Journal articles on the topic 'Pathogenic'

To see the other types of publications on this topic, follow the link: Pathogenic.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pathogenic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gvozdyak, R. I. "«Pathogen-1» Experiment Aggression of pathogenic bacteria in microgravity." Kosmìčna nauka ì tehnologìâ 6, no. 4 (July 30, 2000): 111. http://dx.doi.org/10.15407/knit2000.04.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ruchel, Reinhard. "Proteinasen pathogener Pilze: Proteinases of pathogenic fungi." Mycoses 42, S1 (April 1999): 48–52. http://dx.doi.org/10.1111/j.1439-0507.1999.tb04527.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gharwalova, Lucia, Marketa Kulisova, Anastasiia Vasyliuk, Helena Maresova, Andrea Palyzova, Linda Nedbalova, and Irena Kolouchova. "Sphingolipids of plant pathogenic fungi." Plant Protection Science 57, No. 2 (March 1, 2021): 134–39. http://dx.doi.org/10.17221/131/2020-pps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Glycosphingolipids in filamentous fungi are significant components of the plasma membrane and are vital for different cellular processes, such as growth, morphological transition or signal transduction. Fungal growth inhibitors targeting glycosylinositolphosphoceramide (GIPCs) biosynthesis or antifungal compounds binding to GIPCs present in membranes could present a safe way of preventing fungal growth on crops since GIPCs are not present in mammalian cells. Mass spectrometry-based shotgun lipidomics was used to analyze sphingolipids of 11 fungal strains isolated from plant material. Molecular species with inositol ceramides containing zero to five carbohydrates were identified. Differences in the amount of individual molecular species were influenced by the taxonomic affiliation. All tested strains exhibited a relatively high content (more than 40 mol.%) of GIPCs with three and more saccharides attached to the polar head. It could be assumed that the sphingolipid profiles of the tested plant pathogens would be an adaptation mechanism to antifungal plant defensins.
4

Finn, Albert F., and Peter D. Gorevic. "Pathogenic paraproteins." Current Opinion in Rheumatology 2, no. 4 (August 1990): 652–60. http://dx.doi.org/10.1097/00002281-199002040-00017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horvat, Rebecca T. "PATHOGENIC FUNGI." Shock 30, no. 6 (December 2008): 753. http://dx.doi.org/10.1097/01.shk.0000336210.36795.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gould, EA, and T. Solomon. "Pathogenic flaviviruses." Lancet 371, no. 9611 (February 2008): 500–509. http://dx.doi.org/10.1016/s0140-6736(08)60238-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DIPERRI, G. "PATHOGENIC ENTAMOEBA." Lancet 331, no. 8595 (May 1988): 1166. http://dx.doi.org/10.1016/s0140-6736(88)91980-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Shou-Jiang. "Pathogenic procedures." Trends in Microbiology 5, no. 3 (March 1997): 125–26. http://dx.doi.org/10.1016/s0966-842x(97)87506-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tran Van Nhieu, Guy. "Pathogenic paradox?" Trends in Microbiology 7, no. 3 (March 1999): 102. http://dx.doi.org/10.1016/s0966-842x(99)01473-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Casci, Tanita. "Pathogenic conversions." Nature Reviews Genetics 13, no. 1 (December 16, 2011): 2. http://dx.doi.org/10.1038/nrg3143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dempsey, Laurie A. "Pathogenic antibodies." Nature Immunology 20, no. 11 (October 22, 2019): 1414. http://dx.doi.org/10.1038/s41590-019-0535-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

POOLMAN, J. "Pathogenic neisseriae." Lancet 336, no. 8722 (October 1990): 1061. http://dx.doi.org/10.1016/0140-6736(90)92518-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Prasanna, Arun N., and Sarika Mehra. "Comparative Phylogenomics of Pathogenic and Non-Pathogenic Mycobacterium." PLoS ONE 8, no. 8 (August 28, 2013): e71248. http://dx.doi.org/10.1371/journal.pone.0071248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Foley, J. F. "Detecting a Pathogenic Activity, Not a Pathogenic Molecule." Science Signaling 7, no. 343 (September 16, 2014): ec252-ec252. http://dx.doi.org/10.1126/scisignal.2005897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Thongboonkerd, Visith, Wararat Chiangjong, Putita Saetun, Supachok Sinchaikul, Shui-Tein Chen, and Uraiwan Kositanont. "Analysis of differential proteomes in pathogenic and non-pathogenic Leptospira : Potential pathogenic and virulence factors." PROTEOMICS 9, no. 13 (July 2009): 3522–34. http://dx.doi.org/10.1002/pmic.200700855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bøe, Johs. "On the Distinction Between Pathogenic and Non-Pathogenic Staphylococci." Acta Pathologica Microbiologica Scandinavica 21, no. 5 (August 14, 2009): 721–30. http://dx.doi.org/10.1111/j.1699-0463.1944.tb04972.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wurtzel, Omri, Nina Sesto, J. R. Mellin, Iris Karunker, Sarit Edelheit, Christophe Bécavin, Cristel Archambaud, Pascale Cossart, and Rotem Sorek. "Comparative transcriptomics of pathogenic and non‐pathogenic Listeria species." Molecular Systems Biology 8, no. 1 (January 2012): 583. http://dx.doi.org/10.1038/msb.2012.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DiMiceli, Lauren. "Distinguishing Between Pathogenic and Non-Pathogenic Species of Entamoeba." Laboratory Medicine 35, no. 10 (October 1, 2004): 613–15. http://dx.doi.org/10.1309/b81npvaw8y4bgy11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Roberts, Glenn D. "Medical Mycology: The Pathogenic Fungi and the Pathogenic Actinomycetes." Mayo Clinic Proceedings 63, no. 10 (October 1988): 1061–62. http://dx.doi.org/10.1016/s0025-6196(12)64931-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Prasad, Rajendra, Frédéric Devaux, Sanjiveeni Dhamgaye, and Dibyendu Banerjee. "Response of pathogenic and non-pathogenic yeasts to steroids." Journal of Steroid Biochemistry and Molecular Biology 129, no. 1-2 (March 2012): 61–69. http://dx.doi.org/10.1016/j.jsbmb.2010.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hopsu-Havu, V. K., C. E. Sonck, and Elvi Tunnela. "Production of Elastase by Pathogenic and Non-Pathogenic Fungi." Mycoses 15, no. 3 (April 24, 2009): 105–10. http://dx.doi.org/10.1111/j.1439-0507.1972.tb01357.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ahearn, Donald G. "Medical Mycology: The Pathogenic Fungi and the Pathogenic Actinomycetes." JAMA: The Journal of the American Medical Association 260, no. 12 (September 23, 1988): 1794. http://dx.doi.org/10.1001/jama.1988.03410120140051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gaminda, K. A. P. "DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA." Biotechnologia Acta 14, no. 5 (October 2021): 5–20. http://dx.doi.org/10.15407/biotech14.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Aim. The purpose of the review was to analyze the use of DNAzyme biosensors for the detection of pathogens. In the recent years, deoxyribozymes (DNAzymes) have a significant impact as biosensors in diverse fields, from detection of metal ions in the environment to theranostic applications and detection of microorganisms. Although routinely used sophisticated instrumental methods are available to detect pathogenic bacterial contamination, they involve time-consuming, complicated sample pre-treatment and expensive instruments. As an alternative, pathogen-specific DNAzymes have demonstrated a series of advantages: a non-destructive rapid analysis technique with in situ and real-time detection of bacteria with high sensitivity and selectivity. A wide range of pathogen-specific DNAzymes has been developed using colorimetric and fluorescence-based detections for pathogenic bacterial contamination in various samples. The current review summarizes the in vitro selection of pathogen-specific DNAzymes, various strategies utilized in the sensor designs, and their potential use in theranostic applications.
24

Orlyankin, B. G., and T. I. Aliper. "Porcine pathogenic viruses." "Veterinary Medicine" Journal 23, no. 01 (January 2020): 03–08. http://dx.doi.org/10.30896/0042-4846.2020.23.1.03-08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kaper, James B., James P. Nataro, and Harry L. T. Mobley. "Pathogenic Escherichia coli." Nature Reviews Microbiology 2, no. 2 (February 2004): 123–40. http://dx.doi.org/10.1038/nrmicro818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Parkhill, Julian, and Colin Berry. "Relative pathogenic values." Nature 423, no. 6935 (May 2003): 23–24. http://dx.doi.org/10.1038/423023a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Suerbaum, Sebastian, and Torkel Wadström. "Bacterial pathogenic factors." Current Opinion in Gastroenterology 11 (1995): 11–15. http://dx.doi.org/10.1097/00001574-199501001-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Figura, Natale, and Soad Tabaqchali. "Bacterial pathogenic factors." Current Opinion in Gastroenterology 12 (January 1996): 11–15. http://dx.doi.org/10.1097/00001574-199601001-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bisel, Ryan S., and Debra J. Ford. "Diagnosing Pathogenic Eschatology." Communication Studies 59, no. 4 (November 21, 2008): 340–54. http://dx.doi.org/10.1080/10510970802467395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Charlotte, Harrison. "Identifying pathogenic pathways." Nature Reviews Drug Discovery 12, no. 7 (July 2013): 506. http://dx.doi.org/10.1038/nrd4061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Barešić, Anja, and Andrew C. R. Martin. "Compensated pathogenic deviations." BioMolecular Concepts 2, no. 4 (August 1, 2011): 281–92. http://dx.doi.org/10.1515/bmc.2011.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractDeleterious or ‘disease-associated’ mutations are mutations that lead to disease with high phenotype penetrance: they are inherited in a simple Mendelian manner, or, in the case of cancer, accumulate in somatic cells leading directly to disease. However, in some cases, the amino acid that is substituted resulting in disease is the wild-type native residue in the functionally equivalent protein in another species. Such examples are known as ‘compensated pathogenic deviations’ (CPDs) because, somewhere in the second species, there must be compensatory mutations that allow the protein to function normally despite having a residue which would cause disease in the first species. Depending on the nature of the mutations, compensation can occur in the same protein, or in a different protein with which it interacts. In principle, compensation can be achieved by a single mutation (most probably structurally close to the CPD), or by the cumulative effect of several mutations. Although it is clear that these effects occur in proteins, compensatory mutations are also important in RNA potentially having an impact on disease. As a much simpler molecule, RNA provides an interesting model for understanding mechanisms of compensatory effects, both by looking at naturally occurring RNA molecules and as a means of computational simulation. This review surveys the rather limited literature that has explored these effects. Understanding the nature of CPDs is important in understanding traversal along fitness landscape valleys in evolution. It could also have applications in treating diseases that result from such mutations.
32

Jauniaux, E. "I158 PATHOGENIC MECHANISMS." International Journal of Gynecology & Obstetrics 119 (October 2012): S199—S200. http://dx.doi.org/10.1016/s0020-7292(12)60188-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Angell, E. "Pathogenic waste treatment." Environment International 23, no. 3 (1997): IX—X. http://dx.doi.org/10.1016/s0160-4120(97)88023-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kaper, James B. "Pathogenic Escherichia coli." International Journal of Medical Microbiology 295, no. 6-7 (October 2005): 355–56. http://dx.doi.org/10.1016/j.ijmm.2005.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fattakhov, R. "Genesis pathogenic ecosystems." Parasitology International 47 (August 1998): 329. http://dx.doi.org/10.1016/s1383-5769(98)80967-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bahcall, Orli G. "Classifying pathogenic variation." Nature Reviews Genetics 16, no. 3 (February 18, 2015): 131. http://dx.doi.org/10.1038/nrg3915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Holmes, Edward C. "Virology: Pathogenic passengers." Nature 478, no. 7369 (October 2011): 319–20. http://dx.doi.org/10.1038/478319a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shoenfeld, Yehuda. "Pathogenic natural autoantibodies." Clinical Immunology Newsletter 13, no. 2-3 (February 1993): 13–19. http://dx.doi.org/10.1016/0197-1859(93)90020-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wackett, Lawrence P. "Plant pathogenic microorganisms." Environmental Microbiology 17, no. 10 (October 2015): 4143–44. http://dx.doi.org/10.1111/1462-2920.13067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kiberstis, P. A. "NEUROSCIENCE: Pathogenic Tangles." Science 287, no. 5462 (March 31, 2000): 2377f—2377. http://dx.doi.org/10.1126/science.287.5462.2377f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Voelkner, Nadine. "Managing pathogenic circulation." Security Dialogue 42, no. 3 (June 2011): 239–59. http://dx.doi.org/10.1177/0967010611405393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Broder, Samuel. "Pathogenic Human Retroviruses." New England Journal of Medicine 318, no. 4 (January 28, 1988): 243–45. http://dx.doi.org/10.1056/nejm198801283180409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

H., G. C., and J. A. von Arx. "Plant Pathogenic Fungi." Mycologia 79, no. 6 (November 1987): 919. http://dx.doi.org/10.2307/3807701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

van West, Pieter, and Gordon W. Beakes. "Animal pathogenic Oomycetes." Fungal Biology 118, no. 7 (July 2014): 525–26. http://dx.doi.org/10.1016/j.funbio.2014.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Harborne, Jeffrey B. "Plant pathogenic bacteria." Phytochemistry 27, no. 5 (January 1988): 1569–70. http://dx.doi.org/10.1016/0031-9422(88)80251-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Calam, John. "4 Pathogenic mechanisms." Baillière's Clinical Gastroenterology 9, no. 3 (September 1995): 487–506. http://dx.doi.org/10.1016/0950-3528(95)90044-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Solbrig, Marylou V. "Human pathogenic arenaviruses." Annals of Neurology 64, no. 3 (February 25, 2008): 355–56. http://dx.doi.org/10.1002/ana.21350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Filip, Z., D. Kaddu-Mulindwa, and G. Milde. "Survival of Some Pathogenic and Facultative Pathogenic Bacteria in Groundwater." Water Science and Technology 20, no. 3 (March 1, 1988): 227–31. http://dx.doi.org/10.2166/wst.1988.0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In model experiments carried out in the laboratory the survival of bacteria in groundwater kept at 10±l °C was tested. Only two of the tested bacteria species did not survive longer than 10 - 30 days. Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and other pathogenic or facultative pathogenic bacteria survived up to 100 days or even more in ground-water with or without the addition of sand from an aquifer. These results can be of importance for determining groundwater protection zones.
49

Napalkova, G. M., I. I. Korsakova, N. P. Khrapova, N. N. Piven', L. V. Lomova, and T. V. Bulatova. "Differentiation of Pathogenic and Non-Pathogenic Burkholderias Using Rocket Immunoelectrophoresis." Problems of Particularly Dangerous Infections, no. 4(106) (August 20, 2010): 37–38. http://dx.doi.org/10.21055/0370-1069-2010-4(106)-37-38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Demostrated is the possibility to differentiate virulent strains of melioidosis and glanders etiological agents from avirulent ones and closely related microorganisms according to the presence of the antigenic complex 8, using rocket immunoelectrophoresis with the serum containing antibodies to this complex.
50

Korva, Miša, Nataša Knap, Katarina Rus, Luka Fajs, Gašper Grubelnik, Matejka Bremec, Tea Knapič, Tomi Trilar, and Tatjana Županc. "Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia." Viruses 5, no. 12 (December 10, 2013): 3071–87. http://dx.doi.org/10.3390/v5123071.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography