi-Heng Xu, and Chao Qian. "Peptide Vaccine Design by Evolutionary Multi-Objective Optimization." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/770.
Full textFulcher, C. A., R. A. Houghten, S. de Graaf Mahoney, J. R. Roberts, and T. S. Zimmerman. "SYNTHETIC PEPTIDE PROBES OF FACTOR VIII IMMUNOLOGY AND FUNCTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644768.
Full textD’Souza, S. E., M. H. Ginaberg, S. Lam, and E. A. Plow. "ACTIVATION DEPENDENT ALTERATIONS IN THE CHEMICAL CROSSLINKING OF ARGINYL-GLYCYL-ASPARTIC ACID (RGD) PEPTIDES WITH PLATELET GLYCOPROTEIN (GP) GPIIb-IIIa." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643699.
Full textFresslnaud, E., J. E. Sadler, J. P. Girma, H. R. Baumgartner, and D. Meyer. "SYNTHETIC RGD-CONTAINING PEPTIDES OF VON WILLEBRAND FACTOR INHIBIT PLATELET ADHESION TO COLLAGEN." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643591.
Full textWallin, R., and T. Saldeen. "DEVELOPMENT OF A SPECIFIC RADIODMMUNOASSAY FOR DETERMINATION OF PEPTIDES DERIVED FROM HUMAN LEUKOCYTE ELASTASE DEGRADATION OF HUMAN FIBRIN (OGEN)." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643899.
Full textBaba, Waqas, and Sajid Maqsood. "Novel antihypertensive and anticholesterolemic peptides from peptic hydrolysates of camel whey proteins." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qecs2081.
Full textBiondi, Barbara, Silvia Millan, Fernando Formaggio, Alessandra Semenzato, and Cristina Peggion. "Synthesis and conformationof short peptides modeled after peptide LL-37." In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.195.
Full textNewton, Ashley, and Kaustav Majumder. "Evaluating the Efficacy of Germination in Producing Biologically Active Peptides from Garbanzo Beans." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/czkw6895.
Full textReports on the topic "Peptide"
Rich, Alexander, and Shuguang Zhang. Peptide Nanofilament Engineering. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada416701.
Full textParker, G., D. Anex, M. Leppert, L. Baird, N. Matsunami, and T. Leppert. Polymorphic Peptide Hair Project. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1130556.
Full textClements, John D. Tulane/Xavier Vaccine Peptide Program. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada615102.
Full textVouros, Paul, and Terrance Black. Solid Phase Peptide Synthesis of Antimicrobial Peptides for cell Binding Studies: Characterization Using Mass Spectrometry. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada412571.
Full textSom, P., B. A. Rhodes, and S. S. Sharma. Peptide Based Radiopharmaceuticals: Specific Construct Approach. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/770462.
Full textWong, Eric A., and Zehava Uni. Nutrition of the Developing Chick Embryo: Nutrient Uptake Systems of the Yolk Sac Membrane and Embryonic Intestine. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7697119.bard.
Full textHorwitz, Benjamin, and Barbara Gillian Turgeon. Secondary Metabolites, Stress, and Signaling: Roles and Regulation of Peptides Produced by Non-ribosomal Peptide Synthetases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696522.bard.
Full textAthavankar, Sonales, Daniel D. Clark, and Blake R. Peterson. Discovery of Cyclic Peptide Estrogens and Antiestrogens. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada438889.
Full textPietras, Richard J. Peptide Antiestrogens for Human Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396878.
Full textDaggett, Valerie. Simulation of Protein and Peptide-Based Biomaterials. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada399142.
Full text