Contents
Academic literature on the topic 'Pelagomonas calceolata'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pelagomonas calceolata.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pelagomonas calceolata"
Heimann, Kirsten, Robert A. Andersen, and Richard Wetherbee. "THE FLAGELLAR DEVELOPMENT CYCLE OF THE UNIFLAGELLATE PELAGOMONAS CALCEOLATA (PELAGOPHYCEAE)1." Journal of Phycology 31, no. 4 (August 1995): 577–83. http://dx.doi.org/10.1111/j.1529-8817.1995.tb02553.x.
Full textDimier, CÉline, Christophe Brunet, Richard Geider, and John Raven. "Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light." Limnology and Oceanography 54, no. 3 (May 2009): 823–36. http://dx.doi.org/10.4319/lo.2009.54.3.0823.
Full textLe Gall, F., F. Rigaut-Jalabert, D. Marie, L. Garczarek, M. Viprey, A. Gobet, and D. Vaulot. "Picoplankton diversity in the South-East Pacific Ocean from cultures." Biogeosciences Discussions 4, no. 4 (August 7, 2007): 2699–732. http://dx.doi.org/10.5194/bgd-4-2699-2007.
Full textLe Gall, F., F. Rigaut-Jalabert, D. Marie, L. Garczarek, M. Viprey, A. Gobet, and D. Vaulot. "Picoplankton diversity in the South-East Pacific Ocean from cultures." Biogeosciences 5, no. 1 (February 15, 2008): 203–14. http://dx.doi.org/10.5194/bg-5-203-2008.
Full textGuérin, Nina, Marta Ciccarella, Elisa Flamant, Paul Frémont, Sophie Mangenot, Benjamin Istace, Benjamin Noel, et al. "Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence." Communications Biology 5, no. 1 (September 16, 2022). http://dx.doi.org/10.1038/s42003-022-03939-z.
Full textKang, Yoonja, Matthew J. Harke, Dianna L. Berry, Jackie L. Collier, Steven W. Wilhelm, Sonya T. Dyhrman, and Christopher J. Gobler. "Transcriptomic Responses of Four Pelagophytes to Nutrient (N, P) and Light Stress." Frontiers in Marine Science 8 (March 17, 2021). http://dx.doi.org/10.3389/fmars.2021.636699.
Full textSibbald, Shannon J., Maggie Lawton, and John M. Archibald. "Mitochondrial Genome Evolution in Pelagophyte Algae." Genome Biology and Evolution 13, no. 3 (February 2, 2021). http://dx.doi.org/10.1093/gbe/evab018.
Full textGutowska, Magdalena A., Brateen Shome, Sebastian Sudek, Darcy L. McRose, Maria Hamilton, Stephen J. Giovannoni, Tadhg P. Begley, and Alexandra Z. Worden. "Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin." mBio 8, no. 5 (October 10, 2017). http://dx.doi.org/10.1128/mbio.01459-17.
Full textDissertations / Theses on the topic "Pelagomonas calceolata"
Guerin, Nina. "Acclimatation du pico-eucaryote photosynthétique Pelagomonas calceolata aux changements environnementaux." Electronic Thesis or Diss., université Paris-Saclay, 2023. https://www.biblio.univ-evry.fr/theses/2023/interne/2023UPASL138.pdf.
Full textPhotosynthetic picoeukaryotes (PPE) are abundant in all oceans and represent a significant proportion of biomass and primary production. Climate models predict an extension of oligotrophic areas in the following decades, which could greatly increase the abundance and ecological impact of PPEs. Among them, the microalga Pelagomonas calceolata (Stramenopiles/Pelagophyceae) is widely distributed in the oceans (Worden et al., 2012) but its role in the carbon cycle and its impact on the trophic chain remain poorly characterised (Dupont et al., 2015). In situ and in vitro analyses suggest that P. calceolata can adapt to environmental variations thanks to a significant capacity to modulate gene expression (Carradec et al., 2018; Dimier et al., 2009). The aim of this thesis is to understand how P. calceolata adapts to environmental variations in the many environments it lives in. In the first chapter, the P. calceolata genome is assembled, annotated and compared with those of other PPEs. Thanks to metagenomic and metatranscriptomic data from the Tara Oceans expedition, the biogeography and transcriptomic activity of P. calceolata under different environmental conditions has provided a better understanding of the present and future distribution of this alga, and the genes involved in its ecological success (Guérin et al 2022). In the second chapter, we focused on the acclimatisation habilites of P. calceolata to changing nitrogen quantities and sources. Differentially expressed genes (DEGs) in P. calceolata as a function of nitrate concentration in Tara Oceans samples were compared with those identified during growth experiments under controlled conditions. P. calceolata was grown in media depleted in nitrate or in which nitrate was replaced by ammonium, urea or cyanate. The comparison of DEGs obtained in the laboratory with those obtained from environmental data provides a better understanding of the metabolism of this microalga in the face of nitrate shortage, and of the mechanisms put in place in the environment to cope with variability in nitrate availability, in particular through its ability to use organic nitrogen sources. In the third chapter, we aimed to better understand how depth affects the physiology of P. calceolata. P. calceolata is found in water samples from the surface down to a depth of at least 200m. We found that sampling depth had a strong impact on the expression of P. calceolata genes involved in photorespiration and carbon concentration mechanisms. During this PhD thesis, the characterisation of the adaptive capacities of P. calceolata led to a better understanding of how transcriptomic regulation enables it to be cosmopolitan, and shows that this microalga can be used as a model organism thanks to the possibility of studying it simultaneously in the laboratory and in environmental multi-omics data