Journal articles on the topic 'Peak-to-Valley Current Ratio'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peak-to-Valley Current Ratio.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Oobo, Takashi, Riichiro Takemura, Michihiko Suhara, Yasuyuki Miyamoto, and Kazuhito Furuya. "High Peak-to-Valley Current Ratio GaInAs/GaInP Resonant Tunneling Diodes." Japanese Journal of Applied Physics 36, Part 1, No. 8 (August 15, 1997): 5079–80. http://dx.doi.org/10.1143/jjap.36.5079.
Full textHuang, C. I., M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Jones, and M. E. Cheney. "AlGaAs/GaAs double barrier diodes with high peak‐to‐valley current ratio." Applied Physics Letters 51, no. 2 (July 13, 1987): 121–23. http://dx.doi.org/10.1063/1.98588.
Full textJiang, Zhi, Yiqi Zhuang, Cong Li, and Ping Wang. "Tunnel Dielectric Field-Effect Transistors with High Peak-to-Valley Current Ratio." Journal of Electronic Materials 46, no. 2 (November 3, 2016): 1088–92. http://dx.doi.org/10.1007/s11664-016-5021-4.
Full textDuschl, R., O. G. Schmidt, G. Reitemann, E. Kasper, and K. Eberl. "High room temperature peak-to-valley current ratio in Si based Esaki diodes." Electronics Letters 35, no. 13 (1999): 1111. http://dx.doi.org/10.1049/el:19990728.
Full textZhang, Baoqing, Liuyun Yang, Ding Wang, Patrick Quach, Shanshan Sheng, Duo Li, Tao Wang, et al. "Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on silicon." Applied Physics Letters 121, no. 19 (November 7, 2022): 192107. http://dx.doi.org/10.1063/5.0127379.
Full textWang, Y. H., H. C. Wei, and M. P. Houng. "Demonstration of high peak‐to‐valley current ratio in anN‐p‐nAlGaAs/GaAs structure." Journal of Applied Physics 73, no. 11 (June 1993): 7990–92. http://dx.doi.org/10.1063/1.353913.
Full textReddy, V. K., A. J. Tsao, and D. P. Neikirk. "High peak-to-valley current ratio AlGaAs/AlAs/GaAs double barrier resonant tunnelling diodes." Electronics Letters 26, no. 21 (1990): 1742. http://dx.doi.org/10.1049/el:19901119.
Full textPotter, Robert C., Amir A. Lakhani, Dana Beyea, and Harry Hier. "Enhancement of current peak‐to‐valley ratio in In0.52Al0.48As/In0.53Ga0.47As ‐based resonant tunneling diodes." Journal of Applied Physics 63, no. 12 (June 15, 1988): 5875–76. http://dx.doi.org/10.1063/1.340278.
Full textDuong, Ngoc Thanh, Seungho Bang, Seung Mi Lee, Dang Xuan Dang, Dong Hoon Kuem, Juchan Lee, Mun Seok Jeong, and Seong Chu Lim. "Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure." Nanoscale 10, no. 26 (2018): 12322–29. http://dx.doi.org/10.1039/c8nr01711e.
Full textLIANG, Dong-Shong, Kwang-Jow GAN, Cheng-Chi TAI, and Cher-Shiung TSAI. "Standard BiCMOS Implementation of a Two-Peak Negative Differential Resistance Circuit with High and Adjustable Peak-to-Valley Current Ratio." IEICE Transactions on Electronics E92-C, no. 5 (2009): 635–38. http://dx.doi.org/10.1587/transele.e92.c.635.
Full textLee, Sejoon, Youngmin Lee, Emil B. Song, and Toshiro Hiramoto. "Modulation of peak-to-valley current ratio of Coulomb blockade oscillations in Si single hole transistors." Applied Physics Letters 103, no. 10 (September 2, 2013): 103502. http://dx.doi.org/10.1063/1.4819442.
Full textOehme, Michael, Marko Sarlija, Daniel Hahnel, Mathias Kaschel, Jens Werner, E. Kasper, and J. Schulze. "Very High Room-Temperature Peak-to-Valley Current Ratio in Si Esaki Tunneling Diodes (March 2010)." IEEE Transactions on Electron Devices 57, no. 11 (November 2010): 2857–63. http://dx.doi.org/10.1109/ted.2010.2068395.
Full textAggarwal, R. J., and C. G. Fonstad. "High peak-to-valley current ratio In0.22Ga0.78As/AlAs RTDs on GaAs using relaxed InxGa1-xAs buffers." Electronics Letters 31, no. 1 (January 5, 1995): 75–77. http://dx.doi.org/10.1049/el:19950002.
Full textWang, Wei, Hao Sun, Teng Teng, and Xiaowei Sun. "High peak-to-valley current ratio In0.53Ga0.47As/AlAs resonant tunneling diode with a high doping emitter." Journal of Semiconductors 33, no. 12 (December 2012): 124002. http://dx.doi.org/10.1088/1674-4926/33/12/124002.
Full textKannan, V., K. R. Rajesh, M. R. Kim, Y. S. Chae, and J. K. Rhee. "Large current peak-to-valley ratio observed in CdSe quantum dot/MEH-PPV based nanocomposite heterostructure." Applied Physics A 102, no. 3 (January 4, 2011): 611–14. http://dx.doi.org/10.1007/s00339-010-6162-6.
Full textIpsita, Sushree, P. K. Mahapatra, and P. Panchadhyayee. "Optimum device parameters to attain the highest peak to valley current ratio (PVCR) in resonant tunneling diodes (RTD)." Physica B: Condensed Matter 611 (June 2021): 412788. http://dx.doi.org/10.1016/j.physb.2020.412788.
Full textShin, Sunhae, In Man Kang, and Kyung Rok Kim. "Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics." JSTS:Journal of Semiconductor Technology and Science 13, no. 6 (December 31, 2013): 546–50. http://dx.doi.org/10.5573/jsts.2013.13.6.546.
Full textDay, D. J., Rui Q. Yang, Jian Lu, and J. M. Xu. "Experimental demonstration of resonant interband tunnel diode with room temperature peak‐to‐valley current ratio over 100." Journal of Applied Physics 73, no. 3 (February 1993): 1542–44. http://dx.doi.org/10.1063/1.353231.
Full textSöderström, Jan, and Thorwald G. Andersson. "resonant tunneling diodes: The dependence of the peak-to-valley current ratio on barrier thickness and height." Superlattices and Microstructures 5, no. 1 (January 1989): 109–13. http://dx.doi.org/10.1016/0749-6036(89)90077-3.
Full textTsujino, S., N. Usami, A. Weber, G. Mussler, V. Shushunova, D. Grützmacher, Y. Azuma, and K. Nakajima. "SiGe double barrier resonant tunneling diodes on bulk SiGe substrates with high peak-to-valley current ratio." Applied Physics Letters 91, no. 3 (July 16, 2007): 032104. http://dx.doi.org/10.1063/1.2756363.
Full textFang, Y. K., K. H. Chen, K. S. Wu, C. R. Liu, and J. D. Hwang. "An amorphous silicon/silicon‐carbide double barrier structure with 2.66 peak to valley current ratio negative resistance." Journal of Applied Physics 72, no. 3 (August 1992): 1178–79. http://dx.doi.org/10.1063/1.351798.
Full textHsu, Che-Wei, Quang Ho Luc, hua Lun Ko, Ping Huang, Jing Yuan Wu, Nhan Ai Tran, and Edward Yi Chang. "Superior Peak to Valley Current Ratio of the InAs/Gasb Core-Shell Nanowires for Tunnel Diode Application." ECS Meeting Abstracts MA2020-02, no. 51 (November 23, 2020): 3835. http://dx.doi.org/10.1149/ma2020-02513835mtgabs.
Full textAfzal, Amir Muhammad, Muhammad Zahir Iqbal, Muhammad Waqas Iqbal, Thamer Alomayri, Ghulam Dastgeer, Yasir Javed, Naveed Akhter Shad, et al. "High performance and gate-controlled GeSe/HfS2 negative differential resistance device." RSC Advances 12, no. 3 (2022): 1278–86. http://dx.doi.org/10.1039/d1ra07276e.
Full textSaraiva-Souza, Aldilene, Manuel Smeu, José Gadelha da Silva Filho, Eduardo Costa Girão, and Hong Guo. "Tuning the electronic and quantum transport properties of nitrogenated holey graphene nanoribbons." Journal of Materials Chemistry C 5, no. 45 (2017): 11856–66. http://dx.doi.org/10.1039/c7tc03424e.
Full textShao, Zhi-An, Wolfgang Porod, and Craig S. Lent. "2D Finite Element Method Simulation of Lateral Resonant Tunneling Devices." VLSI Design 6, no. 1-4 (January 1, 1998): 131–35. http://dx.doi.org/10.1155/1998/97564.
Full textYan-Kuin Su, Jia-Rong Chang, Yan-Ten Lu, Chuing-Liang Lin, Kuo-Ming Wu, and Zheng-Xian Wu. "Novel AlInAsSb/InGaAs double-barrier resonant tunneling diode with high peak-to-valley current ratio at room temperature." IEEE Electron Device Letters 21, no. 4 (April 2000): 146–48. http://dx.doi.org/10.1109/55.830963.
Full textSun, Yiming, Wei Gao, Xueping Li, Congxin Xia, Hongyu Chen, Li Zhang, Dongxiang Luo, Weijun Fan, Nengjie Huo, and Jingbo Li. "Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions." Journal of Materials Chemistry C 9, no. 32 (2021): 10372–80. http://dx.doi.org/10.1039/d1tc02497c.
Full textRamesh, Anisha, Paul R. Berger, and Roger Loo. "High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition." Applied Physics Letters 100, no. 9 (February 27, 2012): 092104. http://dx.doi.org/10.1063/1.3684834.
Full textSoderstrom, J. R., D. H. Chow, and T. C. McGill. "InAs/AlSb double-barrier structure with large peak-to-valley current ratio: a candidate for high-frequency microwave devices." IEEE Electron Device Letters 11, no. 1 (January 1990): 27–29. http://dx.doi.org/10.1109/55.46920.
Full textChen, D. Y., Y. Sun, Y. J. He, L. Xu, and J. Xu. "Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature." Journal of Applied Physics 115, no. 4 (January 28, 2014): 043703. http://dx.doi.org/10.1063/1.4861737.
Full textSugaya, Takeyoshi, Kee-Youn Jang, Cheol-Koo Hahn, Mutsuo Ogura, Kazuhiro Komori, Akito Shinoda, and Kenji Yonei. "Enhanced peak-to-valley current ratio in InGaAs∕InAlAs trench-type quantum-wire negative differential resistance field-effect transistors." Journal of Applied Physics 97, no. 3 (February 2005): 034507. http://dx.doi.org/10.1063/1.1851595.
Full textInata, Tsuguo, Shunichi Muto, Yoshiaki Nakata, Shigehiko Sasa, Toshio Fujii, and Satoshi Hiyamizu. "A Pseudomorphic In0.53Ga0.47As/AlAs Resonant Tunneling Barrier with a Peak-to-Valley Current Ratio of 14 at Room Temperature." Japanese Journal of Applied Physics 26, Part 2, No. 8 (August 20, 1987): L1332—L1334. http://dx.doi.org/10.1143/jjap.26.l1332.
Full textJiun-Tsuen Lai and J. Y. Lee. "Ultrahigh and controllable drain current peak-to-valley ratio in negative resistance field-effect transistors with a strained InGaAs channel." IEEE Electron Device Letters 15, no. 9 (September 1994): 333–35. http://dx.doi.org/10.1109/55.311125.
Full textTsai, H. H., Y. K. Su, H. H. Lin, R. L. Wang, and T. L. Lee. "P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature." IEEE Electron Device Letters 15, no. 9 (September 1994): 357–59. http://dx.doi.org/10.1109/55.311133.
Full textYang, Chih-Chin, Kuang-Chih Huang, and Yan-Kuin Su. "High Peak-to-Valley Current Ratio GaAs/InGaAs/InAs Double Stepped Quantum Well Resonant Interband Tunneling Diodes at Room Temperature." Japanese Journal of Applied Physics 35, Part 2, No. 5A (May 1, 1996): L535—L537. http://dx.doi.org/10.1143/jjap.35.l535.
Full textNiu, Ping Juan, Hai Rong Hu, Hong Wei Liu, Wen Xin Wang, and Xun Zhong Shang. "Study on Opto-Electronic Integration of Resonant Tunnelling Diodes." Solid State Phenomena 121-123 (March 2007): 533–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.533.
Full textShahhoseini, Ali, Samane Ghorbanalipour, and Rahim Faez. "Detemining the Thickness of Barriers and Well of Resonance Tunneling Diodes by Specified I-V Characteristic." Applied Mechanics and Materials 110-116 (October 2011): 5464–70. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5464.
Full textYarn, K. F. "Negative Differential Resistance Behavior in Delta-Doped AlInP Structure Grown by MOCVD." Active and Passive Electronic Components 25, no. 3 (2002): 245–48. http://dx.doi.org/10.1080/08827510213497.
Full textYang, Rui Q., Jian Lu, J. M. Xu, and D. J. Day. "Experimental investigation of the influence of the barrier thickness in double-quantum-well resonant interband tunnel diodes." Canadian Journal of Physics 70, no. 10-11 (October 1, 1992): 1013–16. http://dx.doi.org/10.1139/p92-162.
Full textShin, Sunhae, and Kyung Rok Kim. "Multiple negative differential resistance devices with ultra-high peak-to-valley current ratio for practical multi-valued logic and memory applications." Japanese Journal of Applied Physics 54, no. 6S1 (April 30, 2015): 06FG07. http://dx.doi.org/10.7567/jjap.54.06fg07.
Full textQiang Li, Yu Han, Xing Lu, and Kei May Lau. "GaAs-InGaAs-GaAs Fin-Array Tunnel Diodes on (001) Si Substrates With Room-Temperature Peak-to-Valley Current Ratio of 5.4." IEEE Electron Device Letters 37, no. 1 (January 2016): 24–27. http://dx.doi.org/10.1109/led.2015.2499603.
Full textZhang, HePeng, JunShuai Xue, ZhiPeng Sun, LanXing Li, JiaJia Yao, Fang Liu, XueYan Yang, et al. "1039 kA/cm2 peak tunneling current density in GaN-based resonant tunneling diode with a peak-to-valley current ratio of 1.23 at room temperature on sapphire substrate." Applied Physics Letters 119, no. 15 (October 11, 2021): 153506. http://dx.doi.org/10.1063/5.0064790.
Full textChang-Luen Wu, Wei-Chou Hsu, Hir-Ming Shieh, and Ming-Shang Tsai. "A novel /spl delta/-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability." IEEE Electron Device Letters 16, no. 3 (March 1995): 112–14. http://dx.doi.org/10.1109/55.363241.
Full textMehdi, Imran, and George Haddad. "Lattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−xAs resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generation." Journal of Applied Physics 67, no. 5 (March 1990): 2643–46. http://dx.doi.org/10.1063/1.345472.
Full textFang, Y. K., K. H. Chen, C. R. Liu, J. D. Hwang, K. S. Wu, and W. R. Liou. "Observation of very high peak-to-valley current ratio (≥9.4) in amorphous silicon/silicon-carbide double barrier structure with barrier enhancement layer." IEEE Journal of Quantum Electronics 30, no. 10 (1994): 2293–96. http://dx.doi.org/10.1109/3.328596.
Full textYang, Maolong, Yao Lu, Qiancui Zhang, Zhao Han, Yichi Zhang, Maliang Liu, Ningning Zhang, Huiyong Hu, and Liming Wang. "Charge transport behaviors in a multi-gated WSe2/MoS2 heterojunction." Applied Physics Letters 121, no. 4 (July 25, 2022): 043501. http://dx.doi.org/10.1063/5.0097390.
Full textMa, C. L. F., M. J. Deen, and R. H. S. Hardy. "Excess currents as a result of trap-assisted tunneling in double barrier resonant tunneling diodes." Canadian Journal of Physics 70, no. 10-11 (October 1, 1992): 1005–12. http://dx.doi.org/10.1139/p92-161.
Full textLaruelle, F., and G. Faini. "Thermally desactivated resonant current in high peak to valley current ratio (69:1) GaAs/GaAlAs resonant tunneling structures: A spectroscopic view of the emitter density of state." Solid-State Electronics 37, no. 4-6 (April 1994): 987–90. http://dx.doi.org/10.1016/0038-1101(94)90342-5.
Full textSyzranov, V. S., O. A. Klimenko, A. S. Ermolov, I. P. Kazakov, S. S. Shmelev, V. I. Egorkin, and V. N. Murzin. "Single-well resonant-tunneling diode heterostructures based on In0.53Ga0.47As/AlAs/InP with the peak-to-valley current ratio of 22:1 at room temperature." Bulletin of the Lebedev Physics Institute 40, no. 8 (August 2013): 240–43. http://dx.doi.org/10.3103/s106833561308006x.
Full textYang, Zhang, Zeng Yi-Ping, Ma Long, Wang Bao-Qiang, Zhu Zhan-Ping, Wang Liang-Chen, and Yang Fu-Hua. "Nanoelectronic devices—resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature." Chinese Physics 15, no. 6 (May 31, 2006): 1335–38. http://dx.doi.org/10.1088/1009-1963/15/6/034.
Full text