Academic literature on the topic 'Particles in cell (PIC)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Particles in cell (PIC).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Particles in cell (PIC)":

1

Savard, N., G. Fubiani, R. Baartman, and M. Dehnel. "Implicit particle-in-cell development for ion source plasmas." Journal of Physics: Conference Series 2743, no. 1 (May 1, 2024): 012003. http://dx.doi.org/10.1088/1742-6596/2743/1/012003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Particle-in-Cell (PIC) codes used to study plasma dynamics within ion sources typically use an explicit scheme. These methods can be slow when simulating regions of high electron density in ion sources, which require resolving the Debye length in space and the plasma frequency in time. Recent developments on fully-implicit PIC models in curvilinear geometries have shown that these spatial/time scales can be significantly decreased/increased respectively, allowing for notable speed-ups in simulation time, and thus making it a potential tool for studying the physics of ion sources. For this purpose, a charge and energy conserving implicit PIC code has been developed in 1D to determine its potential for simulating bounded plasmas. In this paper, we use this model to simulate a 1D benchmark of a bounded plasma with fixed plasma density and electron/ion temperatures. The results are shown to compare well to the benchmark and to the results using an explicit PIC code. It is shown that the total amount of macro-particles used in the simulation is a better figure of merit for accurate results than the standard particles per cell used in literature. Significant speed-ups in computation time can be achieved for high plasma densities if the accuracy requirements are relaxed. In this case, we demonstrate the ability of the implicit PIC code to speed-up simulation time by nearly a factor of 12 compared to explicit PIC.
2

Cao, Zhe, and Ming Li. "INCLUSION OF CONTACT FRICTION FOR PARTICLE-BASED SIMULATION OF SEDIMENT TRANSPORT OVER MOBILE BED." Coastal Engineering Proceedings, no. 37 (September 1, 2023): 34. http://dx.doi.org/10.9753/icce.v37.sediment.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The particle based approach, including the particle resolving method, such as CFD-DEM, e.g. Drake and Calantoni (2001), Schmeeckle (2014), and the Particle-In-Cell (PIC) method, e.g. Patankar and Joseph (2001); Finn, M. Li, and Apte (2016); Y. Li et al. (2014), has become important tool for simulation of sediment transport in recent years. The latter is advantageous in the required computing resources when large amount of particles are involved and hence is more suitable for simulation of sediment transport over mobile bed. However, unlike that in CFD-DEM, special treatment is needed in the PIC method in order to prevent overlap and over-packing of sediment particles in a computational cell. Most models so far ignore the contact friction force between particles that hinders relative movement but often is essential to maintain particles in static position, especially in the seabed where the contact forces between particles are the largest. An new friction force is proposed to simulate the particle interactions, similar to the collision used in previous studies, so that the kinetic energy driving particles motion can be effectively dissipated and over-packing can be minimised under either static or dynamic stages of the particle motion.
3

Che, Ju, Pei Yun Yi, Yu Jun Deng, Lin Fa Peng, and Xin Min Lai. "The Effect of Electrode Voltage on Acetylene Plasma Deposition Particles during the Preparation of PECVD Carbon Film Based on PIC-MCC Simulation." Materials Science Forum 1102 (October 24, 2023): 97–103. http://dx.doi.org/10.4028/p-ayra6n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
At present, the preparation of conductive and corrosion-resistant carbon coatings by plasma-assisted chemical vapor deposition (PECVD) has received extensive research. In this paper, the acetylene plasma model was established by using the Particle in Cell/Monte Carlo method (PIC/MCC) to study the influence of different electrode voltages on the composition and particle energy of deposited particles, and explore the corresponding relationship between acetylene gas and deposited particles. The results show that increasing the electrode voltage can reduce the density of acetylene particles in the plasma, increase the ionization rate of acetylene, and reduce the particle density of C2 and CH groups. The energies of C2H2 and CH particles increase with the increase of voltage, while the energies of C2 and H particles are basically stable and not affected by the voltage. Keywords: PECVD, PIC/MCC, carbon film, electrode voltage, acetylene plasma, deposition particles.
4

Konior, Wojciech. "Particle-In-Cell Electrostatic Numerical Algorithm." Transactions on Aerospace Research 2017, no. 3 (September 1, 2017): 24–45. http://dx.doi.org/10.2478/tar-2017-0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Existing global models of interaction between the solar wind (SW) and the local interstellar medium (LISM) describe the heliosphere that arises as a result of this interaction. There is a strong motivation to develop a kinetic model using the Particle-in-Cell (PIC) method to describe phenomena which appear in the heliosphere. This is however a long term scientific goal. This paper describes an electrostatic Particle-in-Cell numerical model developed in the Institute of Aviation in Warsaw, which includes mechanical and charge exchange collisions between particles in the probabilistic manner using Direct Simulation Monte Carlo method. This is the first step into developing simulations of the heliosphere incorporating kinetic effects in collisionless plasmas. In this paper we focus only on presenting the work, which have been done on the numerical PIC algorithm.
5

COULAUD, O., E. SONNENDRÜCKER, E. DILLON, P. BERTRAND, and A. GHIZZO. "Parallelization of semi-Lagrangian Vlasov codes." Journal of Plasma Physics 61, no. 3 (April 1999): 435–48. http://dx.doi.org/10.1017/s0022377899007527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We describe the parallel implementation of semi-Lagrangian Vlasov solvers, which are an alternative to particle-in-cell (PIC) simulations for the numerical investigation of the behaviour of charged particles in their self-consistent electromagnetic fields. The semi-Lagrangian method, which couples the Lagrangian and Eulerian points of view, is particularly interesting on parallel computers, since the solution is computed on grid points, the number of which remains constant in time on each processor, unlike the number of particles in PIC simulations, and thus greatly simplifies the parallelization process.
6

Trotta, D., D. Burgess, G. Prete, S. Perri, and G. Zimbardo. "Particle transport in hybrid PIC shock simulations: A comparison of diagnostics." Monthly Notices of the Royal Astronomical Society 491, no. 1 (October 12, 2019): 580–95. http://dx.doi.org/10.1093/mnras/stz2760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACT Recent in situ and remote observations suggest that the transport regime associated with shock-accelerated particles may be anomalous i.e. the mean square displacement (MSD) of such particles scales non-linearly with time. We use self-consistent hybrid particle-in-cell plasma simulations to simulate a quasi-parallel shock with parameters compatible with heliospheric shocks, and gain insights about the particle transport in such a system. For suprathermal particles interacting with the shock we compute the MSD separately in the upstream and downstream regions. Tracking suprathermal particles for sufficiently long times up and/or downstream of the shock poses problems in particle plasma simulations, such as statistically poor particle ensembles and trajectory fragments of variable length in time. Therefore, we introduce the use of time-averaged mean square displacement (TAMSD), which is based on single-particle trajectories, as an additional technique to address the transport regime for the upstream and the downstream regions. MSD and TAMSD are in agreement for the upstream energetic particle population, and both give a strong indication of superdiffusive transport, consistent with interplanetary shock observations. MSD and TAMSD are also in reasonable agreement downstream, where indications of anomalous transport are also found. TAMSD shows evidence of heterogeneity in the diffusion properties of the downstream particle population, ranging from subdiffusive behaviour of particles trapped in the strong magnetic field fluctuations generated at the shock to superdiffusive behaviour of particles transmitted and moving away from the shock.
7

van Marle, Allard Jan, Artem Bohdan, Paul J. Morris, Martin Pohl, and Alexandre Marcowith. "Diffusive Shock Acceleration at Oblique High Mach Number Shocks." Astrophysical Journal 929, no. 1 (April 1, 2022): 7. http://dx.doi.org/10.3847/1538-4357/ac5962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract The current paradigm of cosmic-ray (CR) origin states that the greater part of galactic CRs is produced by supernova remnants. The interaction of supernova ejecta with the interstellar medium after a supernova's explosions results in shocks responsible for CR acceleration via diffusive shock acceleration (DSA). We use particle-in-cell (PIC) simulations and a combined PIC-magnetohydrodynamic (PIC-MHD) technique to investigate whether DSA can occur in oblique high Mach number shocks. Using the PIC method, we follow the formation of the shock and determine the fraction of the particles that gets involved in DSA. With this result, we use PIC-MHD simulations to model the large-scale structure of the plasma and the magnetic field surrounding the shock and find out whether or not the reflected particles can generate upstream turbulence and trigger DSA. We find that the feasibility of this process in oblique shocks depends strongly on the Alfvénic Mach number, and the DSA process is more likely to be triggered at high Mach number shocks.
8

Tomita, Sara, Yutaka Ohira, Shigeo S. Kimura, Kengo Tomida, and Kenji Toma. "Interaction of a Relativistic Magnetized Collisionless Shock with a Dense Clump." Astrophysical Journal Letters 936, no. 1 (August 29, 2022): L9. http://dx.doi.org/10.3847/2041-8213/ac88be.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract The interactions between a relativistic magnetized collisionless shock and dense clumps have been expected to play a crucial role in magnetic field amplification and cosmic-ray acceleration. We investigate this process using two-dimensional Particle-In-Cell (PIC) simulations, for the first time, where the clump size is much larger than the gyroradius of the downstream particles. We also perform relativistic magnetohydrodynamic (MHD) simulations for the same condition, to see the kinetic effects. We find that particles escape from the shocked clump along magnetic field lines in the PIC simulations, so that the vorticity is lower than that in the MHD simulations. Moreover, in both the PIC and MHD simulations, the shocked clump quickly decelerates because of relativistic effects. Owing to the escape and the deceleration, the shocked clump cannot amplify the downstream magnetic field in relativistic collisionless shocks. This large-scale PIC simulation opens a new window to understanding large-scale behaviors in collisionless plasma systems.
9

Takahashi, Hiroyuki, Eiji Asano, and Ryoji Matsumoto. "Particle acceleration by relativistic expansion of magnetic arcades." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 102. http://dx.doi.org/10.1017/s1743921307010022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractWe carried out relativistic force free simulations and Particle In Cell (PIC) simulations of twist injection into the magnetic arcades emerging on the surface of a magnetar. As the magnetic energy is accumulated in the arcades, they expand self-similarly. In the arcades, a current sheet is formed and magnetic reconnection takes place. We also carried out 2-dimensional PIC simulations for the study of particle acceleration through magnetic reconnection. As a result, the energy spectrum of particles can be fitted by a power-law.
10

Gomez, Sara, Jaime Humberto Hoyos, and Juan Alejandro Valdivia. "Particle-in-cell method for plasmas in the one-dimensional electrostatic limit." American Journal of Physics 91, no. 3 (March 2023): 225–34. http://dx.doi.org/10.1119/5.0135515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We discuss the particle-in-cell (PIC) method, which is one of the most widely used approaches for the kinetic description of plasmas. The positions and velocities of the charged particles take continuous values in phase space, and spatial macroscopic quantities, such as the charge density and self-generated electric fields, are calculated at discrete spatial points of a grid. We discuss the computer implementation of the PIC method for one-dimensional plasmas in the electrostatic regime and discuss a desktop application (PlasmAPP), which includes the implementation of different numerical and interpolation methods and diagnostics in a graphical user interface. To illustrate its functionality, the electron-electron two-stream instability is discussed. Readers can use PlasmAPP to explore advanced numerical methods and simulate different phenomena of interest.

Dissertations / Theses on the topic "Particles in cell (PIC)":

1

Pierru, Julien. "Development of a Parallel Electrostatic PIC Code for Modeling Electric Propulsion." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/34597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis presents the parallel version of Coliseum, the Air Force Research Laboratory plasma simulation framework. The parallel code was designed to run large simulations on the world fastest supercomputers as well as home mode clusters. Plasma simulations are extremely computationally intensive as they require tracking millions of particles and solving field equations over large domains. This new parallel version will allow Coliseum to run simulations of spacecraft-plasma interactions in domain large enough to reproduce space conditions. The parallel code ran on two of the world fastest supercomputers, the NASA JPL Cosmos supercomputer ranked 37th on the TOP500 list and Virginia Tech's System X, ranked 7th. DRACO, the Virginia Tech PIC module to Coliseum, was modified with parallel algorithms to create a full parallel PIC code. A parallel solver was added to DRACO. It uses a Gauss-Seidel method with SOR acceleration on a Red-Black checkerboard scheme. Timing results were obtained on JPL Cosmos supercomputer to determine the efficiency of the parallel code. Although the communication overhead limits the code's parallel efficiency, the speed up obtained greatly decreases the time required to run the simulations. A speed up of 51 was reached on 128 processors. The parallel code was also used to simulate the plume expansion of an ion thruster array composed of three NSTAR thrusters. Results showed that the multiple beams merge to form a single plume similar to the plume created by a single ion thruster.
Master of Science
2

Spicer, Randy Lee. "Validation of the DRACO Particle-in-Cell Code using Busek 200W Hall Thruster Experimental Data." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis discusses the recent developments to the electric propulsion plume code DRACO as well as a validation and sensitivity analysis of the code using data from an AFRL experiment using a Busek 200 W Hall Thruster. DRACO is a PIC code that models particles kinematically while using finite differences schemes to solve the electric potential and field.

The DRACO code has been recently modified to improve simulation results, functionality and performance. A particle source has been added that uses the Hall Thruster device code HPHall as input for a source to model Hall Thrusters. The code is now also capable of using a non-uniform mesh that uses any combination of uniform, linear and exponential stretching schemes in any of the three directions. A stretched mesh can be used to refine simulation results in certain areas, such as the exit of a thruster, or improve performance by reducing the number of cells in a mesh. Finally, DRACO now has the capability of using a DSMC collision scheme as well as performing recombination collisions.

A sensitivity analysis of the newly upgraded DRACO code was performed to test the new functionalities of the code as well as validate the code using experimental data gathered at AFRL using a Busek 200 W Hall Thruster. A simulation was created that attempts to numerically recreate the AFRL experiment and the validation is performed by comparing the plasma potential, polytropic temperature, ion number density of the thruster plume as well as Faraday and ExB probe results. The study compares the newly developed HPHall source with older source models and also compares the variations of the HPHall source. The field solver and collision model used are also compared to determine how to achieve the best results using the DRACO code. Finally, both uniform and non-uniform meshes are tested to determine if a non-uniform mesh can be properly implemented to improve simulation results and performance.

The results from the validation and sensitivity study show that the DRACO code can be used to recreate a vacuum chamber simulation using a Hall Thruster. The best results occur when the newly developed HPHall source is used with a MCC collision scheme using a projected background neutral density and CEX collision tracking. A stretched mesh was tested and proved results that are as accurate as a uniform mesh, if not more accurate in locations of high mesh refinement.
Master of Science

3

Godar, Trenton J. "Testing of Two Novel Semi-Implicit Particle-In-Cell Techniques." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1402492857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zahri, Abdellatif. "Développement du modèle PIC-MCC 2D : application aux décharges radiofréquence." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1344/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La méthode particle-In-Cell combinée avec la technique Monte-Carlo est une méthode bien établie pour la modélisation des plasmas, et elle est très utilisée pour simuler les réacteurs de faible pression pour les décharges radiofréquences (RF). Cette technique est une méthode simple et efficace permettant de résoudre une large variété de problèmes complexes impliquant un grand nombre de particules en mouvement sous l'action des forces engendrées par elles-mêmes ainsi que les forces externes appliquées. Le but de notre modèle est de comprendre et de caractériser le comportement du plasma à basse pression pour une géométrie à deux dimensions. Nous voulons comprendre ce qui se passe dans la gaine et en particulier le comportement des ions. Dans ce travail, nous décrivons les modèles PIC-MCC et leurs techniques indispensables à la construction de tels modèles. Nous avons choisi cette technique par sa qualité de description de la physique du plasma. En effet, cette technique fournit plus de précisions et sans aucune hypothèse sur la fonction de distribution des électrons ou des ions, ce qui est loin d'être le cas pour les autres modèles notamment les modèles fluides. Nous montrons certaines fonctions de distribution (densité et énergie des particules chargées, EEDF,. . . ), les caractéristiques électriques de la décharge seront étudiées. Ce travail s'inscrit dans le cadre du projet européen EMDPA: New Elemental and Molecular Depth Analysis of advanced materials by modulated radio frequency glow discharge time of flight mass spectrometry. Ce projet est financé par la commission européenne via le programme de recherche pour le développement technologique
The particle-in-cell method combined with the Monte Carlo techniques is a well established method for plasma modelling, and is widely used to simulate low pressure radiofrequency discharges. This technique is a simple and effective method for solving a wide variety of complex problems involving a large number of particles moving under the action of internal forces and external forces (electromagnetic fields. . . ) The purpose of our model is to understand and characterize the behaviour of low pressure plasmas in a two-dimensional geometry. We want to understand what is happening in the sheath and in particular the behaviour of the ions. In this work, we describe the PIC-MCC models and techniques needed to build such models. We chose this technique by its ability to describe correctly the plasma physics at low pressure. Indeed, this technique provides more details without any assumption on the distribution function of electrons or ions, which is far from being the case for other models including fluid models. We show some distribution functions (density and energy of charged particles, EEDF) ; the electrical characteristics of the discharge are presented. This work is part of the European project EMDPA : New Elemental and Molecular Depth Analysis of advanced materials by modulated radio frequency glow discharge time of flight mass spectrometry. This project is funded by the European Commission through the research program for technological development
5

Horken, Kempton M. "Isolation of photosynthetic membranes and submembranous particles from the cyanobacterium synechococcus PCC 7942." Virtual Press, 1996. http://liblink.bsu.edu/uhtbin/catkey/1036184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Photosynthetic membranes were prepared from the cyanobacterium Synechococcus PCC 7942 with oxygen evolving specific activity of 250-300 µmoles 02/ mg chl/hr. The membranes retained activity with a half-life of 4-5 days when stored at 0°C, or when quickly frozen in liquid nitrogen, greater than 95% of the activity remained after 2 months. Attempts to purify homogeneous preparations of photosystem II complexes from these membranes by detergent extraction were unsuccessful as indicated by a lack of a significant increase in oxygen evolution specific activity of the detergent extracts. Photosynthetic membrane detergent extracts usually maintained the same oxygen evolution specific activity as the orginal membranes, and a considerable amount of Photosystem I activity (75 µmoles 02 consumed /mg chl/hr in the Mehler reaction) was still present. The donor side of the photosystem II particles in the detergent extract was intact since the artificial electron acceptor, 2,6-dichiorophenolindophenol (DCPIP), was reduced at a rate comparable to the oxygen evolving activity. All oxygen evolving activity of the detergent extracts was lost when ion-exchange chromatography was used to resolve the co-extracted photosystem II and photosystem I complexes.
Department of Biology
6

Hammel, Jeffrey Robert. "Development of an unstructured 3-D direct simulation Monte Carlo/particle-in-cell code and the simulation of microthruster flows." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0510102-153614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barsamian, Yann. "Pic-Vert : une implémentation de la méthode particulaire pour architectures multi-coeurs." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD039/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse a pour contexte la résolution numérique du système de Vlasov–Poisson (modèle utilisé en physique des plasmas, par exemple dans le cadre du projet ITER) par les méthodes classiques particulaires (PIC pour "Particle-in-Cell") et semi-Lagrangiennes. La contribution principale de notre thèse est une implémentation efficace de la méthode PIC pour architectures multi-coeurs, écrite dans le langage C, dont le nom est Pic-Vert. Notre implémentation (a) atteint un nombre quasi-minimal de transferts mémoires avec la mémoire principale, (b) exploite les instructions vectorielles (SIMD) pour les calculs numériques, et (c) expose une quantité suffisante de parallélisme, en mémoire partagée. Pour mettre notre travail en perspective avec l'état de l'art, nous proposons une métrique permettant de comparer différentes implémentations sur différentes architectures. Notre implémentation est 3 fois plus rapide que d'autres implémentations récentes sur la même architecture (Intel Haswell)
In this thesis, we are interested in solving the Vlasov–Poisson system of equations (useful in the domain of plasma physics, for example within the ITER project), thanks to classical Particle-in-Cell (PIC) and semi-Lagrangian methods. The main contribution of our thesis is an efficient implementation of the PIC method on multi-core architectures, written in C, called Pic-Vert. Our implementation (a) achieves close-to-minimal number of memory transfers with the main memory, (b) exploits SIMD instructions for numerical computations, and (c) exhibits a high degree of shared memory parallelism. To put our work in perspective with respect to the state-of-the-art, we propose a metric to compare the efficiency of different PIC implementations when using different multi-core architectures. Our implementation is 3 times faster than other recent implementations on the same architecture (Intel Haswell)
8

Doche, Antoine. "Particle acceleration with beam driven wakefield." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX023/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les accélérateurs par onde de sillage plasma produites par faisceaux de particules (PWFA) ou par faisceaux laser (LWFA) appartiennent à un nouveau type d’accélérateurs de particules particulièrement prometteur. Ils permettent d’exploiter des champs accélérateurs jusqu’à cent Gigaélectronvolt par mètre alors que les dispositifs conventionnels se limitent à cent Megaélectronvolt par mètre. Dans le schéma d’accélération par onde de sillage plasma, ou par onde de sillage laser, un faisceau de particules ou une impulsion laser se propage dans un plasma et créé une structure accélératrice dans son sillage : c’est une onde de densité électronique à laquelle sont associés des champs électromagnétiques dans le plasma. L’un des principaux résultats de cette thèse a été la démonstration de l’accélération par onde de sillage plasma d’un paquet distinct de positrons. Dans le schéma utilisé, un plasma de Lithium était créé dans un four, et une onde plasma était excitée par un premier paquet de positrons (le drive ou faisceau excitateur) et l’énergie était extraite par un second faisceau (le trailing ou faisceau témoin). Un champ accélérateur de 1,36 GeV/m a ainsi été obtenu durant l’expérience, pour une charge accélérée typique de 40 pC. Nous montrons également ici la possibilité d’utiliser différents régimes d’accélération qui semblent très prometteurs. Par ailleurs, l’accélération de particule par sillage laser permet quant à elle, en partant d’une impulsion laser femtoseconde de produire un faisceau d’électron quasi-monoénergétique d’énergie typique de l’ordre de 200 MeV. Nous présentons les résultats d’une campagne expérimentale d’association de ce schéma d’accélération par sillage laser avec un schéma d’accélération par sillage plasma. Au cours de cette expérience un faisceau d’électrons créé par laser est refocalisé lors d’une interaction dans un second plasma. Une étude des phénomènes associés à cette plateforme hybride LWFA-PWFA est également présentée. Enfin, le schéma hybride LWFA-PWFA est prometteur pour optimiser l’émission de rayonnement X par les électrons du faisceau de particule crée dans l’étage LWFA de la plateforme. Nous présentons dans un dernier temps la première réalisation expérimentale d’un tel schéma et ses résultats prometteurs
Plasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed
9

Drouin, Mathieu. "Vers la simulation particulaire réaliste de l'interaction laser-plasma surcritique : conception d'un schéma implicite avec amortissement ajustable et fonctions de forme d'ordre élevé." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2009. http://tel.archives-ouvertes.fr/tel-00442715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le caractère éminemment cinétique et hors équilibre de l'interaction laser-plasma et du transport électronique nécessite de résoudre le système complet des équations de Vlasov-Maxwell. Cette thèse se concentre sur les méthodes PIC (‘‘Particle-In-Cell''), et vise à en accroître le régime de fonctionnement. Tout d'abord, nous présentons l'analyse de stabilité linéaire d'un algorithme PIC explicite incluant l'effet de la discrétisation spatio-temporelle. Cette analyse met en exergue l'instabilité d'aliasing, que nous relions au problème, plus général, du chauffage numérique dans les codes PIC en régime surcritique. Nous montrons l'influence bénéfique de la montée en ordre du facteur de forme pour réduire ce chauffage, permettant ainsi d'atteindre des régimes de densité jusque là inaccessibles. Les codes PIC implicites ne sont pas soumis aux mêmes contraintes de stabilité que leurs équivalents explicites. En particulier nous ne sommes plus tenus de résoudre les modes haute fréquence électroniques. Une telle propriété est particulièrement précieuse lorsqu'on modélise l'interaction entre un laser à ultra-haute intensité et un plasma fortement sur-critique. Nous présentons ici l'extension relativiste de la méthode implicite dite directe, en y incluant un paramètre d'amortissement ajustable et des facteurs de forme d'ordre élevé. Ce formalisme a été implémenté dans le code ELIXIRS, 2D en espace et 3D en vitesse. Ce code est validé sur de nombreux problèmes de physique des plasmas, allant de l'expansion d'un plasma à une ou deux températures électroniques, à l'interaction laser-plasma à haut-flux, en passant par les instabilités ‘‘deux faisceaux'' et de filamentation en régime relativiste. Nous montrons notamment la capacité du code à capturer les principales caractéristiques de l'interaction laser-plasma, malgré une discrétisation spatio-temporelle dégradée, autorisant ainsi des gains substantiels en temps de calcul.
10

YADAV, MONIKA. "SOME ASPECTS OF LASER-PLASMA INTERACTION FOR ELECTRON ACCELERATION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis focuses on investigation of laser-plasma interaction relevant to electron acceleration to high energies. This work explores various ideas for producing an energetic and good quality electron beam from laser wakefield acceleration (LWFA) in plasmas. In LWFA, a high-intensity laser pulse excites a plasma wave, which propagates behind the laser pulse with the equal speed of the laser group velocity. For efficient accelerations, electrons should be injected into the wakefield. Thus, the wakefield evolution and electron injection both are quite important aspects in LWFA. In order to draw the maximum output from the wakefield structure, which is called wakefield bubble in case of high-intensity laser, the basic understanding behind the factors controlling electron injection into wake structure must be very clear. This thesis work focus toward controlling the electron beam quality by understanding the factors affecting bubble wake evolution. The dependence of beam energy and the beam quality on the shape of the bubble is the main motivation behind this investigation. Particle-in-cell (PIC) simulations are conducted to study the bubble dynamics for optimum electron accelerations. A good quality electron bunch with pC to nC charge are obtained with current laser-plasma parameters. During LWFA, generation of wakefield results in variation of refractive index that may distort the laser pulse shape. Thus, the laser pulse shape may be a significant factor to control the electron beam parameters in LWFA. Various shapes such as q-Gaussian laser pulse and flattened-Gaussian laser pulse have been taken into account to observe the laser pulse effect on electron beam parameters in LWFA. The implications of laser pulse shape was shown to control and optimize the bunch charge as well as the bunch energy. Our insights into the acceleration process might be quite supportive in the future optimization of electron beam stability and quality. The electron bunch generated by LWFA could be used to obtain femtosecond x-rays and subsequent applications in medical sciences.

Books on the topic "Particles in cell (PIC)":

1

Freeman, Jon C. Preliminary study of electron emission for use in the PIC portion of MAFIA. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albertsson, Per Åke. Partition of cell particles and macromolecules: Separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. 3rd ed. New York: Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pierce, Linda. TB3133 - Configurable Logic Cell on PIC Microcontrollers. Microchip Technology Incorporated, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takenaka, Norio. TB3133 - Configurable Logic Cell on PIC MCU. Microchip Technology Incorporated, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Busch, Harris. Nuclear Particles: The Cell Nucleus, Vol. 8. Elsevier Science & Technology Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Busch, Harris. Nuclear Particles: The Cell Nucleus, Vol. 9. Elsevier Science & Technology Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nuclear Particles: Part A, The Cell Nucleus, Vol. 8. Academic Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Day, Gregory Allen. In vitro transformation of phagocytized beryllium oxide particles in the murine J774A.1 cell. [s.n.], 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The spherical bacteria cell: The constructor of the earth and her life through the radioactive construction of electro-magnetic particles. Richmond Hill [Ont.]: Liberal Print., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Springer, Christian Bär, and Klaus Fredenhagen. Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations. Springer Berlin / Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Particles in cell (PIC)":

1

Birdsall, C. K. "Particle in Cell Monte Carlo Collision Codes(PIC-MCC); Methods and Applications to Plasma Processing." In Plasma Processing of Semiconductors, 277–89. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5884-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chaudhury, Bhaskar, Mihir Shah, Unnati Parekh, Hasnain Gandhi, Paramjeet Desai, Keval Shah, Anusha Phadnis, Miral Shah, Mainak Bandyopadhyay, and Arun Chakraborty. "Hybrid Parallelization of Particle in Cell Monte Carlo Collision (PIC-MCC) Algorithm for Simulation of Low Temperature Plasmas." In Communications in Computer and Information Science, 32–53. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7729-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andreoni, C. "Immunomagnetic Particles for Cell Isolation." In Flow Cytometry, 433–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rothen-Rutishauser, Barbara, Joël Bourquin, and Alke Petri-Fink. "Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses." In Biological Responses to Nanoscale Particles, 153–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12461-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cruz, Pedro E., Cristina C. Peixoto, José L. Moreira, and Manuel J. T. Carrondo. "Effect of Power Input in Virus Like Particles Production." In Animal Cell Technology, 663–68. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruiz, Teresa, and Michael Radermacher. "Three-Dimensional Analysis of Single Particles by Electron Microscopy." In Cell Imaging Techniques, 403–25. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-993-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Radermacher, Michael, and Teresa Ruiz. "Three-Dimensional Reconstruction of Single Particles in Electron Microscopy." In Cell Imaging Techniques, 427–61. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-993-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cremer, Heike, Ingrid Bechtold, Marion Mahnke, and René Assenberg. "Efficient Processes for Protein Expression Using Recombinant Baculovirus Particles." In Animal Cell Biotechnology, 395–417. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-733-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borsche, Raul, Axel Klar, and Florian Schneider. "Kinetic and Moment Models for Cell Motion in Fiber Structures." In Active Particles, Volume 2, 1–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20297-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dobson, Jon, and Sarah H. Cartmell. "Nanomagnetic Actuation: Controlling Cell Behavior with Magnetic Nanoparticles." In Biomedical Applications of Magnetic Particles, 159–76. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781315117058-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Particles in cell (PIC)":

1

Singh, Rajanish Kumar, and M. Thottappan. "Particle-in-cell (PIC) simulation of a 250GHz gyrotron." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verma, Rajendra Kumar, Shivendra Maurya, and Vindhyavasini Prasad Singh. "Particle-In-Cell (PIC) simulation of long-anode magnetron." In ADVANCEMENT IN SCIENCE AND TECHNOLOGY: Proceedings of the 2nd International Conference on Communication Systems (ICCS-2015). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4942727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bettencourt, M. T. "Mini-PIC — A Particle-In-Cell (PIC) code on unstructured grids for next generation platforms." In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Verma, Rajendra Kumar, Shivendra Maurya, and Vindhyavasini Prasad Singh. "Particle-In-Cell (PIC) simulation of Spatial-Harmonic Magnetron (SHM)." In 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). IEEE, 2017. http://dx.doi.org/10.1109/icetcct.2017.8280310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Dagang, Jun Zhou, Min Hu, and Shenggan Liu. "Several key technologies in particle-in-cell (PIC) simulation software." In Photonics Asia 2007, edited by Cunlin Zhang and Xi-Cheng Zhang. SPIE, 2007. http://dx.doi.org/10.1117/12.755639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, K. A., D. M. Snider, J. R. Torczynski, S. M. Trujillo, and T. J. O’Hern. "Multiphase Particle-in-Cell Simulations of Flow in a Gas-Solid Riser." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The commercial computational fluid dynamics (CFD) code Arena-flow is used to simulate the transient, three-dimensional flow in a gas-solid riser at Sandia National Laboratories. Arena-flow uses a multiphase particle-in-cell (MP-PIC) numerical method. The gas flow is treated in an Eulerian manner, and the particle flow is represented in a Lagrangian manner by large numbers of discrete particle clouds with distributions of particle properties. Simulations are performed using the experimental values of the gas superficial velocity and the solids mass flux in the riser. Fluid catalytic cracking (FCC) particles are investigated. The experimental and computed pressure and solid-volume-fraction distributions are compared and found to be in reasonable agreement although the experimental results exhibit more variation along the height of the riser than the computational results do. An extensive study is performed to assess the sensitivity of the computational results to a wide range of physical and numerical parameters. The computational results are seen to be robust. Thus, the uncertainties in these parameters cannot account for the differences between the experimental and computational results.
7

Bettencourt, Matthew T., Keith Cartwright, and Andrew Greenwood. "Adaptive Mesh Refinement Technique for Electromagnetic Particle-in-Cell (PIC) Methods." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andreev, Andrey D., and Sohan L. Birla. "Review of particle-in-cell (PIC) simulations of an oven magnetron." In 2014 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2014. http://dx.doi.org/10.1109/ivec.2014.6857707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kotteda, V. M. Krushnarao, Antara Badhan, and Vinod Kumar. "Parametric Optimization of a Dry Powder Inhaler." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract In the present study, particles in cell method, a Eulerian-Lagrangian approach is used to simulate the flow in an inhaler. The number of uncertain parameters, including properties of particles, fluidizing agents’ properties, initial/boundary conditions, and numerical parameters related to PIC simulations, is fourteen. The residence time of 280 PIC simulations for different values of the uncertain parameters is used to test/train a data-driven framework. The values of the uncertain parameters are generated via the Latin Hypercube Sampling method and a normal distribution. The trained algorithm is used to predict the residence time for various unknown parameters. This framework is used to carry out the sensitivity analysis to find the most influential settings on the residence time of the particles in the inhaler. The optimum parameters of the influential parameters for a given residence time is calculated via the data-driven framework.
10

Cruz-Díaz, Alvin O., and Rubén E. Díaz-Rivera. "Hydrodynamically Induced Whole-Cell Manipulation in Micro-Fluidic Devices." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The increasing interest for dedicated analysis of single particles at microscopic scales, such as biological cells, has led researchers to create micro-fluidic systems capable of trapping particles in a liquid flow. The most common trapping mechanism is by physical obstruction, which is simple, but it has its limitations. For instance, in these systems particle selectivity is poor because all the particles that pass through the channel may get pin down against the physical obstruction regardless of the size and shape of the particle [Di Carlo et al., Tan et al., Nilsson et al.]. In addition, releasing the particles that have been trapped presents a problem not only because the flow needs to be stopped or reversed, but because there is a high probability that the released particles are going to be trapped again when the system resumes its operation [Nilsson et al.]. Other devices use pressure differentials to trap the particles but each trap requires a separate flow or a valve mechanism for trap activation. This method requires multiple pumps or complex structures within the device such as micro-valves and actuators.

Reports on the topic "Particles in cell (PIC)":

1

Birdsall, Charles K., and Emi Kawamura. Object Oriented Formulations for particle-in-cell (PIC) Simulations. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada368835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clarke, Mary, and Jordan Musser. The MFiX Particle-in-Cell Method (MFiX-PIC) Theory Guide. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1630414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clarke, Mary, and Jordan Musser. The MFiX Particle-in-Cell Method (MFiX-PIC) Theory Guide. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1630426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Birdsall, Charles K., and Peter Mardahl. Object-Oriented Formulations of Particle-in-Cell (PIC) Plasma Simulations. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada329710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neben, Derek, Michael Weller, and Evan Scott. Downstream Transport Beam Spill with Particle In Cell (PIC) code Lsp. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dipp, T. M. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10129595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, F., and Michael Furey. Development of in-situ electrochemical cell for studies of lithium reaction kinetics of single particles. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1229548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hristova, Svetlana H., and Alexandar M. Zhivkov. Cytotoxic Effect of Exogenous Cytochrome C Adsorbed on Montmorillonite Colloid Particles on Colon Cancer Cell Culture. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gafni, Yedidya, and Vitaly Citovsky. Molecular interactions of TYLCV capsid protein during assembly of viral particles. United States Department of Agriculture, April 2007. http://dx.doi.org/10.32747/2007.7587233.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Tomato yellow leaf curl geminivirus (TYLCV) is a major pathogen of cultivated tomato, causing up to 100% crop loss in many parts of the world. The present proposal, a continuation of a BARD-funded project, expanded our understanding of the molecular mechanisms by which CP molecules, as well as its pre-coat partner V2, interact with each other (CP), with the viral genome, and with cellular proteins during assembly and movement of the infectious virions. Specifically, two major objectives were proposed: I. To study in detail the molecular interactions between CP molecules and between CP and ssDNA leading to assembly of infectious TYLCV virions. II. To study the roles of host cell factors in TYLCV assembly. Our research toward these goals has produced the following major achievements: • Characterization of the CP nuclear shuttling interactor, karyopherin alpha 1, its pattern of expression and the putative involvement of auxin in regulation of its expression. (#1 in our list of publication, Mizrachy, Dabush et al. 2004). • Identify a single amino acid in the capsid protein’s sequence that is critical for normal virus life-cycle. (#2 in our list of publications, Yaakov, Levy et al. in preparation). • Development of monoclonal antibodies with high specificity to the capsid protein of TYLCV. (#3 in our list of publications, Solmensky, Zrachya et al. in press). • Generation of Tomato plants resistant to TYLCV by expressing transgene coding for siRNA targeted at the TYLCV CP. (#4 in our list of publications, Zrachya, Kumar et al. in press). •These research findings provided significant insights into (i) the molecular interactions of TYLCV capsid protein with the host cell nuclear shuttling receptor, and (ii) the mechanism by which TYLCV V2 is involved in the silencing of PTGS and contributes to the virus pathogenicity effect. Furthermore, the obtained knowledge helped us to develop specific strategies to attenuate TYLCV infection, for example, by blocking viral entry into and/or exit out of the host cell nucleus via siRNA as we showed in our publication recently (# 4 in our list of publications). Finally, in addition to the study of TYLCV nuclear import and export, our research contributed to our understanding of general mechanisms for nucleocytoplasmic shuttling of proteins and nucleic acids in plant cells. Also integration for stable transformation of ssDNA mediated by our model pathogen Agrobacterium tumefaciens led to identification of plant specific proteins involved.
10

Anderson, H. L., T. T. Puck, and E. B. Shera. New apparatus for direct counting of. beta. particles from two-dimensional gels and an application to changes in protein synthesis due to cell density. Office of Scientific and Technical Information (OSTI), July 1987. http://dx.doi.org/10.2172/6478983.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography