Academic literature on the topic 'Path flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Path flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Path flow"
Camplejohn, Richard S. "Flow cytometry." Journal of Pathology 166, no. 3 (March 1992): 323–26. http://dx.doi.org/10.1002/path.1711660317.
Full textSRajput, U., and Bal Govind Shukla. "Path Factorization Induced Network Flow." International Journal of Computer Applications 121, no. 16 (July 18, 2015): 30–39. http://dx.doi.org/10.5120/21626-4929.
Full textLi, L., and J. C. K. Cheng. "Perceiving path from optic flow." Journal of Vision 11, no. 1 (January 26, 2011): 22. http://dx.doi.org/10.1167/11.1.22.
Full textCheng, J., and L. Li. "Perceiving path from optic flow." Journal of Vision 11, no. 11 (September 23, 2011): 908. http://dx.doi.org/10.1167/11.11.908.
Full textCheng, Lin, Yasunori Iida, and Nobuhiro Uno. "A STOCHASTIC FLOW-DEPENDENT MODEL FOR PATH FLOW ESTIMATION." INFRASTRUCTURE PLANNING REVIEW 18 (2001): 573–80. http://dx.doi.org/10.2208/journalip.18.573.
Full textZHOU, Mingzheng, Ruichang ZHAO, Liuli SUN, and Huanran FAN. "ICONE23-1352 SIMULATION ANALYSIS OF INLET FLOW FIELD FOR AIR FLOW PATH OF PASSIVE CONTAINMENT COOLING SYSTEM." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_163.
Full textPark, Jun-Yong, Bo-Ra Kim, Deok-Young Sohn, Yun-Ho Choi, and Yong-Hee Lee. "A Study on Flow Characteristics and Flow Uniformity for the Efficient Design of a Flow Frame in a Redox Flow Battery." Applied Sciences 10, no. 3 (January 31, 2020): 929. http://dx.doi.org/10.3390/app10030929.
Full textFukugami, Takato, and Tomofumi Matsuzawa. "Improvement of Network Flow Using Multi-Commodity Flow Problem." Network 3, no. 2 (April 4, 2023): 239–52. http://dx.doi.org/10.3390/network3020012.
Full textEllmore, Timothy M., and Bruce L. McNaughton. "Human Path Integration by Optic Flow." Spatial Cognition & Computation 4, no. 3 (September 2004): 255–72. http://dx.doi.org/10.1207/s15427633scc0403_3.
Full textSillekens, W. H., J. H. Dautzenberg, and J. A. G. Kals. "Strain Path Dependence of Flow Curves." CIRP Annals 40, no. 1 (1991): 255–58. http://dx.doi.org/10.1016/s0007-8506(07)61981-7.
Full textDissertations / Theses on the topic "Path flow"
Cheng, Chuen-kei Joseph, and 鄭傳基. "Path perception from optic flow." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B4961759X.
Full textpublished_or_final_version
Psychology
Doctoral
Doctor of Philosophy
Gough, William Dennis. "Automated Flow Path Design Optimization Using Mesh Morphing." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2843.
Full textShukla, Ankur. "Image Based Flow Path Recognition for Chromatography Equipment." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392105.
Full textRyu, Seungkyu. "Modeling Transportation Planning Applications via Path Flow Estimator." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4225.
Full textSoÌlyom, PeÌter. "The effect of flow path geometry on landscape evolution." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422439.
Full textJackson, George Andrew. "Multiple path ultrasonic flow measurement techniques : theory and practice." Thesis, University of Liverpool, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232944.
Full textJhunjhunwala, Manish. "Multiphase flow and control of fluid path in microsystems." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/37456.
Full textIncludes bibliographical references.
Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network is crucial for connecting process elements. We show complete separation of individual phases (phase routing) from two-phase gas-liquid and liquid-liquid (aqueous-organic) mixtures on microscale. To provide for robust interfacing of operations in a network, we demonstrate this ability over a wide range of two-phase flow conditions, including transient ones. Enabled by the technique for complete separation of individual phases from two-phase mixtures, we show mixing of liquids by introduction of a passive gas-phase and demonstrate integration of mixing, reaction and phase separation on a single platform. Additionally, we use the principles developed for phase routing to design microfluidic valves that do not rely on elastic deformation of material. Such valves can be used in a variety of chemical environments, where polymer-based deformable materials would fail.
(cont.) We show a concept for realization of logic-gates on microscale using appropriate connections for these valves, paving the way for design of automation and computational control directly into microfluidic analysis without use of electronics. Further, we use the phase separation concept for sampling liquid from gas-liquid and liquid-liquid mixtures. Such sampling ability, when coupled with a suitable analysis system, can be used for retrieving process information (example mass-transfer coefficients, chemical kinetics) from multiphase-processes. We provide evidence of this through estimation of mass-transfer coefficients in a model oxygen-water system and show at least an order-of-magnitude improvement over macroscale systems. Controlled definition of fluid path enabled by laminar flow on microscale is used in a large number of applications. We examine the role of gravity in determining flow path of fluids in a microchannel. We demonstrate density-gradient-driven flows leading to complete reorientation of fluids in the gravitational field.
(cont.) We provide estimates of the time and velocity scales for different parameter ranges through two-dimensional and three-dimensional finite-element models, in agreement with experimental observations. We believe this thesis addresses a number of both: system and fundamental issues, advancing applications and understanding of microfluidic networks.
by Manish Jhunjhunwala.
Ph.D.
Poletto, Massimiliano Antonio. "Path splitting--a technique for improving data flow analysis." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/35028.
Full textIncludes bibliographical references (p. 83-87).
by Massimiliano Antonio Poletto.
M.Eng.
Chen, Ying Chih. "Visualizing Load Path in Perforated Shear Walls." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7609.
Full textKaya, Mustafa. "Path Optimization Of Flapping Airfoils Based On Unsteady Viscous Flow Solutions." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609349/index.pdf.
Full textBooks on the topic "Path flow"
Shafer, John M. GWPATH: Interactive ground-water flow path analysis. Champaign, Ill: Illinois State Water Survey Division, 1987.
Find full textMcArdle, Jack G. Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textMcArdle, Jack G. Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textMcArdle, Jack G. Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textMcArdle, Jack G. Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textHanover, Robert H. Analysis of ground-water flow along a regional flow path of the Midwestern Basins and Arches Aquifer System in Ohio. Columbus, Ohio: U.S. Geological Survey, 1994.
Find full textHanover, Robert H. Analysis of ground-water flow along a regional flow path of the Midwestern Basins and Arches Aquifer System in Ohio. Columbus, Ohio: U.S. Geological Survey, 1994.
Find full textHanover, Robert H. Analysis of ground-water flow along a regional flow path of the Midwestern Basins and Arches Aquifer System in Ohio. Columbus, Ohio: U.S. Geological Survey, 1994.
Find full textChmielniak, Tadeusz. SYMKOM'99: International conference compressor & turbine stage flow path theory, experiment & user verification. Łódź: Politechnika Łʹodzka, Instytut Maszn Przeoływowych, 1999.
Find full textPlummer, L. Niel. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH. Reston, Va: Dept. of the Interior, U.S. Geological Survey, 1991.
Find full textBook chapters on the topic "Path flow"
Kim, K. H., and J. M. A. Tanchoco. "Reachability in material flow path design." In Material Flow Systems in Manufacturing, 159–76. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2498-4_6.
Full textWinter, Kirsten, Chenyi Zhang, Ian J. Hayes, Nathan Keynes, Cristina Cifuentes, and Lian Li. "Path-Sensitive Data Flow Analysis Simplified." In Formal Methods and Software Engineering, 415–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41202-8_27.
Full textDeshpande, Paritosh C., and Arron W. Tippett. "Application of Material Flow Analysis: Mapping Plastics Within the Fishing Sector in Norway." In Business Transitions: A Path to Sustainability, 175–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22245-0_17.
Full textIndumathi, C. P., and A. Ajina. "Generating Feasible Path Between Path Testing and Data Flow Testing." In Evolutionary Computing and Mobile Sustainable Networks, 325–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5258-8_32.
Full textHunt, Allen, Robert Ewing, and Behzad Ghanbarian. "Specific Examples of Critical Path Analysis." In Percolation Theory for Flow in Porous Media, 131–56. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03771-4_5.
Full textHunt, Allen, and Robert Ewing. "Specific Examples of Critical Path Analysis." In Percolation Theory for Flow in Porous Media, 97–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89790-3_4.
Full textG. Hunt, Allen. "Specific Examples of Critical Path Analysis." In Percolation Theory for Flow in Porous Media, 67–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11430957_3.
Full textTaghdiri, Mana, Gregor Snelting, and Carsten Sinz. "Information Flow Analysis via Path Condition Refinement." In Lecture Notes in Computer Science, 65–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19751-2_5.
Full textYu, Jingjin, and Steven M. LaValle. "Multi-agent Path Planning and Network Flow." In Springer Tracts in Advanced Robotics, 157–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36279-8_10.
Full textRieger, N. F. "Flow Path Excitation Mechanisms for Turbomachine Blades." In CISM International Centre for Mechanical Sciences, 423–52. Vienna: Springer Vienna, 1988. http://dx.doi.org/10.1007/978-3-7091-2846-6_17.
Full textConference papers on the topic "Path flow"
Rojas, Elisa, Guillermo Ibanez, Diego Rivera, and Juan A. Carral. "Flow-Path: An AllPath flow-based protocol." In 2012 IEEE 37th Conference on Local Computer Networks (LCN 2012). IEEE, 2012. http://dx.doi.org/10.1109/lcn.2012.6423619.
Full textScaringe, R. P. "Flow Path and Flow Reversal Algorithms for SimTooltm." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9391.
Full textBarbar, Mohamad, Yulei Sui, Hongyu Zhang, Shiping Chen, and Jingling Xue. "Live path control flow integrity." In ICSE '18: 40th International Conference on Software Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3183440.3195093.
Full textBodík, Rastisalv, and Sadun Anik. "Path-sensitive value-flow analysis." In the 25th ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/268946.268966.
Full textLi, Peixuan, and Danfeng Zhang. "Towards a Flow- and Path-Sensitive Information Flow Analysis." In 2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE, 2017. http://dx.doi.org/10.1109/csf.2017.17.
Full textYadav, Nikita, and Vinod Ganapathy. "Whole-Program Control-Flow Path Attestation." In CCS '23: ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3576915.3616687.
Full textThakur, Aditya, and R. Govindarajan. "Comprehensive path-sensitive data-flow analysis." In the sixth annual IEEE/ACM international symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1356058.1356066.
Full textChun, Sejong. "Calculation of the Flow Profile Correction Factor Based on Flow Velocity Distribution Functions for Ultrasonic Flow Metering." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4679.
Full textKang, Weijia, Zhansheng Liu, Zhixuan Cao, Le Wang, and Gangwei Wang. "Numerical Research on Flow Characteristics of Inlet Flow-Path for Ram-Rotor." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68210.
Full textJalbert, Paul A., and Robert S. Hiers. "Mach Flow Angularity Probes for Scramjet Engine Flow Path Diagnostics." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932551.
Full textReports on the topic "Path flow"
Parker, Gary. Reaction Evolution Flow Chart - The Critical Path to DDT. Office of Scientific and Technical Information (OSTI), January 2024. http://dx.doi.org/10.2172/2282509.
Full textHopper, R. W. Surface path lines in plane stokes flow driven by capillarity. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10182958.
Full textDhody, D., A. Farrel, and Z. Li. Path Computation Element Communication Protocol (PCEP) Extension for Flow Specification. RFC Editor, January 2022. http://dx.doi.org/10.17487/rfc9168.
Full textArnold, B. W., S. J. Altman, and T. H. Robey. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94). Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/125424.
Full textHawley, Owston, and Thorson. PR-015-13610-R01 Effect of Upstream Piping Configuration on Ultrasonic Meter Bias - Flow Validation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2014. http://dx.doi.org/10.55274/r0010033.
Full textRans, Richard. PR-352-15600-Z01 USM Uncertainty Estimate From Diagnostics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2020. http://dx.doi.org/10.55274/r0010919.
Full textPiyush Sabharwall, Matt Ebner, Manohar Sohal, and Phil Sharpe. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/980798.
Full textGeorge and Delgado. PR-015-06601-R01 Evaluation of Clamp-on Ultrasonic Meters as Field-Portable Diagnostic Tool. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2007. http://dx.doi.org/10.55274/r0010702.
Full textHall, Zanker, and Kelner. PR-343-06605-R02 USM Recalibration Frequency. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010155.
Full textGrimley, Hart, and Viana. PR-015-07604-R01 Clamp-On Ultrasonic Flow Meters as Diagnostic Tools. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2008. http://dx.doi.org/10.55274/r0011006.
Full text