Dissertations / Theses on the topic 'Pattern recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Pattern recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
An, Kyung Hee. "Concurrent Pattern Recognition and Optical Character Recognition." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc332598/.
Full textYao, Xiaoqiang. "Pattern-recognition scheduling." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1177698616.
Full textPetheram, R. J. "Automatic pattern recognition." Thesis, University of Nottingham, 1989. http://eprints.nottingham.ac.uk/28974/.
Full textChoakjarernwanit, Naruetep. "Statistical pattern recognition." Thesis, University of Surrey, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306586.
Full textPlacide, Eustache. "Hybrid pattern recognition." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 1987. http://digitalcommons.auctr.edu/dissertations/3018.
Full textSmeraldi, Fabrizio. "Attention-driven pattern recognition /." [S.l.] : [s.n.], 2000. http://library.epfl.ch/theses/?nr=2153.
Full textAngstenberger, Larisa. "Dynamic fuzzy pattern recognition." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962701106.
Full textWeir, D. K. "Pattern recognition of electrocardiograms." Thesis, University of Ulster, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355922.
Full textLindén, Fredrik. "Fractal pattern recognition and recreation." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-181224.
Full textSun, Te-Wei. "DEPARS, design pattern recognition system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28464.pdf.
Full textHoang, Thai V. "Image Representations for Pattern Recognition." Phd thesis, Université Nancy II, 2011. http://tel.archives-ouvertes.fr/tel-00714651.
Full textWong, K. H. "Dynamic programming in pattern recognition." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383059.
Full textKinna, David John. "Pattern recognition in chemical crystallography." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318724.
Full textDaemi, M. F. "Information theory and pattern recognition." Thesis, University of Nottingham, 1990. http://eprints.nottingham.ac.uk/14003/.
Full textSardana, H. K. "Edge moments in pattern recognition." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357101.
Full textFüllen, Georg Karl-Heinz. "Protein engineering and pattern recognition." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/17354.
Full textSTOSIC, Dusan. "q-Gaussians for pattern recognition." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17361.
Full textMade available in DSpace on 2016-07-13T19:23:52Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dusan Stosic - dissertacao de mestrado.pdf: 6434406 bytes, checksum: db312999879f1c3ebb1795ce764a272e (MD5) Previous issue date: 2016-03-01
CAPES
Pattern recognition plays an important role for solving many problems in our everyday lives: from simple tasks such as reading texts to more complex ones like driving cars. Subconsciously, the recognition of patterns is instantaneous and an innate ability to every human. However, programming (or “teaching”) a machine how to do the same can present an incredibly difficult task. There are many situations where irrelevant or misleading patterns, poorly represented classes, and complex decision boundaries make recognition very hard, or even impossible by current standards. Important contributions to the field of pattern recognition have been attained through the adoption of methods of statistical mechanics, which has paved the road for much of the research done in academia and industry, ranging from the revival of connectionism to modern day deep learning. Yet traditional statistical mechanics is not universal and has a limited domain of applicability - outside this domain it can make wrong predictions. Non-extensive statistical mechanics has recently emerged to cover a variety of anomalous situations that cannot be described within standard Boltzmann-Gibbs theory, such as non-ergodic systems characterized by long-range interactions, or long-term memories. The literature on pattern recognition is vast, and scattered with applications of non-extensive statistical mechanics. However, most of this work has been done using non-extensive entropy, and little can be found on practical applications of other non-extensive constructs. In particular, non-extensive entropy is widely used to improve segmentation of images that possess strongly correlated patterns, while only a small number of works employ concepts other than entropy for solving similar recognition tasks. The main goal of this dissertation is to expand applications of non-extensive distributions, namely the q-Gaussian, in pattern recognition. We present ourcontributions in the form of two (published) articles where practical uses of q-Gaussians are explored in neural networks. The first paper introduces q Gaussian transfer functions to improve classification of random neural networks, and the second paper extends this work to ensembles which involves combining a set of such classifiers via majority voting.
Reconhecimento de padrões tem um papel importante na solução de diversos problemas no nosso quotidiano: a partir de tarefas simples como ler textos, até as mais complexas como dirigir carros. Inconscientemente, o reconhecimento de padrões pelo cérebro é instantâneo, representando uma habilidade inata de cada ser humano. No entanto, programar (ou “ensinar”) uma máquina para fazer o mesmo pode se tornar uma tarefa extremamente difícil. Há muitas situações onde padrões irrelevantes ou enganosos, classes mal representadas, ou bordas de decisões complexas, tornam o reconhecimento muito difícil, ou mesmo impossível pelos padrões atuais. Diversas contribuições importantes na área de reconhecimento de padrões foram alcançadas através da aplicação de métodos provenientes da mecânica estatística, que estimularam uma grande parte da pesquisa conduzida na academia bem como na indústria, desde o renascimento de conexionismo até o moderno conceito de “deep learning”. No entanto, a mecânica estatística tradicional não é universal e tem um domínio de aplicação limitado - fora deste domínio ela pode fazer previsões erradas. A mecânica estatística não-extensiva surgiu recentemente para atender uma variedade de situações anômalas que não podem ser descritas de forma adequada com a teoria de Boltzmann-Gibbs, tais como sistemas não-ergódicos, caracterizadas por interações de longo alcance, ou memórias de longo prazo. A literatura sobre reconhecimento de padrões é vasta, e dispersa com aplicações da mecânica estatística não-extensiva. No entanto, a maioria destes trabalhos utilizam a entropia não-extensiva, e existem poucas aplicações práticas de outros conceitos não-extensivos. Em particular, a entropia não extensiva é amplamente usada para aperfeiçoar segmentação de imagens que possuem padrões fortemente correlacionados, enquanto apenas um pequeno número de trabalhos empregam outros conceitos não-extensivos para resolver tarefas semelhantes. O objetivo principal desta dissertação é expandir aplicações de distribuições não-extensivas, como a q-Gaussiana, em reconhecimento de padrões. Nos apresentamos as nossas contribuições no formato de dois artigos (publicados) onde exploramos usos práticos da q-Gaussiana em redes neurais. O primeiro artigo introduz funções de transferência baseados na q-Gaussiana para aperfeiçoar a classificação de redes neurais aleatórias, e o segundo artigo estende este trabalho para ensembles, onde um conjunto de tais classificadores são combinados através de votação por maioria.
Ihnatenko, N. V. "Systems for automatic pattern recognition." Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34837.
Full textDover, Kathryn. "Pattern Recognition in Stock Data." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/105.
Full textMartino, Federico De. "Pattern recognition of brain signals." [Maastricht] : [Maastricht University], 2008. http://arno.unimaas.nl/show.cgi?fid=13359.
Full textBurles, Nathan. "Pattern recognition using associative memories." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/7368/.
Full textCalvo-Zaragoza, Jorge. "Pattern Recognition for Music Notation." Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/63415.
Full textUL-ISLAM, IHTESHAM. "Feature Fusion for Pattern Recognition." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2592755.
Full textOu, Chung-Pei. "Protein array for small molecules recognition using pattern recognition." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420941.
Full textAl, Rifaee Mustafa Moh'd Husien. "Unconstrained iris recognition." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10949.
Full textRobinson, Daniel D. "Applications of pattern recognition and pattern analysis to molecule design." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343465.
Full textMankoff, Jennifer C. "An architecture and interaction techniques for handling ambiguity in recognition-based input." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/8214.
Full textMahmood, A. "Automatic drawing recognition." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381072.
Full textScott, Emily A. "Recognition of aerospace acoustic sources using advanced pattern recognition techniques." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-03022010-020131/.
Full textSuh, Bongwon. "Image management using pattern recognition systems." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2455.
Full textThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hall, Arthur Daniel. "Pipelined image processing for pattern recognition." Thesis, University of Cambridge, 1992. https://www.repository.cam.ac.uk/handle/1810/251523.
Full textColven, David Michael. "Tactile pattern recognition using neural networks." Thesis, University of Ottawa (Canada), 1993. http://hdl.handle.net/10393/6513.
Full textZieba, Maciej. "Multistage neural networks for pattern recognition." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2087.
Full textKleyko, Denis. "Pattern Recognition with Vector Symbolic Architectures." Licentiate thesis, Luleå tekniska universitet, Datavetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17439.
Full textGodkänd; 2016; 20160207 (denkle); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Denis Kleyko Ämne: Kommunikations- och beräkningssystem / Dependable Communication and Computation Systems Uppsats: Pattern Recognition with Vector Symbolic Architectures Examinator: Professor Evgeny Osipov Institutionen för system- och rymdteknik, Avdelning: Datavetenskap, Luleå tekniska universitet. Diskutant: Associate Professor Okko Räsänen, Aalto University, Department of Signal Processing and Acoustics, Finland. Tid: Måndag 21 mars, 2016 kl 10.00 Plats: A109, Luleå tekniska universitet
Wang, Qun. "Bootstrap techniques for statistical pattern recognition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0027/MQ52407.pdf.
Full textSherrah, Jamie. "Automatic feature extraction for pattern recognition /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phs553.pdf.
Full textCD-ROM in back pocket comprises experimental results and executables. Includes bibliographical references (p. 251-261).
Surkov, David. "Inductive confidence machine for pattern recognition." Thesis, Royal Holloway, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412337.
Full textElliffe, Martin C. M. "Neural networks for Invariant pattern recognition." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302530.
Full textRagothaman, Pradeep. "EFFICIENT ALGORITHMS FOR CORRELATION PATTERN RECOGNITION." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2132.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Thompson, J. R. "Applications of pattern recognition in medicine." Thesis, Open University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377939.
Full textChoakjarernwanit, Naruetep. "Feature selection in statistical pattern recognition." Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/843569/.
Full textZhendong, Wang. "Error Pattern Recognition Using Machine Learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150589.
Full textLucas, Simon Mark. "Connectionist architectures for syntactic pattern recognition." Thesis, University of Southampton, 1991. https://eprints.soton.ac.uk/256263/.
Full textKou, Yufeng. "Abnormal Pattern Recognition in Spatial Data." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/30145.
Full textPh. D.
Tembe, Waibhav D. "Proximity Metrics for Contextual Pattern Recognition." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1096665126.
Full textVillegas, Santamaría Mauricio. "Contributions to High-Dimensional Pattern Recognition." Doctoral thesis, Universitat Politècnica de València, 2011. http://hdl.handle.net/10251/10939.
Full textVillegas Santamaría, M. (2011). Contributions to High-Dimensional Pattern Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10939
Palancia
Siddique, Nahian A. "PATTERN RECOGNITION IN CLASS IMBALANCED DATASETS." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4480.
Full textSuliman, Ayman, and Joakim Bäverlind. "Experiments With Four Pattern Recognition Algorithms." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214730.
Full textEl, Ghawalby Heyayda. "Spectral geometry for structural pattern recognition." Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/1525/.
Full textDannenberg, Matthew. "Pattern Recognition in High-Dimensional Data." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/76.
Full text