Academic literature on the topic 'Partial element equivalent circuit (PEEC)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Partial element equivalent circuit (PEEC).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Partial element equivalent circuit (PEEC)"

1

Coperich, K. M., A. E. Ruehli, and A. Cangellaris. "Enhanced skin effect for partial-element equivalent-circuit (PEEC) models." IEEE Transactions on Microwave Theory and Techniques 48, no. 9 (2000): 1435–42. http://dx.doi.org/10.1109/22.868992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yeung, Lap K., and Ke-Li Wu. "Generalized Partial Element Equivalent Circuit (PEEC) Modeling With Radiation Effect." IEEE Transactions on Microwave Theory and Techniques 59, no. 10 (October 2011): 2377–84. http://dx.doi.org/10.1109/tmtt.2011.2163803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Bin, Guanghao Yu, Dong Wang, Jingning Ou, and Lei Chen. "Research on Calculation of Rail Self-Impedance of Track Circuit Based on Partial Element Equivalent Circuit." Security and Communication Networks 2022 (May 4, 2022): 1–10. http://dx.doi.org/10.1155/2022/2786881.

Full text
Abstract:
The self-impedance of the steel rail, as the signal transmission medium in the electrified railway track circuit, has a direct impact on the track circuit’s transmission performance. The finite element method is the most common method for calculating rail impedance, although it has a number of drawbacks, including a complicated model, a long computation time, and poor accuracy. The partial element equivalent circuit (PEEC) approach is used in this paper to provide a method for determining rail self-impedance. Firstly, the rail equivalent method is determined by analyzing the physical model of the rail. Considering the skin effect, the PEEC model of the rail is established. The internal impedance of the rail can be obtained by solving the equivalent circuit. The external impedance considering the influence of the earth is calculated by the Carson impedance calculation formula, which is processed by the segmented linear approximation method. The rail’s self-impedance is determined using the two procedures together. Finally, the actual measurement data verified the PEEC method to calculate the rail impedance. Compared with the finite element method (FEM), the calculation accuracy of the PEEC method is higher. The current frequency, the height of the rail from the ground, and the earth’s conductivity impact on the rail’s self-impedance are analyzed. The results show that the PEEC technique can be used to calculate the rail’s self-impedance and that the impact of current frequency, rail height above the ground, and ground conductivity on the rail’s self-impedance may be accurately represented. The self-impedance computation of the track circuit provides a theoretical basis.
APA, Harvard, Vancouver, ISO, and other styles
4

Noguchi, So, and Seungyong Hahn. "A newly developed screening current simulation method for REBCO pancake coils based on extension of PEEC model." Superconductor Science and Technology 35, no. 4 (March 3, 2022): 044005. http://dx.doi.org/10.1088/1361-6668/ac5315.

Full text
Abstract:
Abstract Since the screening current (SC) in rare earth-barium-copper-oxide (REBCO) coated conductor (CC) generates an undesired magnetic field, it must be accurately estimated, especially for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). Moreover, in recent years, it was pointed out that the screening current enhanced the stress/strain in REBCO CC, when an REBCO magnet was operated as an insert under an ultrahigh magnetic field. The previously reported SC simulation methods may be roughly categorized into finite element method (FEM) and equivalent circuit method. The FEM-based method often adopted an axisymmetric model or a thin film approximation model, while the circuit-based are the simple equivalent circuit model and the network equivalent circuit model, so-called the partial element equivalent circuit (PEEC) model. The latter is newly developed in this paper. Features of those SC simulation models are briefly compared to each other in this paper. Each SC simulation models have pros & cons. We have to adequately chose an SC simulation model depending on a purpose. We extended the original PEEC model to simulate SC. The extended model is named the advanced partial element equivalent circuit (A-PEEC) model. It is also extendable to an SC simulation of no-insulation REBCO pancake coils. To simulate the SC of a simple coil model and the LBC3 magnet, we investigated the screening current distribution maps, and the simulated screening current-induced fields were compared with the measurements. We have confirmed the validity of the newly developed A-PEEC model.
APA, Harvard, Vancouver, ISO, and other styles
5

Kovacevic-Badstuebner, Ivana, Daniele Romano, Giulio Antonini, Jonas Ekman, and Ulrike Grossner. "Broadband Circuit-Oriented Electromagnetic Modeling for Power Electronics: 3-D PEEC Solver vs. RLCG-Solver." Energies 14, no. 10 (May 14, 2021): 2835. http://dx.doi.org/10.3390/en14102835.

Full text
Abstract:
Broadband electromagnetic (EM) modeling increases in importance for virtual prototyping of advanced power electronics systems (PES), enabling a more accurate prediction of fast switching converter operation and its impact on energy conversion efficiency and EM interference. With the aim to predict and reduce an adverse impact of parasitics on the dynamic performance of fast switching power semiconductor devices, the circuit-oriented EM modeling based on the extraction of equivalent lumped R-L-C-G circuits is frequently selected over the Finite Element Method (FEM)-based EM modeling, mainly due to its lower computational complexity. With requirements for more accurate virtual prototyping of fast-switching PES, the modeling accuracy of the equivalent-RLCG-circuit-based EM modeling has to be re-evaluated. In the literature, the equivalent-RLCG-circuit-based EM techniques are frequently misinterpreted as the quasi-static (QS) 3-D Partial Element Equivalent Circuit (PEEC) method, and the observed inaccuracies of modeling HF effects are attributed to the QS field assumption. This paper presents a comprehensive analysis on the differences between the QS 3-D PEEC-based and the equivalent-RLCG-circuit-based EM modeling for simulating the dynamics of fast switching power devices. Using two modeling examples of fast switching power MOSFETs, a 3-D PEEC solver developed in-house and the well-known equivalent-RLCG-circuit-based EM modeling tool, ANSYS Q3D, are compared to the full-wave 3-D FEM-based EM tool, ANSYS HFSS. It is shown that the QS 3-D PEEC method can model the fast switching transients more accurately than Q3D. Accordingly, the accuracy of equivalent-RLCG-circuit-based modeling approaches in the HF range is rather related to the approximations made on modeling electric-field induced effects than to the QS field assumption.
APA, Harvard, Vancouver, ISO, and other styles
6

Verbeek, Menno E. "Partial element equivalent circuit(PEEC) models for on-chip passives and interconnects." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 17, no. 1 (January 2004): 61–84. http://dx.doi.org/10.1002/jnm.524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Qing-Long. "Stability analysis for a partial element equivalent circuit (PEEC) model of neutral type." International Journal of Circuit Theory and Applications 33, no. 4 (2005): 321–32. http://dx.doi.org/10.1002/cta.323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meunier, Gerard, Quang-Anh Phan, Olivier Chadebec, Jean-Michel Guichon, Bertrand Bannwarth, and Riccardo Torchio. "Unstructured PEEC method with the use of surface impedance boundary condition." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 39, no. 5 (May 20, 2020): 1017–30. http://dx.doi.org/10.1108/compel-01-2020-0023.

Full text
Abstract:
Purpose This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The formulation is applied in the context of low frequency problems with volumic magnetic media and coils. Non simply connected regions are treated with fundamental branch independent loop matrices coming from the circuit representation. Design/methodology/approach Because of the use of Whitney face elements, two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The air is not meshed. Findings The new surface impedance formulation enables the modeling of volume conductive regions to efficiently simulate various devices with only a surface mesh. Research limitations/implications The propagation effects are not taken into account in the proposed formulation. Originality/value The formulation is original and is efficient for modeling non simply connected conductive regions with the use of SIBC. The unstructured PEEC SIBC formulation has been validated in presence of volume magnetic nonconductive region and compared with a SIBC FEM approach. The computational effort is considerably reduced in comparison with volume approaches.
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Zhen Fei, and Ming Xie. "Reduced Order PEEC Modeling for EMC Problems via Mixed Arnoldi Algorithm and Padé Approximation." Applied Mechanics and Materials 543-547 (March 2014): 475–79. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.475.

Full text
Abstract:
The Partial Element Equivalent Circuit (PEEC) method is a 3-D full-wave modeling method suitable for combined electromagnetic and circuit analysis, and now is one of the promising numerical methods for Electromagnetic Compatibility (EMC) modeling. Model order reduction (MOR) techniques provide a feasibility to approximate complex circuit models with compact reduced-order models, and have great potentials to improve the computational efficiency for complex modeling problems. An effective MOR technique basing on mixed Arnoldi algorithm and Padé approximation for the PEEC modeling is introduced in this paper. Numerical simulations of a typical coupled micro-strip line EMC problem indicate the effectiveness of the proposed methods.
APA, Harvard, Vancouver, ISO, and other styles
10

Ferranti, Francesco, Giulio Antonini, Tom Dhaene, and Luc Knockaert. "Guaranteed Passive Parameterized Model Order Reduction of the Partial Element Equivalent Circuit (PEEC) Method." IEEE Transactions on Electromagnetic Compatibility 52, no. 4 (November 2010): 974–84. http://dx.doi.org/10.1109/temc.2010.2051949.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Partial element equivalent circuit (PEEC)"

1

Martinho, Lucas Blattner. "Numerical modeling of electromagnetic coupling phenomena in the vicinities of overhead power transmission lines." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-28062016-152807/.

Full text
Abstract:
Les phénomènes de couplage électromagnétique entre les lignes aé- riennes de transmission d\'énergie et des structures voisines sont inévitables, surtout dans les zones densément peuplées. Les effets indésirables découlants de cette proximité sont variés, allant de l\'établissement des tensions dangereuses à l\'apparition de phénomènes de corrosion dus au courant alternatif. L\'étude de cette classe de problèmes est nécessaire pour assurer la sécurité dans les alentours de la zone d\'interaction et aussi pour préserver l\'intégrité des équipements et des dispositifs présents. Cependant, la modélisation compl ète de ce type d\'application implique la représentation tridimensionnelle de la région d\'intérêt et nécessite des méthodes numériques de calcul de champs spécifiques. Dans ces travaux, des problèmes liés à la circulation de courants électriques dans le sol (ou de couplage dit conductif) seront abordés avec la méthode des éléments finis. D\'autres problèmes résultants de la variation temporelle des champs électromagnétiques (ou de couplage dit inductif) seront aussi considérés et traités avec la méthode PEEC (Partial Element Equivalent Circuit) généralisée. Plus précisément, une condition limite particulière sur le potentiel électrique est proposée pour tronquer le domaine de calcul dans l\'analyse par éléments finis des problèmes de couplage conductif et une formulation PEEC complète pour la modélisation de problèmes de couplage inductif est présentée. Des con gurations tests de complexités croissantes sont considérées pour valider les approches précédentes. Ces travaux visent ainsi à apporter une contribution à la modélisation de cette classe de problèmes, qui tendent à devenir communs avec l\'expansion des réseaux électriques.
Electromagnetic coupling phenomena between overhead power transmission lines and other nearby structures are inevitable, especially in densely populated areas. The undesired effects resulting from this proximity are manifold and range from the establishment of hazardous potentials to the outbreak of alternate current corrosion phenomena. The study of this class of problems is necessary for ensuring security in the vicinities of the interaction zone and also to preserve the integrity of the equipment and of the devices there present. However, the complete modeling of this type of application requires the three- -dimensional representation of the region of interest and needs specific numerical methods for field computation. In this work, the modeling of problems arising from the flow of electrical currents in the ground (the so-called conductive coupling) will be addressed with the finite element method. Those resulting from the time variation of the electromagnetic fields (the so-called inductive coupling) will be considered as well, and they will be treated with the generalized PEEC (Partial Element Equivalent Circuit) method. More specifically, a special boundary condition on the electric potential is proposed for truncating the computational domain in the finite element analysis of conductive coupling problems, and a complete PEEC formulation for modeling inductive coupling problems is presented. Test configurations of increasing complexities are considered for validating the foregoing approaches. These works aim to provide a contribution to the modeling of this class of problems, which tend to become common with the expansion of power grids.
APA, Harvard, Vancouver, ISO, and other styles
2

Margueron, Xavier. "Élaboration sans prototypage du circuit équivalent de transformateurs de type planar." Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10168.

Full text
Abstract:
La technologie planar est très intéressante pour les transformateurs utilisés dans les équipements aéronautiques car elle mène à des composants minces et utilisables dans des espaces confinés. Malheureusement, le dimensionnement des transformateurs de ce type, lorsqu'ils fonctionnent au-delà de 100 kHz, est un travail aléatoire car les règles et les outils de conception ne sont pas les mêmes que pour un transformateur bobiné classique. Au long de ce mémoire, on apprend à représenter ces composants par un circuit équivalent et à identifier ce circuit équivalent par des mesures d'impédances. Compte tenu du grand nombre de paramètres ajustables, l'optimisation d'un tel transformateur serait compromise s'il fallait compter sur des simulations à éléments finis pour déduire les éléments du circuit équivalent. C'est pourquoi nous essayons de déduire, par des moyens analytiques, les éléments de ce circuit en partant des caractéristiques physiques et géométriques du composant. Le but est atteint pour tous les éléments du transformateur de fuites obtenus à l'aide d'un calcul original exploitant les formules de la méthode PEEC. Nous étudions ensuite les problèmes posés par la mise en parallèle de spires, inévitable lorsqu'on veut faire circuler des centaines d'Ampères. Une approche analytique simple s'avère alors très efficace et, grâce à elle, la meilleure disposition des spires peut être recherchée à l'aide d'un logiciel de simulation de circuits de type PSpice. Enfin, diverses solutions sont envisagées et testées par simulation fem pour réduire les pertes par courants induits dans les transformateurs et dans les conducteurs méplats. Le développement multipolaire du champ magnétique est largement mis à contribution pour mener ces études
Planar technology is very interesting for transformer used in aeronautical equipment because components are very thin so they can be used into small space. Unfortunately, dimensioning such transformers, when they work at frequencies upper than 100 KHz, is a difficult work because rules and tools conception are not the same as in standard winding transformers. In this thesis, transformers are represented by equivalent circuits and they are identified by impedance measurements. Due to the high number of circuit parameters, optimization of such component will be compromised if parameters computations were based on fem simulations. That is why we have focused this work on analytical computation. The goal is to deduce equivalent circuit parameters with analytical calculation based on physic and geometric caracterisitics. For example, each element of the static leakeage transformer can be deduced using PEEC formulas. Then, problems due to parallel windings, which always appear when transformer current are close to hundred Amperes, are studied. A simple analytical calculation based on one dimensional propagation enable to realize equivalent circuit and Pspice simulations in order to find quickly the best arrangement of windings conductors. In the last part, copper losses in transformers and also in rectangular conductors are studied. Solutions are tested by fem simulations in order to reduce eddy current losses. Multipolar development is finally used for optimizing these losses
APA, Harvard, Vancouver, ISO, and other styles
3

Martinho, Lucas Blattner. "Modélisation numérique des phénomènes de couplage électromagnétique dans les alentours des lignes aériennes de transmission d'énergie." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT030/document.

Full text
Abstract:
Les phénomènes de couplage électromagnétique entre les lignes aériennes de transmission d'énergie et des structures voisines sont inévitables, surtout dans les zones densément peuplées. Les effets indésirables découlants de cette proximité sont variés, allant de l'établissement des tensions dangereuses à l'apparition de phénomènes de corrosion dus au courant alternatif. L'étude de cette classe de problèmes est nécessaire pour assurer la sécurité dans les alentours de la zone d'interaction et aussi pour préserver l'intégrité des équipements et des dispositifs présents. Cependant, la modélisation complète de ce type d'application implique la représentation tridimensionnelle de la région d'intérêt et nécessite des méthodes numériques de calcul de champs spécifiques. Dans ces travaux, des problèmes liés à la circulation de courants électriques dans le sol (ou de couplage dit conductif) seront abordés avec la méthode des éléments finis. D'autres problèmes résultants de la variation temporelle des champs électromagnétiques (ou de couplage dit inductif) seront aussi considérés et traités avec la méthode PEEC (Partial Element Equivalent Circuit) généralisée. Plus précisément, une condition limite particulière sur le potentiel électrique est proposée pour tronquer le domaine de calcul dans l'analyse par éléments finis des problèmes de couplage conductif et une formulation PEEC complète pour la modélisation de problèmes de couplage inductif est présentée. Des configurations tests de complexités croissantes sont considérées pour valider les approches précédentes. Ces travaux visent ainsi à apporter une contribution à la modélisation de cette classe de problèmes, qui tendent à devenir communs avec l'expansion des réseaux électriques
Electromagnetic coupling phenomena between overhead power transmission lines and other nearby structures are inevitable, especially in densely populated areas. The undesired effects resulting from this proximity are manifold and range from the establishment of hazardous potentials to the outbreak of alternate current corrosion phenomena. The study of this class of problems is necessary for ensuring security in the vicinities of the interaction zone and also to preserve the integrity of equipment and devices there present. However, the complete modeling of this type of application requires the three-dimensional representation of the region of interest and needs specific numerical methods for field computation. In this work, the modeling of problems arising from the flow of electrical currents in the ground (the so-called conductive coupling) will be addressed with the finite element method. Those resulting from the time variation of the electromagnetic fields (the so-called inductive coupling) will be considered as well, and they will be treated with the generalized PEEC (Partial Element Equivalent Circuit) method. More specifically, a special boundary condition on the electric potential is proposed for truncating the computational domain in the finite element analysis of conductive coupling problems, and a complete PEEC formulation for modeling inductive coupling problems is presented. Test configurations of increasing complexities are considered for validating the foregoing approaches. These works aim to provide a contribution to the modeling of this class of problems, which tend to become common with the expansion of power grids
Fenômenos de acoplamento eletromagnético entre linhas aéreas de transmissão de energia e outras estruturas vizinhas são inevitáveis, sobretudo emáreas densamente povoadas. Os efeitos indesejados decorrentes desta proximidadesão variados, indo desde o estabelecimento de potenciais perigosos até o surgimento de processos de corrosão por corrente alternada. O estudo desta classe de problemas é necessária para a garantia da segurança nas imediações da zona de interação e também para se preservar a integridade de equipamentos e dispositivos ali presentes. Entretanto, a modelagem completa deste tipo de aplicação requer a representação tridimensional da região de interesse e necessita de métodos numéricos de cálculo de campos específicos. Neste trabalho, serão abordadas as modelagens de problemas decorrentes da circulação de correntes elétricas no solo (ditos de acoplamentocondutivo) com o método dos elementos finitos. Também serão considerados problemas produzidos pela variação temporal dos campos eletromagnéticos (ditos de acoplamento indutivo), que serão tratados com o método PEEC(Partial Element Equivalent Circuit) generalizado. Mais especificamente, uma condição de contorno particular sobre o potencial elétrico é proposta para o truncamento do domínio de cálculo na análise de problemas de acoplamento condutivo com o método dos elementos finitos, e uma formulação completa tipo PEEC para a modelagem de problemas de acoplamento indutivo é apresentada. Problemas teste de complexidades crescentes são considerados para a validação das abordagens precedentes. Estes trabalhos visam fornecer desta forma uma contribuição à modelagem desta classe de problemas, que tendem a se tornar comuns com a expansão das redes elétricas
APA, Harvard, Vancouver, ISO, and other styles
4

Duval, Fabrice. "Gestion du cablage des masses électriques dans un véhicule automobile : application C.E.M." Paris 11, 2007. http://www.theses.fr/2007PA112291.

Full text
Abstract:
Cette thèse porte sur le développement d’un outil d’aide à la décision sur les problèmes relatifs à la Compatibilité ElectroMagnétique (CEM) dans les systèmes de grande dimension tels que les véhicules automobiles. La plus grande difficulté a été de comprendre les paramètres à prendre en compte pour obtenir des résultats cohérents avec les mesures effectuées sur véhicule. Nous nous sommes concentrés sur la caractérisation de faisceaux présents sur les véhicules. Nous abordons également l’étude du comportement du plan de masse lié à la présence de très forts courants électriques continus. Pour aborder ces aspects, nous utilisons la méthode PEEC (Partiel Element Equivalent Circuit) pour sa facilité de mise en œuvre ainsi que pour ses facultés à traiter les problèmes sur un large spectre de fréquences. Le mémoire est composé de trois chapitres. Le premier présente les bases de l’électromagnétisme appliquées à la CEM des systèmes de grande dimension. Nous portons une attention toute particulière aux plans de masse qui sont utilisés en tant que conducteur de retour mais également en tant que référence de tension. Dans le deuxième chapitre, nous présentons la méthode PEEC ainsi que la méthodologie mise en place pour le développement du logiciel afin d’obtenir les meilleures performances possibles. Ce logiciel est validé sur un ensemble de cas tests. L’application de l’outil sur un cas industriel est traitée dans le dernier chapitre et permet de comprendre les phénomènes de résonance créés par la connexion des différents éléments reliés par un faisceau. La modélisation des composants de terminaison permet de compléter le modèle ainsi généré
This thesis is dealing with the development of a tool for supporting decision on problems related to ElectroMagnetic Compatibility (EMC) in big systems such as motor vehicles. To understand which parameters had to be taken into account in order to get consistent results from the measurements implemented on vehicle was the highest difficulty. We have been focussed on characterising the bundles in vehicles. We have been as well tackling the study of the behaviour of the ground plane linked to very strong electrical direct currents. In order to address these aspects we have been using the PEEC method (PEEC for Partial Element Equivalent Circuit) because of its easy implementation as well as of the possibility of using it for a wide range of frequencies. The report is composed of three chapters. The first one presents the bases of electromagnetism applied to big systems’ EMC. A particular attention is turned to ground planes which are used as return conductor as well as voltage reference. In the second chapter, we present the PEEC method and the methodology which was set up for developing the software in order to obtain the best performances possible. This software has been validated on a set of test cases. The tool’s application to an industrial case is dealt with in the last chapter and enables to understand the phenomena of resonance created by the different elements connected by a bundle. The modelling of the components allows completing the model thus generated
APA, Harvard, Vancouver, ISO, and other styles
5

Mourad, Hussein. "Mise en œuvre d’une méthodologie pour l’étude de rayonnement parasite basse fréquence de panneaux solaires sur des capteurs situés en zone proche." Limoges, 2007. https://aurore.unilim.fr/theses/nxfile/default/60bd8d91-54c9-4c60-a501-e14879bb1cd2/blobholder:0/2007LIMO4011.pdf.

Full text
Abstract:
DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquakes Regions) est le premier microsatellite développé par le CNES (Centre National d’Etudes Spatiales). Son objectif est d’étudier les perturbations de l’ionosphère associées à l’activité sismique ou volcanique. Le satellite possède des sondes très sensibles qui ont pour rôle de mesurer les fluctuations du champ magnétique terrestre. Pour un fonctionnement normal du satellite, il est important que le bruit électromagnétique généré par la structure elle-même et en particulier par les panneaux solaires soit suffisamment faible pour ne pas perturber les mesures des sondes. Les travaux présentés dans cette thèse s’inscrivent dans la contribution à l’étude du rayonnement parasite basse fréquence de panneaux solaires en champ proche. L’analyse topologique de la distribution des courants de mode commun et de mode différentiel à travers les différents chemins de câblage des cellules solaires permet la construction d’un réseau de dipôles électriques équivalents du système et le calcul du champ électromagnétique rayonné en un point donné de son environnement par sommation vectorielle de toutes les contributions dipolaires
DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquakes Regions) is the first microsatellite developed by the CNES (Centre National d’Etudes Spatiales). Its objective is to study the disturbances of the ionosphere associated with the seismic or volcanic activities. The satellite has very sensitive probes which have to measure the fluctuations of the terrestrial magnetic field. For a normal operation of the satellite, it is important that the electromagnetic noise generated by the structure itself and in particular by the solar panels is sufficiently weak not to disturb measurements of the probes. The work presented in this thesis falls under the contribution to the study of low frequency parasitic radiations of solar panels in the near field. The topological analysis of the distribution of the currents of common mode and differential mode through the various ways of wiring of the solar cells allows the construction of a network of equivalent electric dipoles of the system and the calculation of the electromagnetic field radiated in a given point of its environment by vectorial summation of all dipolar contributions
APA, Harvard, Vancouver, ISO, and other styles
6

Yahi, Islem. "Modélisation des sources de rayonnement au sein d'un véhicule automobile avec prise en compte de la présence du plan de masse." Rouen, 2009. http://www.theses.fr/2009ROUES043.

Full text
Abstract:
La thèse, ici présentée, traite des problématiques relatives au domaine de la Compatibilité Électromagnétique automobile. Ce travail porte sur le développement d'un outil de simulation, basé sur la méthode PEEC (Partiel Element Equivalent Circuit), destiné à traiter les problématiques automobiles de câblage. Cet outil de simulation sera un support d'aide à la décision ou à la conception pour les équipementiers ou les constructeurs automobiles. Le manuscrit est divisé en trois parties : dans la première, on justifie le choix d'utilisation de la méthode PEEC et on y étudie la caractérisation fréquentielle des câbles en présence des plans de masse pour. Dans la seconde partie du mémoire, nous détaillons toutes les contributions apportées pour optimiser l'outil existant sur deux aspects principaux : l'élargissement de sa bande de fréquence et l'optimisation de son temps d'exécution. La dernière partie est consacrée à deux applications concrètes : dans la première, on reproduit un processus lié aux mesures en champ proche, relatif à calibrage des sondes de mesure. La seconde application traite d'un cas de câblage automobile, où nous avons pu concrètement tester notre outil de simulation. L'exemple proposé regroupe tous les développements effectués jusque là dans le but d'en montrer la pertinence
The thesis presented here, deals with the problems relating to the field of automotive Electromagnetic Compatibility. The work deals specifically on the development of a simulation tool based on the PEEC (Partial Element Equivalent Circuit) method, dedicated to the cabling problems in automobiles. This simulation tool would also support the vehicle manufacturers in decision-making or designing their products. The manuscript is divided into three parts: the first justifies the choice of using the PEEC method among the other numerical methods. We examine also the frequency characterization of cabling schematics in the presence of a ground plane. In the second part of the thesis, we detail all the contributions to optimize an existing version of this tool on two main aspects : the expansion of its frequency band and the optimization of its execution time. The last part is devoted to two applications : firstly, we show a process related to near-field measurements, on the calibration of measuring probes. The second application deals with a case study of the cabling in an automobile, in which we could exclusively test our simulation tool. The example includes all the proposed developments made so far in order to demonstrate its relevance
APA, Harvard, Vancouver, ISO, and other styles
7

Ekman, Jonas. "Electromagnetic modeling using the partial element equivalent circuit method." Doctoral thesis, Luleå, 2003. http://epubl.luth.se/1402-1544/2003/27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Daroui, Danesh. "Implementation and optimization of partial element equivalent circuit-based solver /." Luleå, 2010. http://pure.ltu.se/ws/fbspretrieve/4634257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ekman, Jonas. "The partial element equivalent circuit method : modeling and experimental verification of PCB structures." Licentiate thesis, Luleå tekniska universitet, EISLAB, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18244.

Full text
Abstract:
To help products comply with international Electromagnetic Compatibility (EMC)regulations or as a help in a design process numerical simulation of electromagnetic (EM) characteristics are a valuable tool. With the development of high-speed computers the complexity of EM simulation programs and the systems they can simulate has increased considerable. But still, problems must be partitioned due to computer resource and/or EM simulation technique limitations. In this thesis, four different EM simulation techniques are described and the nature of these are discussed. The focus is on the partial element equivalent circuit (PEEC) method for which the following improvements and investigations have been proposed in the enclosed papers. First, a recent proposed formulation for the direct simulation of the radiated electric field from a device is compared against traditional post-processing equations and measurements. The results show that the proposed direct method, the electric field sensor, is unreliable for arbitrarily implementations since the length of the sensor strongly affects the results. Second, a technique to obtain simplified PEEC models are presented. The first step is to use a discretisation procedure where partial elements with small effect on the complete PEEC model are excluded. Then, instead of using numerical integration, closed-form equations are used to calculate the partial elements. The obtained simplified PEEC models are shown to comply well against measurements. Third, an introductory paper to the PEEC method is presented. The international interest for the method has been gaining rapidly for the past years resulting in considerable progress for the technique. But, in the Nordic countries the research effort has been low. The paper presents the technique using simple antenna examples, both printed and free space, and illustrations. For verification, simulations have been compared against analytical solutions and measurements.
Godkänd; 2001; 20070314 (ysko)
APA, Harvard, Vancouver, ISO, and other styles
10

Hasan, Samil Muklisin Yauma. "Characterization of high-speed electronic packages using reduced-order partial element equivalent circuit models." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283989.

Full text
Abstract:
Two circuit model extractors for complex multilayer microelectronic packages based on the Partial Element Equivalent Circuit (PEEC) technique, namely University of Arizona Effective Package Inductance Calculator (UAEPIC) and University of Arizona Effective Package Inductance and Capacitance Calculator (UAEPIC²), have been developed. The first one, UAEPIC, is based on the magneto-quasistatic assumption where the displacement current effect on the derivation of the electromagnetic field integral equation is neglected and thus the dominant inductive effects are modeled in order to extract the RL equivalent model. The second one, UAEPIC², uses a more rigorous electromagnetic model that accounts for displacement (yet nonretarded) electromagnetic effects to extract the RLC equivalent model of the given microelectronic package. The development of electrical models of packages of high complexity requires the numerical solution of linear systems of several thousands of equations. This makes the development of a broadband equivalent circuit to include skin effect computationally expensive. To circumvent this difficulty, two model order reduction techniques have been utilized. The method of Asymptotic Waveform Evaluation (AWE) has been incorporated in UAEPIC, and the Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA) has been applied to UAEPIC². Applications of AWE and PRIMA provide orders of magnitude reduction in computation labor and lead to a direct multiport Y-matrix representation in terms of the poles and residues. In this form, and using a special algorithm, the multiport, frequency-dependent equivalent circuit of the package can be incorporated efficiently in a SPICE-like circuit simulator. This simulation capability facilitates rapid and accurate simulations for the analysis of noise generation and signal degradation such as delay, cross-talk, power and ground bounces, and Simultaneous Switching Noise (SSN) in the package.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Partial element equivalent circuit (PEEC)"

1

Nitsch, Jürgen, Frank Gronwald, and Günter Wollenberg. Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nitsch, Jürgen. Radiating non-uniform transmission line systems and the partial element equivalent circuit method. Hoboken, N.J: J. Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nitsch, Jürgen. Radiating non-uniform transmission line systems and the partial element equivalent circuit method. Hoboken, N.J: J. Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nitsch, Jürgen. Radiating non-uniform transmission line systems and the partial element equivalent circuit method. Hoboken, N.J: J. Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nitsch, Juergen, Gunter Wollenberg, and Frank Gronwald. Radiating Nonuniform Transmission-Line Systems and the Partial Element Equivalent Circuit Method. Wiley & Sons, Incorporated, John, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nitsch, Prof, Prof Wollenberg, Juergen Nitsch, and Frank Gronwald. Radiating Nonuniform Transmission-Line Systems and the Partial Element Equivalent Circuit Method. Wiley & Sons, Incorporated, John, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nitsch, Juergen, Gunter Wollenberg, and Frank Gronwald. Radiating Nonuniform Transmission-Line Systems and the Partial Element Equivalent Circuit Method. Wiley & Sons, Limited, John, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Partial element equivalent circuit (PEEC)"

1

"The Method of Partial Element Equivalent Circuits (PEEC Method)." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 179–260. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Auxiliary Techniques for Partial Element Computations." In Circuit Oriented Electromagnetic Modeling Using the Peec Techniques, 423–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119078388.app5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Antonini, Giulio, Daniele Romano, Luigi Lombardi, and Albert Ruehli. "Partial element equivalent circuit method in time-domain." In Advanced Time Domain Modeling for Electrical Engineering, 181–216. Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/sbew550e_ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Torchio, Riccardo, Dimitri Voltolina, Piergiorgio Alotto, Paolo Bettini, and Federico Moro. "The Partial Element Equivalent Circuit Method for High-Frequency Problems." In Compendium on Electromagnetic Analysis, 53–88. World Scientific, 2020. http://dx.doi.org/10.1142/9789813270305_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Appendix A: Tensor Analysis, Integration and Lie Derivative." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 261–67. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Appendix B: Elements of Functional Analysis." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 269–87. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Appendix C: Some Formulas of Vector and Dyadic Calculus." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 289–90. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Appendix D: Adaption of the Integral Equations to the Conductor Geometry." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 291–93. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Appendix E: The Product Integral/Matrizant." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 295–97. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Appendix F: Solutions for Some Important Integrals." In Radiating Nonuniform Transmissionline Systems and the Partial Element Equivalent Circuit Method, 299–302. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470682425.app6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Partial element equivalent circuit (PEEC)"

1

Antonini, G. "Introduction to the partial element equivalent circuit (PEEC) technique (MO-AM-1-2)." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ruehli, Albert E. "Introduction to the (PEEC) partial element equivalent circuit approach applied to SI/PI." In 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8078052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruehli, Albert E., Lijun Jiang, and Giulio Antonini. "Introduction to the (PEEC) Partial Element Equivalent Circuit Approach Applied to SI/PI." In 2018 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2018. http://dx.doi.org/10.1109/emcsi.2018.8495387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cryan, M. J., I. J. Craddock, R. V. Penty, C. J. Railton, and I. H. White. "Electromagnetic Compatibility Analysis of Multilayer PCBs Using a Hybrid Finite Difference Time Domain (FDTD) - Partial Element Equivalent Circuit (PEEC) Method." In 2001 31st European Microwave Conference. IEEE, 2001. http://dx.doi.org/10.1109/euma.2001.338949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yi-An Hsu, Chiu-Chih Chou, Chi-Hsuan Cheng, and Tzong-Lin Wu. "A radiation prediction method based on partial element equivalent circuit." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belforte, Piero, Luigi Lombardi, Daniele Romano, and Giulio Antonini. "Digital Wave formulation of quasi-static Partial Element Equivalent Circuit method." In 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI). IEEE, 2016. http://dx.doi.org/10.1109/sapiw.2016.7496301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gabriadze, G., G. Chiqovani, A. Demurov, Z. Kutchadze, D. Karkashadze, and R. Jobava. "Fast Simulation of PCB/IC/Flex Circuit Assembly Using Partial Element Equivalent Circuit Method." In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). IEEE, 2018. http://dx.doi.org/10.1109/emceurope.2018.8485030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banerjee, Srutarshi, Rehim N. Rajan, Sandeep K. Singh, R. I. Bakhtsingh, and K. C. Mittal. "Compact lumped circuit model of discharges in DC accelerator using partial element equivalent circuit." In 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2014. http://dx.doi.org/10.1109/deiv.2014.6961685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romano, Daniele, Giulio Antonini, and Albert E. Ruehli. "Time-domain partial element equivalent circuit solver including non-linear magnetic materials." In 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2015. http://dx.doi.org/10.1109/nemo.2015.7415058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yutthagowith, Peerawut, Akihiro Ametani, Naoto Nagaoka, and Yoshihiro Baba. "Application of a partial element equivalent circuit method to lightning surge analyses." In 2011 7th Asia-Pacific International Conference on Lightning (APL). IEEE, 2011. http://dx.doi.org/10.1109/apl.2011.6110237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography