Academic literature on the topic 'Payload sizing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Payload sizing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Payload sizing"
Haley, J. G., T. P. McCall, I. W. Maynard, and B. Chudoba. "A sizing-based approach to evaluate hypersonic demonstrators: demonstrator-carrier constraints." Aeronautical Journal 124, no. 1279 (April 17, 2020): 1318–49. http://dx.doi.org/10.1017/aer.2020.30.
Full textAvanzini, Giulio, Emanuele L. de Angelis, Fabrizio Giulietti, and Edmondo Minisci. "Optimal Sizing of Electric Multirotor Configurations." MATEC Web of Conferences 233 (2018): 00028. http://dx.doi.org/10.1051/matecconf/201823300028.
Full textONEL, Alexandru-Iulian, and Teodor-Viorel CHELARU. "Weights and sizing assessment in the context of small launcher design." INCAS BULLETIN 12, no. 3 (September 1, 2020): 137–50. http://dx.doi.org/10.13111/2066-8201.2020.12.3.11.
Full textKumar, A., S. C. Sati, and A. K. Ghosh. "Design, Testing, and Realisation of a Medium Size Aerostat Envelope." Defence Science Journal 66, no. 2 (March 23, 2016): 93. http://dx.doi.org/10.14429/dsj.66.9291.
Full textChávez, Javier Enrique Orna, Otto Fernando Balseca Sampedro, Jorge Isaías Caicedo Reyes, Diego Fernando Mayorga Pérez, Edwin Fernando Viteri Núñez, and Catalina Margarita Verdugo Bernal. "Análisis Y Diseño De Una Aeronave No Tripulada Para Uso Agrícola." European Scientific Journal, ESJ 13, no. 6 (February 28, 2017): 135. http://dx.doi.org/10.19044/esj.2017.v13n6p135.
Full textPatil, Ankur S., and Emily J. Arnold. "Sensor-Driven Preliminary Wing Ground Plane Sizing Approach and Applications." International Journal of Aerospace Engineering 2018 (July 2, 2018): 1–15. http://dx.doi.org/10.1155/2018/6378635.
Full textBehroo, Mahan, Afshin Banazadeh, and Andisheh Rahimi Golkhandan. "Design Methodology and Preliminary Sizing of an Unmanned Mars Exploration Plane (UMEP)." Applied Mechanics and Materials 332 (July 2013): 15–20. http://dx.doi.org/10.4028/www.scientific.net/amm.332.15.
Full textda Silva, José Roberto Cândido, and Gefeson Mendes Pacheco. "An Extended Methodology for Sizing Solar Unmanned Aerial Vehicles: Theory and Development of a Python Framework for Design Assist." Sensors 21, no. 22 (November 12, 2021): 7541. http://dx.doi.org/10.3390/s21227541.
Full textSridharan, Ananth, Bharath Govindarajan, and Inderjit Chopra. "A Scalability Study of the Multirotor Biplane Tailsitter Using Conceptual Sizing." Journal of the American Helicopter Society 65, no. 1 (January 1, 2020): 1–18. http://dx.doi.org/10.4050/jahs.65.012009.
Full textRajendran, Parvathy, and Howard Smith. "Development of Design Methodology for a Small Solar-Powered Unmanned Aerial Vehicle." International Journal of Aerospace Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2820717.
Full textDissertations / Theses on the topic "Payload sizing"
Camino, Jean-Thomas. "Co-optimisation charge utile satellite et système télécom." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30401.
Full textThe continuous growth in telecommunication needs in our society translates into a series of technical challenges for the systems that provide such services, whether it is television broadcasting, telephone, or data exchange. The telecommunication satellites are particularly concerned by this need for innovation, both on the embarked technologies but also on the way the resulting resources are exploited for the end users. On the latter point, for a telecommunication mission defined precisely in terms of service zone, type, quantity and quality of service, one has to be able to size as adequately as possible the telecommunication satellite payload, under the several constraints it is subject to: mass, volume, cost, and power consumption of the embarked hardware. This thesis develops an algorithmic approach for a such a sizing in the particular case of the telecommunication systems that are said to be "multi-beam". A global optimization process of these satellite system is proposed. It relies on a decomposition into a set of mathematical problems whose respective complexities, reduced with respect to the original problem, allow to reasonably aim for efficient algorithmic solutions. This work allowed to identify two key problems in this satellite payload sizing, addressed through an operations research angle: the beam layout optimization and the frequency plan optimization. This first beam layout problem under payload constraints has been an occasion to propose novel ways to handle Euclidean norm constraints on continuous variables for non-convex non-linear mixed programs. These techniques have been then successfully applied in for the generation of solutions to this first problem that fully exploits the mixed integer linear programming formalism. Then, a novel exploitation of some of the properties of the k-means clustering has been proposed as it allows to simplify these mathematical models and therefore accelerate the beam layout optimization. These mathematical programming algorithms have been then compared to a greedy heuristic developed during this thesis work. The second central sizing problem that has been identified is the frequency plan definition. It consists in a resource allocation of on-board satellite resources to the several beams that have been defined in the preceding beam layout optimization problem. With an objective of minimizing the number of a certain type of hardware to be embarked on the payload, the satisfaction of the telecommunication mission defined by an individual demand of all the end users on the ground is aimed. This complex problem itself lead to a decomposition into two sub-problems of frequency and on-board payload hardware allocation, that are treated with constraints programming and integer linear programming, exploiting theoretical results that are useful both at the problem modeling and problem solving levels
Books on the topic "Payload sizing"
Roche, Joseph M. Structural sizing of a 25,000-lb payload, air-breathing launch vehicle for single-state-to-orbit. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textBook chapters on the topic "Payload sizing"
Alexander, David, and Neil Murphy. "Payload Design and Sizing." In The International Handbook of Space Technology, 117–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41101-4_6.
Full textBrodsky, R. F. "Defining and Sizing Space Payloads." In Space Mission Analysis and Design, 229–84. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2692-2_9.
Full textBrodsky, R. F. "Defining and Sizing Space Payloads." In Space Mission Analysis and Design, 213–54. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3794-2_9.
Full textBrodsky, R. F. "Erratum to: Defining and Sizing Space Payloads." In Space Mission Analysis and Design, 874. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2692-2_25.
Full textDinc, Ali. "Preliminary Sizing and Performance Calculations of Unmanned Air Vehicles." In Automated Systems in the Aviation and Aerospace Industries, 242–72. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7709-6.ch009.
Full textConference papers on the topic "Payload sizing"
Hung, Chien-Chun, Chao-Hung Lin, Yao-Jen Teng, Chih-Ming Chang, and Yi-Kuang Wu. "Study on Mini UAV Designs to Payload Requirements by Airplane Sizing Methodology." In AIAA Infotech@Aerospace 2010. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-3507.
Full textde Carvalho Bertoli, Gustavo, Geraldo José Adabo, and Gefeson Mendes Pacheco. "Conceptual Design of Solar Powered Unmanned Aircraft System Considering Payload Power Requirements on Sizing." In 25th SAE BRASIL International Congress and Display. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-36-0437.
Full textAndersen, Torben Ole, and Michael R. Hansen. "Automated Sizing Procedure of Servo-Driven Robot for Pallettes Handling." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62409.
Full textTakahashi, Timothy, and Shane Donovan. "Incorporation of Mission Payload Power and Thermal Requirements into the Multi-Disciplinary Aircraft Performance and Sizing Process." In 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-9169.
Full textLiu, Tuanjie, Xiaohong Chen, and Wei Ye. "Concept Selection Philosophy for Floating Control Facilities." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20805.
Full textGerdes, John, Hugh A. Bruck, and Satyandra K. Gupta. "A Systematic Exploration of Wing Size on Flapping Wing Air Vehicle Performance." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47316.
Full textKunt, Cengiz O., Lawrence J. Mignosa, and James T. Pontius. "An Algorithm for Enveloping Linear Structural Response With Application to Spacecraft Stress Analysis." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0146.
Full textZhang, Hanqing, and Derek Smith. "Interference of Top Tensioned Risers for Tension Leg Platforms." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61334.
Full textGkoutzamanis, Vasilis G., Arjun Srinivas, Doukaini Mavroudi, Anestis I. Kalfas, Mavroudis D. Kavvalos, Konstantinos G. Kyprianidis, and George Korbetis. "Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15477.
Full textJames, Daniel, and Maurizio Collu. "Aerodynamically Alleviated Marine Vehicle (AAMV): Bridging the Maritime-to-Air Domain." In SNAME 13th International Conference on Fast Sea Transportation. SNAME, 2015. http://dx.doi.org/10.5957/fast-2015-019.
Full text