Academic literature on the topic 'Passive vibration filtering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Passive vibration filtering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Passive vibration filtering"
Mir, Fariha, Debdyuti Mandal, and Sourav Banerjee. "Metamaterials for Acoustic Noise Filtering and Energy Harvesting." Sensors 23, no. 9 (April 23, 2023): 4227. http://dx.doi.org/10.3390/s23094227.
Full textAsiri, S., A. Baz, and D. Pines. "Periodic Struts for Gearbox Support System." Journal of Vibration and Control 11, no. 6 (June 2005): 709–21. http://dx.doi.org/10.1177/1077546305052784.
Full textGuan, Haofei, and K. C. Wong. "Spring-Damped Underactuated Swashplateless Rotor on a Bicopter Unmanned Aerial Vehicle." Machines 12, no. 5 (April 28, 2024): 296. http://dx.doi.org/10.3390/machines12050296.
Full textBaz, A. "Active Control of Periodic Structures." Journal of Vibration and Acoustics 123, no. 4 (June 1, 2001): 472–79. http://dx.doi.org/10.1115/1.1399052.
Full textAlajlouni, Sa’ed, and Pablo Tarazaga. "A passive energy-based method for footstep impact localization, using an underfloor accelerometer sensor network with Kalman filtering." Journal of Vibration and Control 26, no. 11-12 (January 21, 2020): 941–51. http://dx.doi.org/10.1177/1077546319890520.
Full textLi, Jianying, Yunchang Xiao, Minsheng Yang, Jianqi Li, and Jingying Wan. "The Research on Harmonic Transfer Characteristics of Integrated Multi-Winding Inductive Filtering Converter Transformer and Its Filter System." Electronics 11, no. 13 (July 3, 2022): 2088. http://dx.doi.org/10.3390/electronics11132088.
Full textJafari, Hamid, and Ramin Sedaghati. "Analysis of an Adaptive Periodic Low-Frequency Wave Filter Featuring Magnetorheological Elastomers." Polymers 15, no. 3 (January 31, 2023): 735. http://dx.doi.org/10.3390/polym15030735.
Full textKulskyi, Oleksander L., S. V. Lysochenko, Volodymyr Vasylovych Ilchenko, Vasyl S. Mostovyi, Mykola M. Nikiforov, Anatolii Tymofiiovych Orlov, and Volodymyr A. Zelinskyi. "Piezoelectric Sensor of Mechanical Vibrations." Microsystems, Electronics and Acoustics 27, no. 2 (August 29, 2022): 265031–1. http://dx.doi.org/10.20535/2523-4455.mea.265031.
Full textYoon, Sang-Hee, and Ki Lyug Kim. "Passive low pass filtering effect of mechanical vibrations by a granular bed composed of microglass beads." Applied Physics Letters 89, no. 2 (July 10, 2006): 021906. http://dx.doi.org/10.1063/1.2220012.
Full textJang, Hoon-Seok, Mannan Saeed Muhammad, Guhnoo Yun, and Dong Hwan Kim. "Sampling Based on Kalman Filter for Shape from Focus in the Presence of Noise." Applied Sciences 9, no. 16 (August 9, 2019): 3276. http://dx.doi.org/10.3390/app9163276.
Full textDissertations / Theses on the topic "Passive vibration filtering"
Avetisov, Stepan. "Herschel-Quincke filters for passive vibration mitigation." Electronic Thesis or Diss., Le Mans, 2024. https://cyberdoc-int.univ-lemans.fr/Theses/2024/2024LEMA1018.pdf.
Full textVibration and structure borne noise are generally undesirable phenomena for both the reliability and comfort issues. Many approaches to vibration control have been studied over the years, using various geometrical designs, damping materials, or active control strategies. In addition, lightening mechanical structures is a major challenge in terms of energy consumption, particularly for transport applications. In these combined contexts, the aim of this thesis is to develop new vibration control concepts by adapting the principle of Herschel-Quincke (HQ) filters, traditionally applied to plane acoustic waves in tubes, to the realm of elastic waves in beams and plates. In acoustics, HQ filters exploit the principle of a phase shift between two parallel tubes of varying lengths created from a primary tube, resulting in destructive interference and hence zero transmission at certain frequencies. The attractiveness of HQ filters lies in their capacity to provide multiple transmission loss peaks, presenting a viable alternative to traditional resonance-based approaches. This study extends this principle to bending waves by partitioning a thin beam into two segments of equal length but different thicknesses. The resulting disparity in bending stiffness induces the requisite phase difference, leading to wave filtering. This approach positions HQ filters as a promising solution for vibration and noise control applications without increasing the mass of the considered structure. First, the HQ principle for structural dynamics is theoretically analysed through wave based models considering non dispersive longitudinal or torsional waves and bending waves in beams. An experimental study also demonstrates the practical interest of this filtering technique. Then, the principle is extended to plates structures, leading to annular filters that may surround a vibration source and so isolate it from the rest of the plate. Third, some more sophisticated designs based on serial, parallel or periodic arrangements of structural HQ devices are proposed and analyzed to assess how they can optimize vibration filtering performance
Conference papers on the topic "Passive vibration filtering"
Toso, M., A. Baz, and D. Pines. "Active Vibration Control of Periodic Rotating Shafts." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61514.
Full textLeifer, Jack, and Stephen J. Weisenburger. "Materials and Techniques for Reduction of Vibration Transmission in String Trimmers." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88064.
Full textCao, Mincan, and Lei Zuo. "Energy Harvesting From Building Seismic Isolation With Multi-Mode Resonant Shunt Circuits." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6071.
Full textBaz, A. "Active Control of Periodic Structures." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1734.
Full textGoyder, Hugh. "Measuring Damping in Linear and Nonlinear Systems." In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106667.
Full textLoiko, Yu, V. Ahufinger, R. Corbalan, G. Birkl, and J. Mompart. "Filtering of matter wave vibrational states via spatial adiabatic passage." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943429.
Full textHajjaj, Amal Z., and Nizar Jaber. "Geometry Optimization for Resonator Nonlinearities and Modes Controlling." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-68529.
Full textAlaie, Seyedhamidreza, Arash K. Mousavi, Mehmet Su, and Zayd C. Leseman. "Finite Element Analysis of a Phononic Crystal at Gigahertz Frequencies." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39005.
Full textRiva, Emanuele, Gabriele Cazzulani, Edoardo Belloni, and Francesco Braghin. "An Optimal Method for Periodic Structures Design." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3837.
Full textTibbals, Thomas F., Theodore A. Bapty, and Ben A. Abbott. "CADDMAS: A Real-Time Parallel System for Dynamic Data Analysis." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-194.
Full text