Journal articles on the topic 'Penicillina G Amidas'

To see the other types of publications on this topic, follow the link: Penicillina G Amidas.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Penicillina G Amidas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Jianguo, Qingqing Chen, Jie Wu, Wenping Zhu, Yongquan Wu, Xiaolin Fan, Guanxin Zhang, Yibao Li, and Guoyu Jiang. "A highly selective and light-up red emissive fluorescent probe for imaging of penicillin G amidase inBacillus cereus." New Journal of Chemistry 43, no. 16 (2019): 6429–34. http://dx.doi.org/10.1039/c9nj00890j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

EVO, M., G. DEGRASSI, N. SKOKO, V. VENTURI, and G. LJUBIJANKI. "Production of glycosylated thermostable penicillin G amidase in." FEMS Yeast Research 1, no. 4 (January 2002): 271–77. http://dx.doi.org/10.1016/s1567-1356(01)00040-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brand, U., T. Scheper, and K. Schügerl. "Penicillin G sensor based on penicillin amidase coupled to a field effect transistor." Analytica Chimica Acta 226, no. 1 (January 1989): 87–97. http://dx.doi.org/10.1016/s0003-2670(00)80906-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ljubijankić, Goran, Miroslav Konstantinović, and Vladimir Glišin. "The primary structure of Providencia rettgeri penicillin G amidase gene and its relationship to other gram negative amidases." DNA Sequence 3, no. 3 (January 1992): 195–200. http://dx.doi.org/10.3109/10425179209034017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez, Juan, José Luis Marrugo Negrete, and Iván Urango. "Biosorción simultanea de plomo y cadmio en solución acuosa por biomasa de hongos penicillium sp." Temas Agrarios 19, no. 1 (August 19, 2016): 63–72. http://dx.doi.org/10.21897/rta.v19i1.725.

Full text
Abstract:
La descarga de metales pesados en el ambiente genera impactos significativos en la salud humana y ciclos biológicos. Algunos microorganismos son conocidos por su alta capacidad de adsorción de metales, entre estos los hongos. El objetivo del presente trabajo fue evaluar la capacidad de remoción de Pb (II) y Cd (II) en soluciones acuosas con hongos Penicillium sp., aislando la cepa fúngica del suelo de la mina el Alacrán (CórdobaColombia) y determinando la influencia en las variables pH, concentración inicial de metales y temperatura, analizando las isotermas de Freundlich y Langmüir, Verificando los grupos funcionales que intervienen en la adsorción por análisis infrarrojo (IR), con el fin potencializar su uso en el saneamiento de aguas residuales. Los análisis se realizaron empleando los equipos Thermo scientific de absorción atómica modelo ICE 3000 serie y espectrofotómetro FT-IR Nicolet Is5 realizando control de calidad con material de referencia de Pb y Cd SRM-1643e. A 51,5 mg L^-1 de Pb y Cd se pudo encontrar los mayores porcentajes de remoción para 0,5 g de biomasa. Las máximas adsorciones se dieron a pH ácido (4-5) y 60 °C, logrando remociones del 92,4% para Pb y 80% para Cd. Las isotermas se ajustan mejor al modelo Langmuir. El análisis IR muestra grupos -OH, -NH, C-N, C-H, N-H, C=O, amida I y amidas II y polisacáridos, atribuyendo esto la atracción en los metales y la biomasa fúngica.
APA, Harvard, Vancouver, ISO, and other styles
6

Piotraschke, Elke, Allan Nurk, Boris Galunsky, and Volker Kasche. "Genetic construction of catalytically active cross-species heterodimer penicillin G amidase." Biotechnology Letters 16, no. 2 (February 1994): 119–24. http://dx.doi.org/10.1007/bf01021656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Braiuca, Paolo, Luca Boscarol, Cynthia Ebert, Paolo Linda, and Lucia Gardossi. "3D-QSAR Applied to the Quantitative Prediction of Penicillin G Amidase Selectivity." Advanced Synthesis & Catalysis 348, no. 6 (April 2006): 773–80. http://dx.doi.org/10.1002/adsc.200505346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gou, Bin-Quan, Ju Chu, Si-Liang Zhang, Yong-Hong Wang, Ying-Ping Zhuang, Hua Huang, Zhen Li, and Zhong-Yi Yuan. "Production of penicillin G amidase from Alcaligenes faecalis in a recombinant Escherichia coli." Journal of the Taiwan Institute of Chemical Engineers 40, no. 2 (March 2009): 233–36. http://dx.doi.org/10.1016/j.jtice.2008.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quratulain, S., B. Nasira, and M. A. Kashmiri. "Development and characterization of a potent producer of penicillin G amidase by mutagenization." World Journal of Microbiology and Biotechnology 22, no. 3 (November 25, 2005): 213–18. http://dx.doi.org/10.1007/s11274-005-9023-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, C. K., and S. K. Chang. "Plate and frame filter as a recirculated batch reactor for penicillin-G amidase." Bioprocess Engineering 16, no. 2 (1997): 87. http://dx.doi.org/10.1007/s004490050293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Basso, Alessandra, Sara Cantone, Paolo Linda, and Cynthia Ebert. "Stability and activity of immobilised penicillin G amidase in ionic liquids at controlled aw." Green Chemistry 7, no. 9 (2005): 671. http://dx.doi.org/10.1039/b506230f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Robas, Nathalie, and Christiane Branlant. "The expression of the penicillin G amidase gene ofEscherichia coli by primer extension analysis." Current Microbiology 29, no. 5 (November 1994): 263–68. http://dx.doi.org/10.1007/bf01577438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nupur, Neh, Bentham Science Publisher Ashish, and Mira Debnath (Das). "Preparation and Biochemical Property of Penicillin G Amidase-Loaded Alginate and Alginate/Chitosan Hydrogel Beads." Recent Patents on Biotechnology 10, no. 1 (September 29, 2016): 121–32. http://dx.doi.org/10.2174/1872208310666160805112515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Basso, Alessandra, Beatrice A. Maltman, Sabine L. Flitsch, Graham Margetts, Ian Brazendale, Cynthia Ebert, Paolo Linda, Silvia Verdelli, and Lucia Gardossi. "Optimized polymer–enzyme electrostatic interactions significantly improve penicillin G amidase efficiency in charged PEGA polymers." Tetrahedron 61, no. 4 (January 2005): 971–76. http://dx.doi.org/10.1016/j.tet.2004.11.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mönster, Andrea, Louis Villain, Thomas Scheper, and Sascha Beutel. "One-step-purification of penicillin G amidase from cell lysate using ion-exchange membrane adsorbers." Journal of Membrane Science 444 (October 2013): 359–64. http://dx.doi.org/10.1016/j.memsci.2013.05.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Scherrer, S., N. Robas, H. Zouheiry, G. Branlant, and C. Branlant. "Periplasmic aggregation limits the proteolytic maturation of the Escherichia coli Penicillin G amidase precursor polypeptide." Applied Microbiology and Biotechnology 42, no. 1 (November 1, 1994): 85–91. http://dx.doi.org/10.1007/s002530050221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Scherrer, S., N. Robas, H. Zouheiry, G. Branlant, and C. Branlant. "Periplasmic aggregation limits the proteolytic maturation of the Escherichia coli Penicillin G amidase precursor polypeptide." Applied Microbiology and Biotechnology 42, no. 1 (October 1994): 85–91. http://dx.doi.org/10.1007/bf00170229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vrudhula, Vivekananda M., Peter D. Senter, Keith J. Fischer, and Philip M. Wallace. "Prodrugs of doxorubicin and melphalan and their activation by a monoclonal antibody-penicillin-G amidase conjugate." Journal of Medicinal Chemistry 36, no. 7 (April 1993): 919–23. http://dx.doi.org/10.1021/jm00059a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zmijewski, Milton J., Barbara S. Briggs, Allen R. Thompson, and Ian G. Wright. "Enantioselective acylation of a beta-lactam intermediate in the synthesis of loracarbef using penicillin G amidase." Tetrahedron Letters 32, no. 13 (March 1991): 1621–22. http://dx.doi.org/10.1016/s0040-4039(00)74287-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Stankovic, Nada, Branka Vasiljevic, and Goran Ljubijankic. "Effect of the kanamycin resistance marker on stability of 2μ-based expression plasmids." Archives of Biological Sciences 59, no. 1 (2007): 1P—12P. http://dx.doi.org/10.2298/abs0701001s.

Full text
Abstract:
In this paper we describe the effect of the kanamycin resistance gene (Kmr) on 2?m-based plasmid maintenance in Saccharomyces cerevisiae. The influence of this marker gene on the loss of the stable model-vectors proved to be constant, as well as independent of carbon source and culture growth rates. In strains for GALUAS - driven heterologous protein production introduction of Kmr resulted in curing of the yeast episomal plasmid (YEp) from the population in a small number of generations. Application of selective pressure on the strain producing recombinant penicillin G amidase (rPGA) did not provide the expected increase of protein yield. The influence of genetic elements for heterologous protein production on vector stability was examined, and the most destabilizing factors prove to be the presence and expression of the foreign gene.
APA, Harvard, Vancouver, ISO, and other styles
21

Galaction, Anca-Irina, Ramona Mihaela Matran, Marius Turnea, Alexandra Cristina Blaga, and Dan Caşcaval. "ENGINEERING ASPECTS OF PENICILLIN G TRANSFER AND CONVERSION TO 6-AMINOPENICILLANIC ACID IN A BIOREACTOR WITH A MOBILE BED OF IMMOBILIZED PENICILLIN AMIDASE." Chemical Engineering Communications 201, no. 12 (June 17, 2014): 1568–81. http://dx.doi.org/10.1080/00986445.2013.819801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Begley, Máire, Roy D. Sleator, Cormac G. M. Gahan, and Colin Hill. "Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes." Infection and Immunity 73, no. 2 (February 2005): 894–904. http://dx.doi.org/10.1128/iai.73.2.894-904.2005.

Full text
Abstract:
ABSTRACT Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes—bsh, pva, and btlB—previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis of deletion mutants revealed a role for all three genes in resisting the acute toxicity of bile and bile salts, particularly glycoconjugated bile salts at low pH. Mutants were unaffected in the other stress responses examined (acid, salt, and detergents). Bile hydrolysis assays demonstrate that L. monocytogenes possesses only one bile salt hydrolase gene, namely, bsh. Transcriptional analyses and activity assays revealed that, although it is regulated by both PrfA and σB, the latter appears to play the greater role in modulating bsh expression. In addition to being incapable of bile hydrolysis, a sigB mutant was shown to be exquisitely sensitive to bile salts. Furthermore, increased expression of sigB was detected under anaerobic conditions and during murine infection. A gene previously annotated as a possible penicillin V amidase (pva) or bile salt hydrolase was shown to be required for resistance to penicillin V but not penicillin G but did not demonstrate a role in bile hydrolysis. Finally, animal (murine) studies revealed an important role for both bsh and btlB in the intestinal persistence of L. monocytogenes.
APA, Harvard, Vancouver, ISO, and other styles
23

De Martin, Luigi, Cynthia Ebert, Gianpiero Garau, Lucia Gardossi, and Paolo Linda. "Penicillin G amidase in low-water media: immobilisation and control of water activity by means of celite rods." Journal of Molecular Catalysis B: Enzymatic 6, no. 4 (April 1999): 437–45. http://dx.doi.org/10.1016/s1381-1177(99)00011-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sitnikov, Nikolay S., Yingchun Li, Danfeng Zhang, Benito Yard, and Hans-Günther Schmalz. "Design, Synthese und funktionelle Evaluierung von CO-freisetzenden Molekülen, die durch Penicillin-G-Amidase als Modellprotease aktiviert werden." Angewandte Chemie 127, no. 42 (June 2, 2015): 12489–93. http://dx.doi.org/10.1002/ange.201502445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cardoso, J. P. "Purification of Penicillin G Amidase using Quaternary Ammonium Salts and effect on the activity of the immobilised enzymes." Bioprocess Engineering 16, no. 4 (1997): 209. http://dx.doi.org/10.1007/s004490050310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sitnikov, Nikolay S., Yingchun Li, Danfeng Zhang, Benito Yard, and Hans-Günther Schmalz. "Design, Synthesis, and Functional Evaluation of CO-Releasing Molecules Triggered by Penicillin G Amidase as a Model Protease." Angewandte Chemie International Edition 54, no. 42 (June 2, 2015): 12314–18. http://dx.doi.org/10.1002/anie.201502445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cascaval, Dan, Ramona Mihaela Matran, Anca-Irina Galaction, Alexandra Cristina Blaga, and Marius Turnea. "GREEN TECHNOLOGY FOR 6-AMINOPENICILLANIC ACID PRODUCTION - STUDY OF PENICILLIN G HYDROLYSIS IN A BIOREACTOR WITH MOBILE BED OF IMMOBILIZED PENICILLIN AMIDASE UNDER SUBSTRATE INHIBITION." Environmental Engineering and Management Journal 12, no. 11 (2013): 2261–66. http://dx.doi.org/10.30638/eemj.2013.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Galunsky, Boris, Karsten Lummer, and Volker Kasche. "Comparative Study of Substrate- and Stereospecificity of Penicillin G Amidases from Different Sources and Hybrid Isoenzymes." Monatshefte fuer Chemie/Chemical Monthly 131, no. 6 (June 15, 2000): 623–32. http://dx.doi.org/10.1007/s007060070090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Caşcaval, Dan, Marius Turnea, Anca-Irina Galaction, and Alexandra Cristina Blaga. "6-Aminopenicillanic acid production in stationary basket bioreactor with packed bed of immobilized penicillin amidase—Penicillin G mass transfer and consumption rate under internal diffusion limitation." Biochemical Engineering Journal 69 (December 2012): 113–22. http://dx.doi.org/10.1016/j.bej.2012.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Basso, Alessandra, Cynthia Ebert, Lucia Gardossi, Paolo Linda, Thao Tran Phuong, Mingzhao Zhu, and Ludger Wessjohann. "Penicillin G Amidase-Catalysed Hydrolysis of Phenylacetic Hydrazides on a Solid Phase: A New Route to Enzyme-Cleavable Linkers." Advanced Synthesis & Catalysis 347, no. 7-8 (June 2005): 963–66. http://dx.doi.org/10.1002/adsc.200505038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Basso, Alessandra, Luigi De Martin, Cynthia Ebert, Lucia Gardossi, and Paolo Linda. "Controlling the hydration of covalently immobilised penicillin G amidase in low-water medium: properties and use of Celite R-640." Journal of Molecular Catalysis B: Enzymatic 8, no. 4-6 (February 2000): 245–53. http://dx.doi.org/10.1016/s1381-1177(99)00075-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Carboni, Chiara, Peter J. L. M. Quaedflieg, Quirinus B. Broxterman, Paolo Linda, and Lucia Gardossi. "Quantitative enzymatic protection of d-amino acid methyl esters by exploiting ‘relaxed’ enantioselectivity of penicillin-G amidase in organic solvent." Tetrahedron Letters 45, no. 52 (December 2004): 9649–52. http://dx.doi.org/10.1016/j.tetlet.2004.10.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ni, Zhong, Huayou Chen, Xianfu Lin, and Rongzhong Jin. "Insight into molecular mechanism underlying the transesterification catalysed by penicillin G amidase (PGA) using a combination protocol of experimental assay and theoretical analysis." Molecular Simulation 40, no. 14 (January 13, 2014): 1125–30. http://dx.doi.org/10.1080/08927022.2013.850500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sambyal, Krishika, and Rahul Vikram Singh. "Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics." Journal of Genetic Engineering and Biotechnology 19, no. 1 (October 15, 2021). http://dx.doi.org/10.1186/s43141-021-00263-7.

Full text
Abstract:
Abstract Background Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. Main body of abstract This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. Short conclusion The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields. Graphical abstract
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Chao, Wanlu Sun, Baojin Tan, Dan Su, and Yi Liu. "Penicillin G amidase-activatable near-infrared imaging guiding PDT of bacterial infections." Sensors and Actuators B: Chemical, February 2023, 133502. http://dx.doi.org/10.1016/j.snb.2023.133502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography