Academic literature on the topic 'PEG HYDROGEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PEG HYDROGEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PEG HYDROGEL"
Wen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia, and Lei Zhu. "A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking." Polymers 12, no. 1 (January 19, 2020): 239. http://dx.doi.org/10.3390/polym12010239.
Full textLu, Qiqi, Mirali Pandya, Abdul Jalil Rufaihah, Vinicius Rosa, Huei Jinn Tong, Dror Seliktar, and Wei Seong Toh. "Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System." Stem Cells International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/525367.
Full textHenise, Jeff, Shaun D. Fontaine, Brian R. Hearn, Samuel J. Pfaff, Eric L. Schneider, Julia Malato, Donghui Wang, Byron Hann, Gary W. Ashley, and Daniel V. Santi. "In Vitro-In Vivo Correlation for the Degradation of Tetra-PEG Hydrogel Microspheres with Tunable β-Eliminative Crosslink Cleavage Rates." International Journal of Polymer Science 2019 (February 10, 2019): 1–7. http://dx.doi.org/10.1155/2019/9483127.
Full textSousa, Gustavo F., Samson Afewerki, Dalton Dittz, Francisco E. P. Santos, Daniele O. Gontijo, Sérgio R. A. Scalzo, Ana L. C. Santos, et al. "Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering." Journal of Functional Biomaterials 13, no. 2 (April 18, 2022): 45. http://dx.doi.org/10.3390/jfb13020045.
Full textMazzarotta, Alessia, Tania Mariastella Caputo, Edmondo Battista, Paolo Antonio Netti, and Filippo Causa. "Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay." Sensors 21, no. 22 (November 18, 2021): 7671. http://dx.doi.org/10.3390/s21227671.
Full textWang, Xiaoyan, Yu Zhang, Wei Xue, Hong Wang, Xiaozhong Qiu, and Zonghua Liu. "Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization." Journal of Biomaterials Applications 31, no. 6 (November 25, 2016): 923–32. http://dx.doi.org/10.1177/0885328216680343.
Full textTanaka, Shizuma, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya, and Akinori Kuzuya. "Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media." Polymers 11, no. 10 (October 2, 2019): 1607. http://dx.doi.org/10.3390/polym11101607.
Full textGüney, Aysun, Christina Gardiner, Andrew McCormack, Jos Malda, and Dirk Grijpma. "Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels." Bioengineering 5, no. 4 (November 14, 2018): 99. http://dx.doi.org/10.3390/bioengineering5040099.
Full textCao, Ye, Bae Hoon Lee, Scott Alexander Irvine, Yee Shan Wong, Havazelet Bianco Peled, and Subramanian Venkatraman. "Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype." Polymers 12, no. 3 (March 17, 2020): 670. http://dx.doi.org/10.3390/polym12030670.
Full textYao, Fang, Xiao Xia Ji, Bao Ping Lin, and Guo Dong Fu. "Synthesis of High Strength and Well-Defined PEG-Based Hydrogel Networks via Click Chemistry." Advanced Materials Research 304 (July 2011): 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.304.131.
Full textDissertations / Theses on the topic "PEG HYDROGEL"
Phelps, Edward Allen. "Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45899.
Full textRohn, Mathias. "Strukturcharakterisierung photochemisch vernetzter tetra-PEG Hydrogele mit unterschiedlichem Aufbau." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229602.
Full textWeber, Laney M. "Biologically active PEG hydrogel microenvironments for improving encapsulated beta-cell survival and function." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256423.
Full textPatterson, Patrick Branch. "Creation of a Mechanical Gradient Peg-Collagen Scaffold by Photomasking Techniques." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384720879.
Full textÖberg, Hed Kim. "Advanced polymeric scaffolds for functional materials in biomedical applications." Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Full textQC 20140116
Oborná, Jana. "Řízené uvolňování léčiv z biodegradabilních hydrogelů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-385283.
Full textWestergren, Elisabeth. "Analysis of hydrogels for immobilisation of hepatocytes (HepG2) in 3D cell culturing systems." Thesis, Linköpings universitet, Teknisk biologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145392.
Full textBellat, Vanessa. "Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS056/document.
Full textThis research work is devoted to new nanohybrid engineering composed of titanate nanoribbons for regenerative medicine. Over a first phase, nanoribbons were synthesized by hydrothermal treatment and their morphological, structural and chemical features were defined. A fine characterization by means of different techniques of transmission electron microscopy mainly enabled to determine their thickness; dimension which had never been measured so far. Subsequently, titanate nanoribbons were functionalized by different home-made heterobifunctional PEG. Those polymers present at one of their extremities specific functional groups being able to couple with numerous biological molecules. Some collagen type peptides containing cellular recognition sites were grafted onto those extremities. The so-formed nanobiohybrid will permit cellular adhesion and proliferation favouring in fine tissue healing and regeneration. To evaluate new nanohybrid biological properties, titanate nanoribbons cytoxicity and aggregating power were determined by MTT tests, performed on two cell populations (fibroblasts and cardiomyocytes) and platelet aggregation tests (human blood). Finally, when used to promote healing process, the new nanobiohybrid was formulated in the form of sodium alginate hydrogel permitting a direct application on damaged tissues. To confirm the interest of this galenic form, initial in vivo tests were realized
Worrell, Kevin. "Chemical and mechanical characterization of fully degradable double-network hydrogels based on PEG and PAA." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48985.
Full textFeliciano, Danielle Ferreira. "Cinética de formação do hidrogel de polivinil álcool - polietileno glicol (PVAl-PEG) para a reparação de cartilagem articular." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263577.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T02:56:18Z (GMT). No. of bitstreams: 1 Feliciano_DanielleFerreira_M.pdf: 2215803 bytes, checksum: 78c936869613a6b313b028d4e7b84078 (MD5) Previous issue date: 2011
Resumo: Defeitos, doenças e acidentes que acometem a cartilagem articular para suportar às constantes solicitações mecânicas que estas regiões estão sujeitas, sendo indicada a utilização de estruturas viscoelástica resistente alto grau de atrito para preencher tais defeitos. Desta forma, foi selecionado o uso de hidrogéis para esta aplicação específica. Hidrogéis a base de poli(álcool vinilico) (PVAl) e polietileno glicol (PEG) apresentam propriedades mais adequadas, como biocompatibilidade, não estimulando reação imunológica ao organismo; baixa adesão de células sanguíneas, evitando coágulos; capacidade de absorção de água (intumecimento), proporcionando lubrificação do material e alto grau de transparência. O processo para obtenção desta blenda e formação de hidrogel foi realizado utilizando uma proporção de 1:9 (PEG:PVAl). O iniciador 2- hidroxi-4'-(2-hidroxietoxi)-2-metilpropiofenona foi adicionado à blenda, em 1% do volume total. È este iniciador, quando estimulado via temperatura, laser ou infravermelho, que irá desencadear as ligações intermacromoleculares de PEG-PVAl permitindo a formação de uma organização grafitizada da blenda dentro do hidrogel. Foi acompanhada a cinética de formação deste hidrogel através de reometria de placas, Espectroscopia de Infravermelho por Transformada de Fourier (FTIR) e Calorimetria Diferencial de Varredura (DSC). As amostras também foram devidamente caracterizadas quanto à condutividade térmica, densidade e absorção óptica. Observou-se que o iniciador ativou as ligações do grupo acetato do PVAl com as hidroxilas do PEG, resultando em formação de grupos ester. São estas ligações que caracterizam a formação do hidrogel grafitizado. Além disso, ocorreu a inversão do módulo viscoso em relação ao módulo de elasticidade, comprovando a reação de grafitização
Abstract: Defects, diseases and accidents that affect the articular cartilage can withstand constant mechanical stresses that they are subject, which indicated the use of viscoelastic structures resistant to high friction to fill these defects. In this way, the use was selected of hydrogels for this application it specifies. To base of I polished hydrogels polyvinyl alcohol (PVA) and polyethylene glycol (PEG) present more appropriate properties, biocompatibility, not stimulating reaction immunologically to the organism; low adhesion of blood cells, avoiding clots; capacity of absorption of water (swelling), providing lubrication of the material and high degree of transparency. The process for getting this blend and formation of hydrogel was carried out using a proportion of 1:9 (PEG:PVA). The initiator hidroxi 2-hidroxi-4 '-(2-hidroxietoxi)-2- metilpropiofenona was added to the blend, in 1 % of the total volume. This initiator, when stimulated he was seeing temperature, laser or infrared, what will be going to unleash the connections intermacromoleculares of PEG-PVA allowing the formation of an grafiting organization of the blend inside the hydrogel. There was accompanied the kinetic one of formation of this hydrogel through parallel plates rheometry, Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC). The samples also were characterized property as for the thermal condutivity, density and optical absorption. It noticed to itself that the initiator activated the connections of the group acetate of the PVA with the hydroxyl group of PEG, when ester is turning in formation of groups. It is these connections that characterize the formation of the hydrogel grafiting. Besides, it took place to inversion of the viscous module regarding the module of elasticity, proving the reaction of grafiting
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Books on the topic "PEG HYDROGEL"
Linee guida per la definizione di un piano strategico per lo sviluppo del vettore energetico idrogeno. Pisa: PLUS, 2004.
Find full textRakwichīan, Watthanaphong, and Mahāwitthayālai Narēsūan. Phāk Wichā Fisik., eds. Rāingān kānwičhai rư̄ang kānphatthanā ʻilekthrōlaisœ̄ phư̄a kānphalit haidrōgēn pen chư̄aphlœ̄ng saʻāt čhāk sēn sǣngʻāthit: Development of the hydrogen electrolyzer for clean fuel production from solar cell. [Bangkok?]: Phāk Wichā Fisik, Khana Witthayāsāt, Mahāwitthayālai Narēsūan, 1996.
Find full textKrywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.
Full textPEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2015.
Find full textLi, Hui, Haijiang Wang, Dmitri Bessarabov, and Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Find full textPEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2017.
Find full textLi, Hui, Haijiang Wang, Dmitri Bessarabov, and Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Find full textLi, Hui, Haijiang Wang, Dmitri Bessarabov, and Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Find full textLi, Hui, Haijiang Wang, Dmitri Bessarabov, and Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Find full textQian, Dianwei, Shiwen Tong, and Chunlei Huo. Hydrogen-Air PEM Fuel Cell: Integration, Modeling and Control. De Gruyter, Inc., 2018.
Find full textBook chapters on the topic "PEG HYDROGEL"
Mendez, Uziel, Hong Zhou, and Ariella Shikanov. "Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles." In Biomaterials for Tissue Engineering, 115–28. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7741-3_9.
Full textGao, Guifang, Karen Hubbell, Arndt F. Schilling, Guohao Dai, and Xiaofeng Cui. "Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel." In Methods in Molecular Biology, 391–98. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_28.
Full textZustiak, Silviya Petrova. "Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel: Synthesis, Gel Formation, and Characterization." In Extracellular Matrix, 211–26. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_17.
Full textKobel, Stefan A., and Matthias P. Lutolf. "Fabrication of PEG Hydrogel Microwell Arrays for High-Throughput Single Stem Cell Culture and Analysis." In Methods in Molecular Biology, 101–12. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-388-2_7.
Full textHiemstra, Christine, Zhiyuan Zhong, Pieter J. Dijkstra, and Jan Feijen. "Stereocomplexed PEG-PLA Hydrogels." In Hydrogels, 53–65. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_6.
Full textMillet, Pierre. "PEM Water Electrolysis." In Hydrogen Production, 63–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch3.
Full textBeyer, Ulrike, Sebastian Porstmann, Christoph Baum, and Clemens Müller. "Production of PEM systems, upscaling and rollout strategy." In Hydrogen Technologies, 289–320. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22100-2_11.
Full textLee, Doo Sung, and Chaoliang He. "In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels." In Biomedical Applications of Hydrogels Handbook, 123–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5919-5_7.
Full textBarbir, F. "Progress in PEM Fuel Cell Systems Development." In Hydrogen Energy System, 203–13. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_14.
Full textSecanell, M., A. Jarauta, A. Kosakian, M. Sabharwal, and J. Zhou. "PEM Fuel Cells: Modeling." In Fuel Cells and Hydrogen Production, 235–93. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1019.
Full textConference papers on the topic "PEG HYDROGEL"
Jang, Eunji, Saemi Park, Hyun Jong Lee, Keshava Murthy P.S, and Won-Gun Koh. "Development of phenol detecting biosensor using PEG hydrogel microparticles." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5425132.
Full textArcaute, K., L. Ochoa, B. K. Mann, and R. B. Wicker. "Stereolithography of PEG Hydrogel Multi-Lumen Nerve Regeneration Conduits." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81436.
Full textCoelho, Carlos D. F., João A. Jesus, Daniela C. Vaz, Ricardo Lagoa, and Maria João Moreno. "BSA-PEG Hydrogel: A Novel Protein-Ligand Binding 3D Matrix." In Biosystems in Toxicology and Pharmacology – Current Challenges. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/bitap-12878.
Full textAbdul Hamid, Zuratul Ain, Anton Blencowe, Berkay Ozcelik, Greg Qiao, Geoff Stevens, Jason Palmer, Eighth Keren M. Abberton, Wayne A. Morrison, and Anthony K. J. Penington. "In vivo studies of biocompatible PEG-based hydrogel scaffolds with biofactors." In 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2014. http://dx.doi.org/10.1109/iecbes.2014.7047498.
Full textWatanabe, Takaichi, and Shoji Takeuchi. "Microfluidic formation of monodisperse tetra-PEG hydrogel microbeads for cell encapsulation." In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421728.
Full textEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant, and Virginia L. Ferguson. "The Mechanical Behavior of Engineered Hydrogels." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Full textLee, Y. E., and W. Chen. "Synthesis and characterization of novel crosslinked PEG-graft-chitosan/hyaluronic acid hydrogel." In 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413372.
Full textGeisler, Chris G., Ho-Lung Li, Qingwei Zhang, Jack G. Zhou, David M. Wootton, and Peter I. Lelkes. "Thermosensitive/Photocrosslinkable Hydrogel for Soft Tissue Scaffold Printing." In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50166.
Full textGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes, and Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Full textCherukupalli, Abhimanyu, Michael Pellegrini, Ron Falkowski, Michael Medini, and Ronke Olabisi. "The influence of PEG molecular weight on apparent hydrogel microsphere size as measured by the Coulter principle." In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972754.
Full textReports on the topic "PEG HYDROGEL"
James, Brian D., George N. Baum, Julie Perez, and Kevin N. Baum. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/1218403.
Full textStaples, L., and D. P. Bloomfield. Hydrogen Supply System for Small PEM Fuel Cell Stacks. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada396718.
Full textJoseph Schwartz, Hankwon Lim, and Raymond Drnevich. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1026502.
Full textBarbir, F., F. Marken, B. Bahar, and J. A. Kolde. Development of a 10 kW hydrogen/air PEM fuel cell stack. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460279.
Full textMahadevan, K., K. Judd, H. Stone, J. Zewatsky, A. Thomas, H. Mahy, and D. Paul. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/1219590.
Full textBeckert, Werner F., Ottmar H. Dengel, Robert D. Lynch, Gary T. Bowman, and Aaron J. Greso. Solid Hydride Hydrogen Source for Small Proton Exchange Membrane (PEM) Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada371137.
Full textSieverman, Joe, and Stephen Szymanski. Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1783792.
Full textWalker, Charles W., Jiang Jr., Chu Rhongzhong, and Deryn. An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada372504.
Full textThomas H. Vanderspurt, Zissis Dardas, Ying She, Mallika Gummalla, and Benoit Olsommer. On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861890.
Full textEdward F. Kiczek. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913332.
Full text