Journal articles on the topic 'PARP1 Inhibitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PARP1 Inhibitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kam, Caleb M., Amanda L. Tauber, Stephan M. Levonis, and Stephanie S. Schweiker. "Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14." Future Medicinal Chemistry 12, no. 24 (December 2020): 2179–90. http://dx.doi.org/10.4155/fmc-2020-0218.
Full textMaluchenko, Natalya, Darya Koshkina, Anna Korovina, Vasily Studitsky, and Alexey Feofanov. "Interactions of PARP1 Inhibitors with PARP1-Nucleosome Complexes." Cells 11, no. 21 (October 23, 2022): 3343. http://dx.doi.org/10.3390/cells11213343.
Full textZientara-Rytter, Kasia, Veronique T. Baron, Junguk Park, Pavel Shashkin, and Henry Zhu. "Abstract 6111: Design of a small molecule screening assay to detect DNA trapping of PARP1/2." Cancer Research 83, no. 7_Supplement (April 4, 2023): 6111. http://dx.doi.org/10.1158/1538-7445.am2023-6111.
Full textJi, Ming, Liyuan Wang, Nina Xue, Fangfang Lai, Sen Zhang, Jing Jin, and Xiaoguang Chen. "The Development of a Biotinylated NAD+-Applied Human Poly(ADP-Ribose) Polymerase 3 (PARP3) Enzymatic Assay." SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, no. 6 (April 20, 2018): 545–53. http://dx.doi.org/10.1177/2472555218767843.
Full textHalazonetis, Thanos D., Michalis Petropoulos, Giacomo G. Rossetti, Angeliki Karamichali, Alena Freudenmann, Luca Iacovino, Vasilis Dionellis, and Sotirios K. Sotiriou. "Abstract 1566: DNA damage generated by transcription-replication conflicts explains the synthetic lethality of PARP inhibitors with homologous recombination deficiency." Cancer Research 83, no. 7_Supplement (April 4, 2023): 1566. http://dx.doi.org/10.1158/1538-7445.am2023-1566.
Full textWang, Kai, Yizhou Wu, Lizhu Lai, Xin Wang, and Shuya Sun. "How ligands regulate the binding of PARP1 with DNA: Deciphering the mechanism at the molecular level." PLOS ONE 18, no. 8 (August 15, 2023): e0290176. http://dx.doi.org/10.1371/journal.pone.0290176.
Full textYin, Ling, and Junjie Chen. "Abstract 6098: Genome wide CRISPR screen reveals genetic vulnerabilities of next generation PARP1 inhibitor AZD5305." Cancer Research 83, no. 7_Supplement (April 4, 2023): 6098. http://dx.doi.org/10.1158/1538-7445.am2023-6098.
Full textKrastev, Dragomir B., Andrew J. Wicks, and Christopher J. Lord. "PARP Inhibitors – Trapped in a Toxic Love Affair." Cancer Research 81, no. 22 (November 15, 2021): 5605–7. http://dx.doi.org/10.1158/0008-5472.can-21-3201.
Full textNieborowska-Skorska, Margaret, Paulina Podszywalow-Bartnicka, Silvia Maifrede, Bac Viet Le, Monika Toma, Peter Valent, Tomasz Sliwinski, et al. "PARP1 Inhibitors Eliminated Imatinib-Refractory Chronic Myeloid Leukemia Cells in Bone Marrow Microenvironment Conditions." Blood 132, Supplement 1 (November 29, 2018): 3000. http://dx.doi.org/10.1182/blood-2018-99-115041.
Full textTutt, Andrew. "Abstract ED12-3: ATR inhibitors and PARP1 selective PARP inhibitors." Cancer Research 83, no. 5_Supplement (March 1, 2023): ED12–3—ED12–3. http://dx.doi.org/10.1158/1538-7445.sabcs22-ed12-3.
Full textDemény, Máté A., and László Virág. "The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks." Cancers 13, no. 9 (April 23, 2021): 2042. http://dx.doi.org/10.3390/cancers13092042.
Full textShao, Zhengping, Brian J. Lee, Élise Rouleau-Turcotte, Marie-France Langelier, Xiaohui Lin, Verna M. Estes, John M. Pascal, and Shan Zha. "Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo." Nucleic Acids Research 48, no. 17 (September 5, 2020): 9694–709. http://dx.doi.org/10.1093/nar/gkaa718.
Full textGao, Mingming, Zhentian Li, Qipeng Fan, Jun Pan, Yu Bai, Hewen Zhang, Yu Li, et al. "Abstract 1648: Discovery of a potent and selective PARP1 inhibitor and trapper with anti-tumor activities in HRD tumors." Cancer Research 83, no. 7_Supplement (April 4, 2023): 1648. http://dx.doi.org/10.1158/1538-7445.am2023-1648.
Full textNguyen, Nghia T., Anna Pacelli, Michael Nader, and Susanne Kossatz. "DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy." Cancers 14, no. 5 (February 23, 2022): 1129. http://dx.doi.org/10.3390/cancers14051129.
Full textChen, MeiKuang, Yuan Gao, Weiya Xia, Yu-Han Wang, Jennifer K. Litton, Yu-Yi Chu, Funda Meric-Bernstam, et al. "Abstract 1792: FGFR3 mediated PARP1 tyrosine 158 phosphorylation promotes PARP inhibitor resistance." Cancer Research 82, no. 12_Supplement (June 15, 2022): 1792. http://dx.doi.org/10.1158/1538-7445.am2022-1792.
Full textNam, Sujin, Jiyoung Chae, Kyung-Ok Cho, Tae-Sung Koo, Jungho Kim, Myungeun Jung, Jeongmin Kim, and Eunhee Kim. "Abstract 509: DM5167, a novel selective PARP1 inhibitor, efficiently reduces growth of triple-negative breast cancers." Cancer Research 83, no. 7_Supplement (April 4, 2023): 509. http://dx.doi.org/10.1158/1538-7445.am2023-509.
Full textMurai, Junko, Shar-yin N. Huang, Benu Brata Das, Amelie Renaud, Yiping Zhang, James H. Doroshow, Jiuping Ji, Shunichi Takeda, and Yves Pommier. "Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors." Cancer Research 72, no. 21 (October 31, 2012): 5588–99. http://dx.doi.org/10.1158/0008-5472.can-12-2753.
Full textGhosh, Avipsa, Sudhir M. Hande, Amber Balazs, Derek Barratt, Sabina Cosulich, Barry Davies, Sébastien Degorce, et al. "Abstract 6302: Structure-based and property-based drug design of AZD9574, a CNS penetrant PARP1 selective inhibitor and trapper." Cancer Research 82, no. 12_Supplement (June 15, 2022): 6302. http://dx.doi.org/10.1158/1538-7445.am2022-6302.
Full textCsizmar, Clifford M., Antoine N. Saliba, Elizabeth M. Swisher, and Scott H. Kaufmann. "PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword." Cancers 13, no. 24 (December 20, 2021): 6385. http://dx.doi.org/10.3390/cancers13246385.
Full textMueller, Nancy, Stephen Luen, Roger Stupp, Anthony Chalmers, Baisong Huang, Massimo Squatrito, Barry Davies, Petra Hamerlik, and Timothy Yap. "CTNI-03. A PHASE I/IIA, OPEN-LABEL STUDY OF THE BRAIN-PENETRANT PARP1-SELECTIVE INHIBITOR AZD9574 AS MONOTHERAPY AND IN COMBINATION IN PATIENTS WITH ADVANCED SOLID MALIGNANCIES (CERTIS1)." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii70. http://dx.doi.org/10.1093/neuonc/noac209.270.
Full textKrastev, Dragomir B., and Chris Lord. "Abstract 804: Trapped PARP1 cytotoxicity is modulated by the ubiquitin-dependentsegregase p97." Cancer Research 82, no. 12_Supplement (June 15, 2022): 804. http://dx.doi.org/10.1158/1538-7445.am2022-804.
Full textYang, Chunsong, Krzysztof Wierbilowicz, Natalia M. Dworak, Song Yi Bae, Sachi B. Tengse, Nicki Abianeh, Justin M. Drake, et al. "Abstract B072: Induction of PARP7 creates a vulnerability for growth inhibition by RBN2397 in prostate cancer cells." Cancer Research 83, no. 11_Supplement (June 2, 2023): B072. http://dx.doi.org/10.1158/1538-7445.prca2023-b072.
Full textKirby, Ilsa T., Ashley Person, and Michael Cohen. "Rational design of selective inhibitors of PARP4." RSC Medicinal Chemistry 12, no. 11 (2021): 1950–57. http://dx.doi.org/10.1039/d1md00195g.
Full textMukherjee, Joydeep, Ajay Pandita, Chatla Kamalakar, Tor-Christian Johannessen, Shigeo Ohba, Yongjian Tang, Cecilia L. Dalle-Ore, Rolf Bjerkvig, and Russell O. Pieper. "A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells." Science Translational Medicine 13, no. 592 (May 5, 2021): eabc7211. http://dx.doi.org/10.1126/scitranslmed.abc7211.
Full textCowley, Phillip M., Barry E. McGuinness, Gillian M. Campbell, and Alan Wise. "Abstract 6172: Characterization of a novel series of highly selective PARP1 inhibitors." Cancer Research 83, no. 7_Supplement (April 4, 2023): 6172. http://dx.doi.org/10.1158/1538-7445.am2023-6172.
Full textPommier, Y., S. H. Huang, B. B. Das, A. Renaud, Y. Zhang, S. H. Takeda, and J. H. Doroshow. "284 Differential Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors." European Journal of Cancer 48 (November 2012): 87. http://dx.doi.org/10.1016/s0959-8049(12)72082-8.
Full textMalyuchenko, N. V., E. Yu Kotova, O. I. Kulaeva, M. P. Kirpichnikov, and V. M. Studitskiy. "PARP1 Inhibitors: Antitumor Drug Design." Acta Naturae 7, no. 3 (September 15, 2015): 27–37. http://dx.doi.org/10.32607/20758251-2015-7-3-27-37.
Full textKrastev, Dragomir B., Shudong Li, Yilun Sun, Andrew J. Wicks, Gwendoline Hoslett, Daniel Weekes, Luned M. Badder, et al. "The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin." Nature Cell Biology 24, no. 1 (January 2022): 62–73. http://dx.doi.org/10.1038/s41556-021-00807-6.
Full textGanguly, Bratati, Sonia C. Dolfi, Lorna Rodriguez-Rodriguez, Shridar Ganesan, and Kim M. Hirshfield. "Role of Biomarkers in the Development of PARP Inhibitors." Biomarkers in Cancer 8s1 (January 2016): BIC.S36679. http://dx.doi.org/10.4137/bic.s36679.
Full textMaifrede, Silvia, Margaret Nieborowska-Skorska, Katherine Sullivan-Reed, Yashodhara Dasgupta, Paulina Podszywalow-Bartnicka, Bac Viet Le, Martyna Solecka, et al. "Tyrosine kinase inhibitor–induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors." Blood 132, no. 1 (July 5, 2018): 67–77. http://dx.doi.org/10.1182/blood-2018-02-834895.
Full textNguyen, Dang Hai, Zhiyan Silvia Liu, Sayantani Sinha, Maxwell Bannister, Erica Arriaga-Gomez, Axia Song, Dawei Zong, et al. "Spliceosome Mutant Myeloid Malignancies Are Preferentially Sensitive to PARP Inhibition." Blood 138, Supplement 1 (November 5, 2021): 322. http://dx.doi.org/10.1182/blood-2021-149688.
Full textCaracciolo, Daniele, Francesca Scionti, Giada Juli, Emanuela Altomare, Gaetanina Golino, Katia Todoerti, Katia Grillone, et al. "Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma." Haematologica 106, no. 1 (February 20, 2020): 185–95. http://dx.doi.org/10.3324/haematol.2019.240713.
Full textShen, Xiaokun, and Zeng Li. "Abstract P5-05-09: Cvl218,a second-generation selective parp inhibitors with strong clinical potential for breast cancer." Cancer Research 82, no. 4_Supplement (February 15, 2022): P5–05–09—P5–05–09. http://dx.doi.org/10.1158/1538-7445.sabcs21-p5-05-09.
Full textLi, Dongyue. "The Recent Advances of PARP Inhibitors in the Treatment of Cancer." Theoretical and Natural Science 3, no. 1 (April 28, 2023): 855–61. http://dx.doi.org/10.54254/2753-8818/3/20220498.
Full textAmbur Sankaranarayanan, Ramya, Susanne Kossatz, Wolfgang Weber, Mohsen Beheshti, Agnieszka Morgenroth, and Felix M. Mottaghy. "Advancements in PARP1 Targeted Nuclear Imaging and Theranostic Probes." Journal of Clinical Medicine 9, no. 7 (July 6, 2020): 2130. http://dx.doi.org/10.3390/jcm9072130.
Full textGe, Jun, Yu Yin, Yingpeng Li, Yanru Deng, and Hui Fu. "Dual-target inhibitors based on PARP1: new trend in the development of anticancer research." Future Medicinal Chemistry 14, no. 7 (April 2022): 511–25. http://dx.doi.org/10.4155/fmc-2021-0292.
Full textConceição, Carlota J. F., Elin Moe, Paulo A. Ribeiro, and Maria Raposo. "Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization." Nanomaterials 13, no. 10 (May 11, 2023): 1613. http://dx.doi.org/10.3390/nano13101613.
Full textNguyen, Dang Hai, Sayantani Sinha, Zhiyan Silvia Liu, Maxwell Henry Bannister, Erica Arriaga-Gomez, Axia Song, Dawei Zong, et al. "Abstract 6183: PARP inhibitors preferentially sensitize splicing factor mutant myeloid neoplasms." Cancer Research 83, no. 7_Supplement (April 4, 2023): 6183. http://dx.doi.org/10.1158/1538-7445.am2023-6183.
Full textJuhász, Szilvia, Rebecca Smith, Tamás Schauer, Dóra Spekhardt, Hasan Mamar, Siham Zentout, Catherine Chapuis, Sébastien Huet, and Gyula Timinszky. "The chromatin remodeler ALC1 underlies resistance to PARP inhibitor treatment." Science Advances 6, no. 51 (December 2020): eabb8626. http://dx.doi.org/10.1126/sciadv.abb8626.
Full textTruong, Sarah, Louise Ramos, Beibei Zhai, Jay Joshi, Fariba Ghaidi, Michael M. Lizardo, Taras Shyp, et al. "Abstract 6194: A bifunctional inhibitor of PARP and HDAC enzymes with activity in Ewing sarcoma 3D spheroid and metastasis models." Cancer Research 83, no. 7_Supplement (April 4, 2023): 6194. http://dx.doi.org/10.1158/1538-7445.am2023-6194.
Full textDemény, Máté A., and László Virág. "The PARP Enzyme Family and the Hallmarks of Cancer Part 2: Hallmarks Related to Cancer Host Interactions." Cancers 13, no. 9 (April 24, 2021): 2057. http://dx.doi.org/10.3390/cancers13092057.
Full textDallavalle, Sabrina, Salvatore Princiotto, Luce M. Mattio, Roberto Artali, Loana Musso, Anna Aviñó, Ramon Eritja, Claudio Pisano, Raimundo Gargallo, and Stefania Mazzini. "Investigation of the Complexes Formed between PARP1 Inhibitors and PARP1 G-Quadruplex at the Gene Promoter Region." International Journal of Molecular Sciences 22, no. 16 (August 14, 2021): 8737. http://dx.doi.org/10.3390/ijms22168737.
Full textWang, Luyao, Chao Liang, Fangfei Li, Daogang Guan, Xiaoqiu Wu, Xuekun Fu, Aiping Lu, and Ge Zhang. "PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs." International Journal of Molecular Sciences 18, no. 10 (October 8, 2017): 2111. http://dx.doi.org/10.3390/ijms18102111.
Full textHiroki, Haruka, Masatoshi Takagi, Yuko Ishi, Jinhua Piao, and Tomohiro Morio. "PARP Inhibition Sensitize BCR-ABL1 Positive Cel." Blood 134, Supplement_1 (November 13, 2019): 3367. http://dx.doi.org/10.1182/blood-2019-127853.
Full textTobin, Lisa A., Aaron P. Rapoport, Ivana Gojo, Maria R. Baer, Alan E. Tomkinson, and Feyruz V. Rassool. "DNA Ligase III Alpha and (Poly-ADP) Ribose Polymerase (PARP1) Are Therapeutic Targets in Imatinib-Resistant (IR) Chronic Myeloid Leukemia (CML)." Blood 114, no. 22 (November 20, 2009): 853. http://dx.doi.org/10.1182/blood.v114.22.853.853.
Full textTruong, Sarah, Beibei Zhai, Fariba Ghaidi, Louise Ramos, Jay Joshi, Dennis Brown, Neil Sankar, et al. "Abstract 1058: Evaluation of a novel class of bifunctional DNA alkylating agent and PARP inhibitor." Cancer Research 82, no. 12_Supplement (June 15, 2022): 1058. http://dx.doi.org/10.1158/1538-7445.am2022-1058.
Full textEngel, Justin, Madhavi Bandi, Antione Simoneau, Katherine Lazarides, Deepali Gotur, Truc Pham, Shangtao Liu, et al. "Abstract 2603: USP1 inhibitor synthetic lethality in BRCA1-mutant cancer is driven by PCNA ubiquitination." Cancer Research 82, no. 12_Supplement (June 15, 2022): 2603. http://dx.doi.org/10.1158/1538-7445.am2022-2603.
Full textGuibbal, Florian, Samantha L. Hopkins, Anna Pacelli, Patrick G. Isenegger, Michael Mosley, Julia Baguña Torres, Gemma M. Dias, et al. "[18F]AZD2461, an Insight on Difference in PARP Binding Profiles for DNA Damage Response PET Imaging." Molecular Imaging and Biology 22, no. 5 (April 27, 2020): 1226–34. http://dx.doi.org/10.1007/s11307-020-01497-6.
Full textWray, Justin, Elizabeth A. Williamson, Sudha B. Singh, Yuehan Wu, Christopher R. Cogle, David M. Weinstock, Yu Zhang, et al. "PARP1 is required for chromosomal translocations." Blood 121, no. 21 (May 23, 2013): 4359–65. http://dx.doi.org/10.1182/blood-2012-10-460527.
Full textTutt, ANJ. "Abstract ES6-4: Parp inhibitors for brca1/2mutation associated breast cancer." Cancer Research 82, no. 4_Supplement (February 15, 2022): ES6–4—ES6–4. http://dx.doi.org/10.1158/1538-7445.sabcs21-es6-4.
Full text