Academic literature on the topic 'Patial Frequency Domain Imaging'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Patial Frequency Domain Imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Patial Frequency Domain Imaging"

1

Lin, Jingyu, Yebin Liu, Jinli Suo, and Qionghai Dai. "Frequency-Domain Transient Imaging." IEEE Transactions on Pattern Analysis and Machine Intelligence 39, no. 5 (May 1, 2017): 937–50. http://dx.doi.org/10.1109/tpami.2016.2560814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang Hong, 杨虹, 黄远辉 Huang Yuanhui, 苗少峰 Miao Shaofeng, 宫睿 Gong Rui, 邵晓鹏 Shao Xiaopeng, and 毕祥丽 Bi Xiangli. "Frequency-domain photoacoustic imaging system." Infrared and Laser Engineering 45, no. 4 (2016): 0424001. http://dx.doi.org/10.3788/irla201645.0424001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Shan, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, et al. "Frequency-domain diagonal extension imaging." Advanced Photonics 2, no. 03 (June 2, 2020): 1. http://dx.doi.org/10.1117/1.ap.2.3.036005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zander, Dani S. "Volumetric Optical Frequency Domain Imaging." Chest 143, no. 1 (January 2013): 10–12. http://dx.doi.org/10.1378/chest.12-1864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland, and T. Douglas Mast. "Frequency-domain passive cavitation imaging." Journal of the Acoustical Society of America 141, no. 5 (May 2017): 3458. http://dx.doi.org/10.1121/1.4987172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Guang-Ming, Derek R. Braden, David M. Harvey, and David R. Burton. "Acoustic time-frequency domain imaging." Journal of the Acoustical Society of America 128, no. 5 (November 2010): EL323—EL328. http://dx.doi.org/10.1121/1.3505760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Konecky, Soren D. "Imaging scattering orientation with spatial frequency domain imaging." Journal of Biomedical Optics 16, no. 12 (December 1, 2011): 126001. http://dx.doi.org/10.1117/1.3657823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yun, S., G. Tearney, Johannes de Boer, N. Iftimia, and B. Bouma. "High-speed optical frequency-domain imaging." Optics Express 11, no. 22 (November 3, 2003): 2953. http://dx.doi.org/10.1364/oe.11.002953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland, and T. Douglas Mast. "Quantitative Frequency-Domain Passive Cavitation Imaging." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 64, no. 1 (January 2017): 177–91. http://dx.doi.org/10.1109/tuffc.2016.2620492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vakoc, B. J., S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma. "Phase-resolved optical frequency domain imaging." Optics Express 13, no. 14 (2005): 5483. http://dx.doi.org/10.1364/opex.13.005483.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Patial Frequency Domain Imaging"

1

Ségaud, Silvère. "Multispectral optical imaging in real-time for surgery." Electronic Thesis or Diss., Strasbourg, 2022. http://www.theses.fr/2022STRAD055.

Full text
Abstract:
Le développent technologique des salles d’opérations a accéléré de manière spectaculaire ces dernières années. Cependant, la capacité des praticiens à différencier les tissus sains des tissus malsains à travers le champ chirurgical est principalement basée sur leur propre perception et expérience. Ceci est pourtant d’une importance majeure en chirurgie oncologique, tant pour la résection de tumeurs que pour les actes de reconstruction. C’est pourquoi la capacité d’évaluer le statut des tissus biologiques à travers des zones étendues en temps réel est cruciale. Le manque d’outils permettant l’évaluation de la viabilité des tissus biologique dans un contexte intra opératoire a été la motivation principale de ce projet. Un prototype d’imageur multimodal clinique a été développé pour l’imagerie d’oxygénation et de fluorescence en temps-réel. La capacité de la plateforme à quantifier l’ischémie a été démontrée lors de tests précliniques, par comparaison avec les méthodes standards. Le caractère multimodal de la plateforme d’imagerie a été exploité pour combiner l’imagerie endogène mesurant les propriétés optiques des tissus et l’imagerie exogène par fluorescence, dans le cadre de la chirurgie du cancer. Une méthode de quantification a été employée lors d’essais précliniques sur des modèles de cancers colorectaux et pancréatiques, mettant en évidence les défaillances de l’imagerie de fluorescence conventionnelle
The deployment of technology in operating rooms dramatically accelerated over the last decades. More precisely, the surgeons’ ability to distinguish healthy from diseased tissues is still mostly based on their own subjective perception. As tissue status assessment is of upmost importance in oncologic surgery, both for tumor resection and reconstruction procedures, the ability to assess the tissues intraoperatively and in real-time over a large field is crucial for surgical act guidance. The lack of tools for biological intraoperative tissue status assessment has been the main source of motivation for this thesis work. A clinically-compatible imaging platform has been developed for oxygenation and fluorescence imaging in real-time. The capability of the platform to detect and quantify ischemia has been demonstrated through preclinical trials, by comparison with standard of care methods. Furthermore, the multimodal nature of the developed imaging device has been exploited by combining endogenous imaging of optical properties with exogenous fluorescence imaging, in the context of oncologic surgery. A fluorescence quantification technique was validated in preclinical trials with colorectal and pancreatic cancer models, highlighting the limitations of conventional fluorescence imaging
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Edward Chin Wang. "Optical frequency domain imaging of human retina and choroid." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38556.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Includes bibliographical references (p. 81-87).
Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatially-resolve backreflections from within tissue, this high-resolution technique provides cross-sectional images of the anterior and posterior eye segments that had previously only been possible with histology. Current commercially-available OCT systems suffer limitations in speed and sensitivity, preventing them from effective screening of the retina and having a larger impact on the clinical environment. While other technological advances have addressed this problem, they are inadequate for imaging the choroid, which can be useful for evaluating choroidal disorders as well as early stages of retinal diseases. The objective of this thesis was to develop a new ophthalmic imaging method, termed optical frequency domain imaging (OFDI), to overcome these limitations. Preliminary imaging of the posterior segment of human eyes in vivo was performed to evaluate the utility of this instrument for comprehensive ophthalmic examination.
(cont.) The 1050-nm OFDI system developed for this thesis comprised a novel wavelength-swept laser that delivered 2.7 mW of average power at a sweep rate of 18.8 kHz, representing a two-order-of-magnitude improvement in speed over previously-demonstrated lasers in the 1050-nm range and below. The system, with an optical exposure level of 550 gW, achieved resolution of 10 gm in tissue and sensitivity of >92 dB over a depth range of 2.4 mm. Two healthy volunteers were imaged with the OFDI system, with 200,000 A-lines over 10.6 seconds in each imaging session. In comparison to results from a state-of-the-art spectral-domain OCT system, the OFDI system provided deeper penetration into the choroid. This thesis demonstrates OFDI's capability for comprehensive imaging of the human retina, optic disc, and choroid in vivo. The deep penetration power of the system enabled the first simultaneous visualization of retinal and choroidal vasculature without the exogenous dyes required by angiography. The combined capability for imaging microstructure and vasculature using a single instrument may be a significant factor influencing clinical acceptance of ophthalmic OFDI technology.
by Edward Chin Wang Lee.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
3

Heffer, Erica Leigh. "Frequency-domain optical mammography for detection and oximetry of breast tumors /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.

Find full text
Abstract:
Thesis (Ph.D.)--Tufts University, 2004.
Adviser: Sergio Fantini. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 201-202). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
APA, Harvard, Vancouver, ISO, and other styles
4

Van, Vorst Daryl. "Cross-hole GPR imaging : traveltime and frequency-domain full-waveform inversion." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51664.

Full text
Abstract:
Ground-penetrating radar (GPR) has the potential for high-resolution imaging of near-surface material properties, including electrical conductivity and permittivity, which can be used for geological interpretation of the near subsurface. This thesis presents ray-based traveltime inversion and frequency-domain full-waveform inversion (FWI) techniques for application to borehole GPR surveys. Ray-based traveltime inversion is attractive for its speed, reliability, and ability to work in 3D, but the ray approximation involved limits recoverable detail to greater than one wavelength. The traveltime method presented here uses an efficient and easily programmed fast-sweeping eikonal solver to compute traveltimes. The inversion method also incorporates the unknown time offset between signal transmission and start of recording at the receiver as a model parameter that is recovered simultaneously with the material slowness. The resolution of FWI approaches the diffraction limit of one half wavelength, but at a substantial computational cost. The FWI inversion scheme presented here works in 2D and is unique in its simultaneous recovery of the source wavelet, conductivity, and permittivity. Its frequency-domain formulation allows for efficient factorization of the forward modeling operator and its subsequent application to multiple right-hand sides in order to quickly construct the forward model Jacobian. Efficient calculation of the Jacobian allows the use of the Gauss-Newton technique rather than the gradient descent method that is common for other GPR FWI inversions. Measured data must be converted from 3D to 2D before use with this 2D FWI technique. I present a graphical derivation of the perpendicular ray Jacobian, which is an essential part of 3D to 2D transformation. The graphical derivation provides the reader with an intuitive understanding of the Jacobian that is difficult to obtain from traditional mathematical treatments. I also illustrate that 3D to 2D transfer functions previously derived for the acoustic case are applicable to borehole GPR.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
5

Yong, Kai Yaw. "Frequency domain optical techniques for imaging and spectroscopy of scattering media." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kujala, Naresh Gandhi Yu Ping. "Frequency domain fluorescent molecular tomography and molecular probes for small animal imaging." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7021.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 26, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Ping Yu. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Petrack, Alec M. "Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596066982589817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poon, Chien Sing. "Early Assessment of Burn Severity in Human Tissue with Multi-Wavelength Spatial Frequency Domain Imaging." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484582176416423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rasmussen, John C. "Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system." Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davies, Christopher W. "Quantification of Optical Parameters Using Frequency Domain Functional Near-Infrared Spectroscopy (FD-fNIRS)." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559369168541587.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Patial Frequency Domain Imaging"

1

Time-Frequency Transforms for Radar Imaging and Signal Analysis. Artech House Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals: The Stockwell Transform Applied on Bio-signals and Electric Signals. Wiley-Interscience, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Patial Frequency Domain Imaging"

1

Bouma, Brett E., Guillermo J. Tearney, Benjamin Vakoc, and Seok Hyun Yun. "Optical Frequency Domain Imaging." In Optical Coherence Tomography, 225–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouma, B. E., G. J. Tearney, B. J. Vakoc, and S. H. Yun. "Optical Frequency Domain Imaging." In Optical Coherence Tomography, 209–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allam, Mahmoud E., and James F. Greenleaf. "Two-Dimensional Frequency Domain Phase Aberration Correction." In Acoustical Imaging, 159–64. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Subramanian, Sankaran, James B. Mitchell, and Murali C. Krishna. "Time-Domain Radio Frequency EPR Imaging." In In Vivo EPR (ESR), 153–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0061-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bossuyt, A., R. Luypaert, J. Van Craen, F. Deconinck, and A. B. Brill. "Adaptive Frequency-Domain Filtering Of Dynamic Scintigraphies." In Information Processing in Medical Imaging, 207–15. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4261-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McKeon, James C. P. "Frequency Domain Filtering for Enhanced SAM Inspection of Microelectronic Components." In Acoustical Imaging, 353–61. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maier, J., S. Walker, and E. Gratton. "Frequency-Domain Optical Spectroscopy and Imaging of Tissues." In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 121–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shonat, Ross D., and Amanda C. Kight. "Frequency Domain Imaging of Oxygen Tension in the Mouse Retina." In Advances in Experimental Medicine and Biology, 243–47. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0205-0_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Verveer, Peter J., Anthony Squire, and Philippe I. H. Bastiaens. "Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell." In Methods in Cellular Imaging, 273–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, Chen-Yuan, Christof Buehler, Peter T. C. So, Todd French, and Enrico Gratton. "Biological Applications of Time-Resolved, Pump-Probe Fluorescence Microscopy and Spectroscopy in the Frequency Domain." In Methods in Cellular Imaging, 324–40. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Patial Frequency Domain Imaging"

1

Lee, Zhenghong, Pedro J. Diaz, and Errol M. Bellon. "Frequency domain clipping for volume rendering." In Medical Imaging 1996, edited by Yongmin Kim. SPIE, 1996. http://dx.doi.org/10.1117/12.238477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gratton, E. "Techniques C: frequency domain." In Medical Optical Tomography: Functional Imaging and Monitoring, edited by Gerhard J. Mueller. SPIE, 1993. http://dx.doi.org/10.1117/12.2283773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Panigrahi, Swapnesh, and Sylvain Gioux. "Spatial frequency domain imaging: frequency selection (Conference Presentation)." In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren S. Grundfest. SPIE, 2018. http://dx.doi.org/10.1117/12.2290220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, Mani, and Doron Shaked. "Frequency domain design of cluster dot screens." In Electronic Imaging 2006, edited by Reiner Eschbach and Gabriel G. Marcu. SPIE, 2006. http://dx.doi.org/10.1117/12.641903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mantulin, William W., Todd E. French, and Enrico Gratton. "Optical imaging in the frequency domain." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by David M. Harris, Carl M. Penney, and Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chue-Sang, Joseph, Aaron M. Goldfain, Jeeseong Hwang, and Thomas A. Germer. "Spatial frequency domain Mueller matrix imaging." In Polarized light and Optical Angular Momentum for biomedical diagnostics, edited by Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson, and Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2576350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sandhu, Gursharan Yash Singh, Cuiping Li, Olivier Roy, Erik West, Katelyn Montgomery, Michael Boone, and Neb Duric. "Frequency-domain ultrasound waveform tomography breast attenuation imaging." In SPIE Medical Imaging, edited by Neb Duric and Brecht Heyde. SPIE, 2016. http://dx.doi.org/10.1117/12.2218374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sandhu, Gursharan Yash, Erik West, Cuiping Li, Olivier Roy, and Neb Duric. "3D frequency-domain ultrasound waveform tomography breast imaging." In SPIE Medical Imaging, edited by Neb Duric and Brecht Heyde. SPIE, 2017. http://dx.doi.org/10.1117/12.2254399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

El-Sharkawy, Yasser H., and Bassam Abd-Elwahab. "Nonintrusive noncontacting frequency-domain photothermal radiometry of caries." In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.843769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

deJong, Max, Guy Perkins, Hamid Dehghani, and Adam Eggebrecht. "Multifrequency frequency domain diffuse optical tomography." In Diffuse Optical Spectroscopy and Imaging VIII, edited by Davide Contini, Yoko Hoshi, and Thomas D. O'Sullivan. SPIE, 2021. http://dx.doi.org/10.1117/12.2615390.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Patial Frequency Domain Imaging"

1

Khavandi, Ali. Treatment of a Bifurcation Lesion Using a Two-stent ‘Reverse’ T and Small Protrusion Technique Via a Glidesheath Slender® and Optimisation using 3D Optical Frequency Domain Imaging. Radcliffe Cardiology, November 2017. http://dx.doi.org/10.15420/rc.2017.m018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography