Academic literature on the topic 'Partial Metric Spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial Metric Spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Partial Metric Spaces"
Bukatin, Michael, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. "Partial Metric Spaces." American Mathematical Monthly 116, no. 8 (October 1, 2009): 708–18. http://dx.doi.org/10.4169/193009709x460831.
Full textHussain, Nawab, Jamal Rezaei Roshan, Vahid Parvaneh, and Abdul Latif. "A Unification ofG-Metric, Partial Metric, andb-Metric Spaces." Abstract and Applied Analysis 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/180698.
Full textAygün, Halis, Elif Güner, Juan-José Miñana, and Oscar Valero. "Fuzzy Partial Metric Spaces and Fixed Point Theorems." Mathematics 10, no. 17 (August 28, 2022): 3092. http://dx.doi.org/10.3390/math10173092.
Full textGregori, Valentín, Juan-José Miñana, and David Miravet. "Fuzzy partial metric spaces." International Journal of General Systems 48, no. 3 (December 2018): 260–79. http://dx.doi.org/10.1080/03081079.2018.1552687.
Full textOltra, S., S. Romaguera, and E. A. Sánchez-Pérez. "Bicompleting weightable quasi-metric spaces and partial metric spaces." Rendiconti del Circolo Matematico di Palermo 51, no. 1 (February 2002): 151–62. http://dx.doi.org/10.1007/bf02871458.
Full textWu, Yaoqiang. "On weak partial-quasi k-metric spaces." Journal of Intelligent & Fuzzy Systems 40, no. 6 (June 21, 2021): 11567–75. http://dx.doi.org/10.3233/jifs-202768.
Full textMykhaylyuk, Volodymyr, and Vadym Myronyk. "Metrizability of partial metric spaces." Topology and its Applications 308 (March 2022): 107949. http://dx.doi.org/10.1016/j.topol.2021.107949.
Full textMukheimer, Aiman. "Extended Partial Sb-Metric Spaces." Axioms 7, no. 4 (November 21, 2018): 87. http://dx.doi.org/10.3390/axioms7040087.
Full textYue, Yueli, and Meiqi Gu. "Fuzzy partial (pseudo-)metric spaces." Journal of Intelligent & Fuzzy Systems 27, no. 3 (2014): 1153–59. http://dx.doi.org/10.3233/ifs-131078.
Full textGe, Xun, and Shou Lin. "Completions of partial metric spaces." Topology and its Applications 182 (March 2015): 16–23. http://dx.doi.org/10.1016/j.topol.2014.12.013.
Full textDissertations / Theses on the topic "Partial Metric Spaces"
Putwain, Rosemary Johanna. "Partial translation algebras for certain discrete metric spaces." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/170227/.
Full textSarkar, Koushik. "Topology of different metric spaces and fixed point theories." Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4380.
Full textSarkar, Koushik. "Topology of different metric spaces and fixed point theories." Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4235.
Full textO'Neill, Simon John. "A fundamental study into the theory and application of the partial metric spaces." Thesis, University of Warwick, 1998. http://wrap.warwick.ac.uk/73518/.
Full textLazcano, Vanel. "Some problems in depth enhanced video processing." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/373917.
Full textEn esta tesis se abordan dos problemas: interpolación de datos en el contexto del cálculo de disparidades tanto para imágenes como para video, y el problema de la estimación del movimiento aparente de objetos en una secuencia de imágenes. El primer problema trata de la completación de datos de profundidad en una región de la imagen o video dónde los datos se han perdido debido a oclusiones, datos no confiables, datos dañados o pérdida de datos durante la adquisición. En esta tesis estos problemas se abordan de dos maneras. Primero, se propone una energía basada en gradientes no-locales, energía que puede (localmente) completar planos. Se considera este modelo como una extensión del filtro bilateral al dominio del gradiente. Se ha evaluado en forma exitosa el modelo para completar datos sintéticos y también mapas de profundidad incompletos de un sensor Kinect. El segundo enfoque, para abordar el problema, es un estudio experimental del biased AMLE (Biased Absolutely Minimizing Lipschitz Extension) para interpolación anisotrópica de datos de profundidad en grandes regiones sin información. El operador AMLE es un interpolador de conos, pero el operador biased AMLE es un interpolador de conos exponenciales lo que lo hace estar más adaptado a mapas de profundidad de escenas reales (las que comunmente presentan superficies convexas, concavas y suaves). Además, el operador biased AMLE puede expandir datos de profundidad a regiones grandes. Considerando al dominio de la imagen dotado de una métrica anisotrópica, el método propuesto puede tomar en cuenta información geométrica subyacente para no interpolar a través de los límites de los objetos a diferentes profundidades. Se ha propuesto un modelo numérico, basado en el operador eikonal, para calcular la solución del biased AMLE. Adicionalmente, se ha extendido el modelo numérico a sequencias de video. El cálculo del flujo óptico es uno de los problemas más desafiantes para la visión por computador. Los modelos tradicionales fallan al estimar el flujo óptico en presencia de oclusiones o iluminación no uniforme. Para abordar este problema se propone un modelo variacional para conjuntamente estimar flujo óptico y oclusiones. Además, el modelo propuesto puede tolerar, una limitación tradicional de los métodos variacionales, desplazamientos rápidos de objetos que son más grandes que el tamaño objeto en la escena. La adición de un término para el balance de gradientes e intensidades aumenta la robustez del modelo propuesto ante cambios de iluminación. La inclusión de correspondencias adicionales (obtenidas usando búsqueda exhaustiva en ubicaciones específicas) ayuda a estimar grandes desplazamientos.
Sebastianutti, Marco. "Geodesic motion and Raychaudhuri equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18755/.
Full text"On completeness of partial metric spaces, symmetric spaces and some fixed point results." Thesis, 2016. http://hdl.handle.net/10500/23206.
Full textMathematical Sciences
Ph. D. (Mathematics)
Aphane, Maggie. "On completeness of partial metric spaces, symmetric spaces and some fixed point results." Thesis, 2016. http://hdl.handle.net/10500/23223.
Full textGeography
Ph. D. (Mathematics)
Lin, Chung-Yu, and 林重佑. "Fixed point of cyclic weak contractions in partial metric spaces." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/14107934311591240161.
Full text國立新竹教育大學
應用數學系碩士班
101
The purpose of this paper is to study a fixed point theorem for a mapping satisfying the cyclical generalized contractive conditions based on four functions φ,ϕ,ξ:R^+→R^+ and ψ:R^(+^4 )→R^+ in complete partial metric spaces.Our results generalize and improve many recent fixed point theorems in the literature.
Wei, Ting-Yu, and 魏廷宇. "Fixed point theorems for weak contractions on partial Hausdorff metric spaces." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/n46p3n.
Full text國立清華大學
應用數學系所
105
The purpose of this paper is to study two new fixed point theorems for multi-valued mappings concerning the Meir-Keeler type functions and Rfunctions with respect to the partial Hausdorff metric Hp in completepartial metric spaces. Our results generalize and improve many recent fixed point theorems for the partial Hausdorff metric in the literature.
Books on the topic "Partial Metric Spaces"
Simovici, Dan A. Mathematical tools for data mining: Set theory, partial orders, combinatorics. London: Springer, 2014.
Find full textSimovici, Dan A. Mathematical tools for data mining: Set theory, partial orders, combinatorics. London: Springer, 2008.
Find full textO'Neill, Simon John. A fundamental study into the theory and application of the partial metric spaces. [s.l.]: typescript, 1998.
Find full textNicola, Gigli, Savaré Giuseppe, Struwe Michael 1955-, and SpringerLink (Online service), eds. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Basel: Birkhäuser Basel, 2008.
Find full textPascal, Auscher, Coulhon T, and Grigoryan A, eds. Heat kernels and analysis on manifolds, graphs, and metric spaces: Lecture notes from a quarter program on heat kernels, random walks, and analysis on manifolds and graphs, April 16-July 13, 2002, Emile Borel Centre of the Henri Poincaré Institute, Paris, France. Providence, R.I: American Mathematical Society, 2003.
Find full textGilles, Lebeau, ed. The hypoelliptic Laplacian and Ray-Singer metrics. Princeton, NJ: Princeton Univeristy Press, 2008.
Find full text1968-, Dafni Galia Devora, McCann Robert John 1968-, and Stancu Alina 1968-, eds. Analysis and geometry of metric measure spaces: Lecture notes of the 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011. Providence, Rhode Island, USA: American Mathematical Society, 2013.
Find full textMetric methods for analyzing partially ranked data. Berlin: Springer-Verlag, 1985.
Find full textCritchlow, Douglas E. Metric methods for analyzing partially ranked data. New York: Springer-Verlag, 1985.
Find full textComplex Monge-Ampère equations and geodesics in the space of Kähler metrics. Berlin: Springer Verlag, 2012.
Find full textBook chapters on the topic "Partial Metric Spaces"
Kirk, William, and Naseer Shahzad. "Partial Metric Spaces." In Fixed Point Theory in Distance Spaces, 141–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5_14.
Full textAmer, Fariha Jumaa. "Fuzzy Partial Metric Spaces." In Springer Proceedings in Mathematics & Statistics, 153–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28443-9_11.
Full textMinirani, S., and Sunil Mathew. "Fractals in Partial Metric Spaces." In Fractals, Wavelets, and their Applications, 203–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08105-2_13.
Full textMinirani, S. "n-Fractals in Partial Metric Spaces." In Advances in Intelligent Systems and Computing, 529–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8061-1_43.
Full textGüner, Elif, and Halis Aygün. "On Strong Fuzzy Partial Metric Spaces." In Springer Proceedings in Mathematics & Statistics, 253–66. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49218-1_18.
Full textKarapınar, Erdal, and Ravi P. Agarwal. "Fixed Point Theorems in Partial Metric Spaces." In Synthesis Lectures on Mathematics & Statistics, 97–121. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14969-6_6.
Full textMirdamadi, Fahimeh, Hossein Monfared, Mehdi Asadi, and Hossein Soleimani. "Discontinuity at Fixed Point Over Partial Metric Spaces." In Soft Computing and Optimization, 193–99. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6406-0_15.
Full textKarapınar, Erdal, Kenan Taş, and Vladimir Rakočević. "Advances on Fixed Point Results on Partial Metric Spaces." In Nonlinear Systems and Complexity, 3–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91065-9_1.
Full textAntoine, Jean-Pierre, and Camillo Trapani. "Metric Operators, Generalized Hermiticity, and Partial Inner Product Spaces." In STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 1–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97175-9_1.
Full textMatthews, Steve, and Michael Bukatin. "An Intelligent Theory of Cost for Partial Metric Spaces." In Artificial General Intelligence, 168–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35506-6_18.
Full textConference papers on the topic "Partial Metric Spaces"
Ozturk, Vildan, and Duran Turkoglu. "Integral type contractions in partial metric spaces." In CURRENT TRENDS IN RENEWABLE AND ALTERNATE ENERGY. Author(s), 2019. http://dx.doi.org/10.1063/1.5095116.
Full textTiwari, Shiv Kant, Laxmi Rathour, Suresh Kumar Sahani, and Lakshmi Narayan Mishra. "Results for coupled fixed point theorems in partial order metric spaces." In 1ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL APPLIED SCIENCES & IT’S APPLICATIONS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149509.
Full textAslantas, Mustafa, and Ali Hüssein Bachay. "Periodic point results for Boyd-Wong contraction mappings on partial metric spaces." In FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042310.
Full textBachay, Ali Hussein, and Mustafa Aslantas. "Periodic point results via Bianchini-Grandolfi gauge functions on partial metric spaces." In PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093612.
Full textRathee, Savita, and Neelam Kumari. "Fixed point theorems of operators with PPF dependence in partial b-metric spaces." In INTERNATIONAL CONFERENCE ON ADVANCES IN MULTI-DISCIPLINARY SCIENCES AND ENGINEERING RESEARCH: ICAMSER-2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0095811.
Full textDas, Dipankar, Babla Chandra Ghosh, and Vishnu Narayan Mishra. "Fixed point results via G-class function in ordered dualistic partial metric spaces." In 1ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL APPLIED SCIENCES & IT’S APPLICATIONS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148389.
Full textAnuradha and Seema Mehra. "Fixed point results using implicit relation on partial b-metric spaces endowed with a graph." In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081146.
Full textAdilakshmi, G., and G. N. V. Kishore. "A new approach of finding fixed point results in partial metric spaces and applications to graph theory." In CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS IN ENGINEERING: CMSAE-2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149113.
Full textEsi, Ayten, Esen Hanaç, and Ayhan Esi. "Difference convergence on partial metric space." In CURRENT TRENDS IN RENEWABLE AND ALTERNATE ENERGY. Author(s), 2019. http://dx.doi.org/10.1063/1.5095101.
Full textWang, Changchun, Zhiyou Chen, and Jie Ran. "Some Fixed Point Theorems in Partial Cone Metric Space." In 2019 6th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2019. http://dx.doi.org/10.1109/icisce48695.2019.00119.
Full textReports on the topic "Partial Metric Spaces"
Tawfik, Aly, Deify Law, Juris Grasis, Joseph Oldham, and Moe Salem. COVID-19 Public Transportation Air Circulation and Virus Mitigation Study. Mineta Transportation Institute, June 2022. http://dx.doi.org/10.31979/mti.2021.2036.
Full textTawfik, Aly, Deify Law, Juris Grasis, Joseph Oldham, and Moe Salem. COVID-19 Public Transportation Air Circulation and Virus Mitigation Study. Mineta Transportation Institute, June 2022. http://dx.doi.org/10.31979/mti.2022.2036.
Full text