Academic literature on the topic 'Pedestrian crowds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pedestrian crowds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pedestrian crowds"
Zhang, Dawei, Haitao Zhu, Shi Qiu, and Boyan Wang. "Characterization of Collision Avoidance in Pedestrian Crowds." Mathematical Problems in Engineering 2019 (March 28, 2019): 1–9. http://dx.doi.org/10.1155/2019/9237674.
Full textAppert-Rolland, Cécile, Julien Pettré, Anne-Hélène Olivier, William Warren, Aymeric Duigou-Majumdar, Etienne Pinsard, and Alexandre Nicolas. "Experimental Study of Collective Pedestrian Dynamics." Collective Dynamics 5 (September 11, 2020): A109. http://dx.doi.org/10.17815/cd.2020.109.
Full textLi, Maoyu, Zhizuan Zhou, Ping Zhang, Nan Jiang, Xinmiao Jia, Xiaoyu Ju, and Lizhong Yang. "Effect of walking height on movement of individuals and crowds in a corridor." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 8 (August 1, 2023): 083403. http://dx.doi.org/10.1088/1742-5468/aceb59.
Full textTempleton, Anne, John Drury, and Andrew Philippides. "Walking together: behavioural signatures of psychological crowds." Royal Society Open Science 5, no. 7 (July 2018): 180172. http://dx.doi.org/10.1098/rsos.180172.
Full textBellomo, Nicola, and Livio Gibelli. "Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds." Mathematical Models and Methods in Applied Sciences 25, no. 13 (September 17, 2015): 2417–37. http://dx.doi.org/10.1142/s0218202515400138.
Full textQiu, Fasheng, and Xiaolin Hu. "A Framework for Modeling Social Groups in Agent-Based Pedestrian Crowd Simulations." International Journal of Agent Technologies and Systems 4, no. 1 (January 2012): 39–58. http://dx.doi.org/10.4018/jats.2012010103.
Full textLi, Liang, Hong Liu, and Yanbin Han. "An approach to congestion analysis in crowd dynamics models." Mathematical Models and Methods in Applied Sciences 30, no. 05 (April 16, 2020): 867–90. http://dx.doi.org/10.1142/s0218202520500177.
Full textda Silva, Felipe Tavares, Halane Maria Braga Fernandes Brito, and Roberto Leal Pimentel. "Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges." Canadian Journal of Civil Engineering 40, no. 12 (December 2013): 1196–204. http://dx.doi.org/10.1139/cjce-2011-0587.
Full textLiao, Can, Kejun Zhu, Haixiang Guo, and Jian Tang. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium." Complexity 2019 (January 15, 2019): 1–15. http://dx.doi.org/10.1155/2019/7942483.
Full textR, Shaamili. "A Research Perceptive on Deep Learning Framework for Pedestrian Detection in a Crowd." Computational Intelligence and Machine Learning 3, no. 2 (October 14, 2022): 9–14. http://dx.doi.org/10.36647/ciml/03.02.a002.
Full textDissertations / Theses on the topic "Pedestrian crowds"
Johansson, Anders. "Data-Driven Modeling of Pedestrian Crowds." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-20900.
Full textAls diese Dissertation im Januar 2005 begonnen wurde, nutzten wissenschaftliche Untersuchungen von Fußgängern fast ausschließlich Computersimulationen und Evakuierungsexperimente. Seit dem haben viele Wissenschaftler an einer Verbesserung der Methoden gearbeitet. Heute werden empirische Daten mit Hilfe von Videoanalysen, Laser- und Infrarotkameras erhoben.Jedoch konzentrieren sich viele dieser Arbeiten auf künstliche Setups, in denen sich Fußgängermassen durch Korridore und Engpässe bewegen. Diese Experimente erlauben es, Massenbewegungen zu verstehen. Jedoch gibt es immer noch Forschungslücken. Es ist schwierig, unter solch kontrollierten Bedingungen Fortschritte darin zu erzielen, die auftretenden Dyamiken bei großen Katastrophen zu verstehen, in denen manchmal Hunderttausende oder sogar Millionen von Fußgängern involviert sind. Immer wieder kommt es zu Katastrophen in großen Menschenmengen. Leider sind von diesen Ereignissen häufig nur qualitative Informationen anstelle von quantitativen Daten erhältlich. Es ergab sich die besondere Gelegenheit, quantitatives Filmmaterial über eine Katastrophe in Mina (Königreich Saudi--Arabien) zu erhalten. Dort starben am 12. Januar 2006 hunderte von Pilgern während der jährlichen muslimischen Pilgerfahrt nach Mekka. Mit dem erhobenen Videomaterial konnte nachvollzogen werden, wie die Menschenmenge zuerst unbehindert fließen konnte, dann immer dichter wurde und wie es schließlich zur Katastrophe kam. Von den Erkenntnissen der Analyse der oben beschriebenen Katastrophe konnten neue Methoden entwickelt werden, die dabei helfen können, ähnliche Katastrophen in Zukunft zu vermeiden. Ein weiterer Beitrag dieser Dissertation besteht darin, einige Annahmen, die üblicherweise bei der Simulation von Fußgängerdynamiken gemacht werden, in Frage zu stellen und zu überarbeiten. Diese Annahmen sind: (1) Ein Fußgänger verhindert Zusammenstöße, indem er seine Schrittgeschwindigkeit so verändert, dass seine Beschleunigung exponentiell mit der Distanz zu dem zu umgehenden Fußgänger oder Objekt abnimmt. (2) Ein Fußgänger zeigt stärkere Reaktionen auf Ereignisse, die vor ihm passieren, als auf Ereignisse, die hinter ihm passieren. (3) Die Bewegung eines in einer Menschenmenge befindlichen Fußgängers folgt immer dem Strömungs--Dichte Verhältnis, was als Fundamental-Diagramm bezeichnet wird. (4) Die Laufgeschwindigkeit eines Fußgängers erreicht bei maximaler Menschendichte einem Wert von 0 m/s. Die ersten beiden Annahmen wurden von den empirischen Daten bestätigt. Unsere Analysen zeigen jedoch, dass die Annahmen 3 und 4 nicht immer gültig sind. Somit müssen Standardtheorien von Fußgängerdynamiken überarbeitet werden. Im Anschluß an die Analyse dieser fundamentalen Aspekte von Fußgängerverhalten und dem Verhalten bei Ausweichmanövern wird das Social-Force-Modell weiterentwickelt. Um auf vorhergehenden Arbeiten aufzubauen und um die oben beschriebene Katastrophe analysieren zu können, werden Algorithmen für die Video-Verfolgung von Fußgängerbewegungen entwickelt. Das Neue bei diesem Teil der Arbeit liegt nicht nur in dem verwendeten Verfahren selbst, sondern auch in der Einzigartigkeit und der großen Menge an verwendeten Daten, die mit diesem Verfahren analysiert werden. Ein zentrales Ziel dieser Arbeit besteht demnach in einer wissenschaftlichen Weiterentwicklung von theoretischen Modellen und kontrollierten Laborexperimenten hin zu Modellen, die unter realen Bedingungen tatsächlich anwendbar sind. Die Analyse von Fußgängern ist ein interdisziplinäres Feld, das von verschiedenen wissenschaftlichen Disziplinen mit verschiedenen Zielen betrieben wird. Leider gab es bislang wenig Bemühungen, die Resultate innerhalb dieser Teilgebiete im Rahmen einer konsistenten Theorie zu vereinen. Als seltene Ausnahmen können die Arbeiten von Teknomo und Antonini genannt werden. Diese Dissertation verfolgt das Ziel, diese theoretische Vereinigung weiter voran zu treiben. Dazu muss man zwischen der Neuerfindung des Rades und der Wiederverwendung nicht geprüfter Resultate abwägen. Dementsprechend ist ein Teil dieser Dissertation dem Vorhaben gewidmet, bisherige Forschung im Lichte empirischer Daten und neuer Methoden zu evaluieren. Da sich die Arbeit mit recht unterschiedlichen Aspekten von Fußgängerverhalten beschäftigt, konzentriert sich die Analyse in verschiedenen Teilen der Arbeit auf einige ausgewählte, alternative Modelle. Insbesondere bei der Modellierung und Simulation wird anstelle einer eingehenden Übersicht verschiedener Modelle eine Diskussion des speziellen Social-Force Modells präsentiert
Vandoni, Jennifer. "Ensemble Methods for Pedestrian Detection in Dense Crowds." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS116/document.
Full textThis study deals with pedestrian detection in high- density crowds from a mono-camera system. The detections can be then used both to obtain robust density estimation, and to initialize a tracking algorithm. One of the most difficult challenges is that usual pedestrian detection methodologies do not scale well to high-density crowds, for reasons such as absence of background, high visual homogeneity, small size of the objects, and heavy occlusions. We cast the detection problem as a Multiple Classifier System (MCS), composed by two different ensembles of classifiers, the first one based on SVM (SVM-ensemble) and the second one based on CNN (CNN-ensemble), combined relying on the Belief Function Theory (BFT) to exploit their strengths for pixel-wise classification. SVM-ensemble is composed by several SVM detectors based on different gradient, texture and orientation descriptors, able to tackle the problem from different perspectives. BFT allows us to take into account the imprecision in addition to the uncertainty value provided by each classifier, which we consider coming from possible errors in the calibration procedure and from pixel neighbor's heterogeneity in the image space. However, scarcity of labeled data for specific dense crowd contexts reflects in the impossibility to obtain robust training and validation sets. By exploiting belief functions directly derived from the classifiers' combination, we propose an evidential Query-by-Committee (QBC) active learning algorithm to automatically select the most informative training samples. On the other side, we explore deep learning techniques by casting the problem as a segmentation task with soft labels, with a fully convolutional network designed to recover small objects thanks to a tailored use of dilated convolutions. In order to obtain a pixel-wise measure of reliability about the network's predictions, we create a CNN- ensemble by means of dropout at inference time, and we combine the different obtained realizations in the context of BFT. Finally, we show that the output map given by the MCS can be employed to perform people counting. We propose an evaluation method that can be applied at every scale, providing also uncertainty bounds on the estimated density
Berton, Florian. "Immersive virtual crowds : evaluation of pedestrian behaviours in virtual reality." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S056.
Full textVirtual Reality (VR) has become more and more used as a tool to study human behaviour. Indeed, its use provides absolute control over experimental conditions and can reproduce the same stimulus for all participants. In this thesis, we use VR to investigate pedestrian behaviour in crowds in order to subsequently improve crowd simulators. In particular we are interested in a coupled analysis of locomotion and gaze in order to understand and model the interaction neighbourhood during navigation. In our first work, we evaluated the impact of VR on gaze activity during an interaction between two pedestrians, in a study where participants performed a collision avoidance task in a real and virtual environment. We then studied a more complex situation which is the navigation in a crowded street. We again evaluated the impact of VR on gaze activity and then explored the impact of crowd density on this activity. Finally, in a third study we simulated the collisions that occur when navigating in a dense crowd using haptic rendering, and evaluated the influence of such rendering on participants' locomotion. In conclusion, our results show that VR is a relevant tool to study pedestrian behaviour in crowds. In particular, with recent technological innovations, this tool is appropriate for the study of gaze activity, which to date has been little explored for this kind of situation
Feng, Weinan. "Multiple Human Body Detection in Crowds." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-12352.
Full textMakmul, Juntima [Verfasser], and Simone [Akademischer Betreuer] Göttlich. "Microscopic and macroscopic models for pedestrian crowds / Juntima Makmul. Betreuer: Simone Göttlich." Mannheim : Universitätsbibliothek Mannheim, 2016. http://d-nb.info/1099910633/34.
Full textBain, Nicolas. "Hydrodynamics of polarized crowds : experiments and theory." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN078/document.
Full textModelling crowd motion is central to situations as diverse as risk prevention in mass events and visual effects rendering in the motion picture industry. The difficulty to perform quantitative measurements in model experiments, and the lack of reference experimental system, have however strongly limited our ability to model and control pedestrian flows. The aim of this thesis is to strengthen our understanding of human crowds, following two distinct approaches.First, we designed a numerical model to study the lane formation process among bidirectional flows of motile particles. We first evidenced the existence of two distinct phases: one fully laned and one homogeneously mixed, separated by a critical phase transition, unique to active systems. We then showed with a hydrodynamic approach that the mixed phase is algebraically correlated in the direction of the flow. We elucidated the origin of these strong correlations and proved that they were a universal feature of any system of oppositely moving particles, active of passive.Second, we conducted a substantial experimental campaign to establish a model experiment of human crowds. For that purpose we performed systematic measurements on crowds composed of tens of thousands of road-race participants in start corrals, a geometrically simple setup. We established that speed information propagates through polarized crowds over system spanning scales, while orientational information is lost in a few seconds. Building on these observations, we laid out a hydrodynamic theory of polarized crowds and demonstrated its predictive power
KHAN, SULTAN DAUD. "Automatic Detection and Computer Vision Analysis of Flow Dynamics and Social Groups in Pedestrian Crowds." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/102644.
Full textBisagno, Niccolò. "On simulating and predicting pedestrian trajectories in a crowd." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/256722.
Full textBisagno, Niccolò. "On simulating and predicting pedestrian trajectories in a crowd." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/256722.
Full textZäll, Emma. "Modelling Pedestrian-Induced Vertical Vibrations of Footbridges." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101831.
Full textNär en folksamling går över en gångbro uppstår vibrationer i gångbron. Dessa vibrationer påverkar brons användbarhet och kan ge upphov till obehagskänsla hos fotgängarna, vilket gör att vibrationerna i största möjliga utsträckning bör motverkas. I nuläget saknas pålitliga modeller för att beskriva den dynamiska last en gångbro utsätts för när en folksamling går över den. Således föreligger ett behov att utveckla en sådan modell. Under de senaste decennierna har mycket forskning utförts inom området människoinducerade vibrationer i gångbroar. Dock har merparten av denna forskning berört endast laterala vibrationer. Detta projekt däremot, har genomförts med syftet att, med ett noggrant resultat, modellera människoinducerade vertikala vibrationer i en generell gångbro. För att uppnå detta har jag utgått från en befintlig modell och från den utvecklat en ny modell bestående av tre delmodeller. De tre delmodellerna är: en modell som beskriver hur folksamlingen rör sig över gångbron, en modell som beskriver den kraft det mänskliga fotsteget uträttar på gångbron och en modell som beskriver interaktionen mellan fotgängarna och gångbron. För att uppnå statistiskt tillförlitliga resultat har modellen som utvecklats i detta projekt använts för att utföra åtskilliga simuleringar av människoinducerade vertikala vibrationer i en specifik gångbro. Om vi medelvärdesbildar resultaten över simuleringarna framgår det att modellen som utvecklats ger ett resultat som avviker med 7 % från experimentellt data. Detta gäller för den maximala accelerationen vid gångbrons mittpunkt. Den resulterande dynamiska responsen ser kvalitativt sett bra ut, medan den kvantitativa avvikelsen är större än vi hoppats på. Därför drar vi slutsatsen att vidare förbättringar av modellen behövs för att den ska kunna användas till att på ett noggrant sätt modellera människoinducerade vertikala vibrationer i gångbroar.
Books on the topic "Pedestrian crowds"
Pushkin, Kachroo, ed. Pedestrian dynamics: Feedback control of crowd evacuation. Berlin: Springer, 2008.
Find full textPeacock, Richard D. Pedestrian and Evacuation Dynamics. Boston, MA: Springer Science+Business Media, LLC, 2011.
Find full textPushkin, Kachroo, ed. Pedestrian dynamics: Feedback control of crowd evacuation. Berlin: Springer, 2008.
Find full textAbd Rahman, Noorhazlinda. Crowd Behavior Simulation of Pedestrians During Evacuation Process. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1846-7.
Full text(Editor), Michael Schreckenberg, and Som Deo Sharma (Editor), eds. Pedestrian and Evacuation Dynamics. Springer, 2001.
Find full textSharma, Som Deo, and Michael Schreckenberg. Pedestrian and Evacuation Dynamics. Springer Berlin / Heidelberg, 2010.
Find full textWeidmann, Ulrich, Michael Schreckenberg, and Uwe Kirsch. Pedestrian and Evacuation Dynamics 2012. Springer, 2016.
Find full textWeidmann, Ulrich, Michael Schreckenberg, and Uwe Kirsch. Pedestrian and Evacuation Dynamics 2012. Springer London, Limited, 2014.
Find full textWeidmann, Ulrich, Michael Schreckenberg, and Uwe Kirsch. Pedestrian and Evacuation Dynamics 2012. Springer, 2014.
Find full text(Editor), Nathalie Waldau, Peter Gattermann (Editor), Hermann Knoflacher (Editor), and Michael Schreckenberg (Editor), eds. Pedestrian and Evacuation Dynamics 2005. Springer, 2007.
Find full textBook chapters on the topic "Pedestrian crowds"
Helbing, Dirk. "Self-organization in Pedestrian Crowds." In Understanding Complex Systems, 71–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24004-1_3.
Full textNishinari, Katsuhiro, Yushi Suma, Daichi Yanagisawa, Akiyasu Tomoeda, Ayako Kimura, and Ryousuke Nishi. "Toward Smooth Movement of Crowds." In Pedestrian and Evacuation Dynamics 2008, 293–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04504-2_26.
Full textKorhonen, T., and S. Heliövaara. "FDS+Evac: Modelling Pedestrian Movement in Crowds." In Pedestrian and Evacuation Dynamics, 823–26. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9725-8_81.
Full textPapelis, Y. E., L. J. Bair, S. Manepalli, P. Madhavan, R. Kady, and E. Weisel. "Modeling of Human Behavior in Crowds Using a Cognitive Feedback Approach." In Pedestrian and Evacuation Dynamics, 265–73. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9725-8_24.
Full textLyell, M., R. Flo, and M. Mejia-Tellez. "Simulation of Pedestrian Agent Crowds, with Crisis." In Unifying Themes in Complex Systems, 307–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85081-6_39.
Full textBärwolff, Günter, Minjie Chen, Frank Huth, Gregor Lämmel, Kai Nagel, Matthias Plaue, and Hartmut Schwandt. "Methods for Modeling and Simulation of Multi-destination Pedestrian Crowds." In Pedestrian and Evacuation Dynamics 2012, 775–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02447-9_65.
Full textGroner, N. E., E. Miller-Hooks, and L. Feng. "Prospects for the Design of Cognitive Systems that Manage the Movement of Large Crowds." In Pedestrian and Evacuation Dynamics, 725–33. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9725-8_64.
Full textCreusot, Clement. "Local Segmentation for Pedestrian Tracking in Dense Crowds." In MultiMedia Modeling, 266–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04114-8_23.
Full textReuter, Verena, Benjamin S. Bergner, Gerta Köster, Michael Seitz, Franz Treml, and Dirk Hartmann. "On Modeling Groups in Crowds: Empirical Evidence and Simulation Results Including Large Groups." In Pedestrian and Evacuation Dynamics 2012, 835–45. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02447-9_70.
Full textChraibi, Mohcine, Andreas Schadschneider, and Armin Seyfried. "On Force-Based Modeling of Pedestrian Dynamics." In Modeling, Simulation and Visual Analysis of Crowds, 23–41. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8483-7_2.
Full textConference papers on the topic "Pedestrian crowds"
Maruyama, Daichi, and Tatsuji Takahashi. "Density Avoidance in Pedestrian Crowds." In 8th International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2015. http://dx.doi.org/10.4108/icst.bict.2014.258048.
Full textGu, Qin, Chang Yun, and Zhigang Deng. "Perceiving motion transitions in pedestrian crowds." In the 17th ACM Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1889863.1889908.
Full textKazama, Takenori, Chihiro Morishima, Takashi Nishitsuji, and Takuya Asaka. "Delay Tolerant Networks Considering Pedestrian Crowds." In 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). IEEE, 2019. http://dx.doi.org/10.1109/candarw.2019.00016.
Full text"crowds&ped 2009: International Workshop on Crowds and Pedestrian Behavior." In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2009. http://dx.doi.org/10.1109/wi-iat.2009.416.
Full textGiunchi, Daniele, Riccardo Bovo, Panayiotis Charalambous, Fotis Liarokapis, Alastair Shipman, Stuart James, Anthony Steed, and Thomas Heinis. "Perceived Realism of Pedestrian Crowds Trajectories in VR." In VRST '21: 27th ACM Symposium on Virtual Reality Software and Technology. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3489849.3489860.
Full textFavaretto, Rodolfo Migon, and Soraia Raupp Musse. "Emotion, Personality and Cultural Aspects in Crowds: towards a Geometrical Mind." In XXXII Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sibgrapi.est.2019.8308.
Full textShang, Chong, Haizhou Ai, Zijie Zhuang, and Long Chen Rui Chen. "Improving Pedestrian Detection in Crowds With Synthetic Occlusion Images." In 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2018. http://dx.doi.org/10.1109/icmew.2018.8551575.
Full textDe Luca, Antonio, Scott Lomax, and Marguerite Jeansonne Pinto. "Advanced analysis of a pedestrian bridge and considerations on crowd-structure interaction." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1427.
Full textVandoni, Jennifer, Emanuel Aldea, and Sylvie Le Hegarat-Mascle. "An evidential framework for pedestrian detection in high-density crowds." In 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017. http://dx.doi.org/10.1109/avss.2017.8078498.
Full textKrausz, Barbara, and Christian Bauckhage. "Analyzing pedestrian behavior in crowds for automatic detection of congestions." In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011. http://dx.doi.org/10.1109/iccvw.2011.6130236.
Full textReports on the topic "Pedestrian crowds"
Kaminka, Gal. The Impact of Cultural Differences on Crowd Dynamics in Pedestrian and Evacuation Domains. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada552369.
Full textDonoghue, Orna, and Rose Anne Kenny. AMBER CROSS CODE: Walking speed in middle-aged and older Irish adults and the implications for pedestrian traffic signals. The Irish Longitudinal Study on Ageing, November 2015. http://dx.doi.org/10.38018/tildare.2015-01.
Full textKodupuganti, Swapneel R., Sonu Mathew, and Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, January 2021. http://dx.doi.org/10.31979/mti.2021.1802.
Full textDouglas, Gordon, and David Moore. Analyzing the Use and Impacts of Oakland Slow Streets and Potential Scalability Beyond Covid-19. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2152.
Full textDouglas, Gordon, and David Moore. Analyzing the Use and Impacts of Oakland Slow Streets and Potential Scalability Beyond Covid-19. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2152.
Full textCAREC Road Safety Engineering Manual 4: Pedestrian Safety. Asian Development Bank, March 2021. http://dx.doi.org/10.22617/tim210073-2.
Full text