Contents
Academic literature on the topic 'Peinture cellulaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peinture cellulaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Peinture cellulaire"
Cartereau, J. M., and C. Van der Werf. "Vingt-cinq ans d’expériences pratiques en atelier d’expression créative : un bilan." European Psychiatry 28, S2 (November 2013): 91. http://dx.doi.org/10.1016/j.eurpsy.2013.09.244.
Full textWhyte, Megan Kanerahtenha:wi. "Cell Block Brushes: Art Therapy-Based Murals for Indigenous and Incarcerated Men in Federal Correctional Services (Pinceaux de bloc cellulaire : peintures murales fondées sur l'art-thérapie avec des hommes autochtones incarcérés dans les services correctionnels fédéraux)." Canadian Journal of Art Therapy 33, no. 2 (July 2, 2020): 54–61. http://dx.doi.org/10.1080/26907240.2020.1830572.
Full textKorzilius, Jean-Loup. "La couleur comme « sexe féminin de l'art » : simple métaphore ou véritable paradigme ?" Clandestins, clandestinités - Gestes de couleur : arts, musique, poésie, no. 17-2 (December 15, 2022). http://dx.doi.org/10.58335/textesetcontextes.3733.
Full textUhl, Magali. "Images." Anthropen, 2020. http://dx.doi.org/10.17184/eac.anthropen.126.
Full textDissertations / Theses on the topic "Peinture cellulaire"
Camilleri, Fabrice. "Analyse de la morphologie cellulaire in vitro pour l'évaluation de la sécurité des petites molécules et des risques pour l'homme." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4059.
Full textThe traditional paradigm for human risk assessment of chemicals relies heavily on studies in laboratory animals. However, in vivo studies are lengthy, costly, raise ethical concerns and are not considered fully relevant to human physiology. In response, regulators are encouraging the adoption of non-animal alternatives for risk assessment based on human cell cultures. As part of this shift, several New Approach Methods (NAMs) are being developed to replace animal testing. In addition, a framework known as Next Generation Risk Assessment (NGRA) is being established to integrate these new methods into chemical risk assessment. This thesis focuses on one NAM, an in vitro cell morphological profiling assay called Cell Painting. This assay generates detailed images of cells exposed to chemical treatments. Morphological features are extracted from the cell images to generate profiles that describe the average cell morphology at a given compound concentration. The morphological profiles were applied in two key areas. The first application aimed to predict the acute oral toxicity of chemical compounds in rats using a read-across approach with a K-nearest neighbor classifier. The results demonstrated that morphological profiles could offer valuable insights for predicting oral acute toxicity. Unlike chemical structure-based read-across methods, which are confined to the chemical space of compounds with known toxicity, Cell Painting profiles can explore new chemical spaces. Additionally, combining Cell Painting morphological profiles with chemical structure information was shown to improve the accuracy of toxicity prediction. The second application used morphological profiles to determine an in vitro point of departure (POD), the concentration at which a morphological change begins to occur. Various methods for determining in vitro POD were compared. Toxicokinetic models were then used to extrapolate an Administered Equivalent Dose (AED), from the POD. These AEDs were then compared with established in vivo dose levels such as the No Observed Adverse Effect Level (NOAEL), and the Acceptable Daily Intake (ADI). The results showed that most of the AEDs were within a 10-fold range of the known in vivo doses. These findings provide a baseline for benchmarking alternative methods to determine the POD using different techniques, cell lines, or assays, and to extrapolate in vivo doses using different toxicokinetic models. These two applications have demonstrated the potential of Cell Painting in toxicology. Further research is needed to explore different cell lines and machine learning algorithms for image analysis. Combining Cell Painting results across different cell systems, along with results from other in vitro assays using a weight of evidence approach, could lead to a more comprehensive assessment of chemical risks. Currently, these two applications can assist in early-stage toxicology to select candidates with better toxicological profiles. Additionally, Cell Painting could play a role in Next Generation Risk Assessment (NGRA) by generating hypotheses about potential acute oral toxicity and providing initial estimates of safe in vivo doses
Ambert, Katia. "Étude ultrastructurale de la dégradation des fibres lignocellulosiques par le champignon filamenteux Phlebia radiata." Grenoble 1, 1996. http://www.theses.fr/1996GRE10036.
Full text